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Abstract: In this article, we introduce and rigorously analyze the concept of difference λ-weak convergence
for sequences defined by an Orlicz function. This notion generalizes the classical weak convergence by incorpo-
rating a λ-density framework and an Orlicz function, providing a more flexible tool for analyzing convergence
behavior in sequence spaces. We systematically investigate the algebraic and topological properties of these
newly defined sequence spaces, establishing that they form linear and normed spaces under suitable conditions.
Our results include demonstrating the convexity of these spaces and identifying several important inclusion rela-
tionships among them, such as strict inclusions between spaces involving different orders of difference operators
and Orlicz functions satisfying the Δ2-condition.
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1. Introduction and preliminaries

The concept of weak convergence, first introduced by Banach [1], is central to functional anal-
ysis, providing a foundation for evaluating how sequences converge in infinite-dimensional spaces.
While important, weak convergence has its limitations, especially when applied to complex sequence
structures or when more precise convergence criteria are required.

Recently, Mahanta and Tripathy [21] made important advances in the study of vector-valued
sequence spaces by investigating novel types of convergence and their repercussions. Their con-
tributions have improved our understanding of the algebraic and topological properties of these
spaces, enabling the development of new tools and approaches for investigating convergence in
broader contexts. This growing field of study emphasizes the continual growth and improvement of
sequence space theory, overcoming the limitations of traditional weak convergence while responding
to the demands of more complex mathematical analysis.

The concept of natural density for subsets of N was extended by Mursaleen [13] to what is known
as λ-density, which enabled a further generalization of the statistical convergence of real sequences,
leading to the concept of λ-statistical convergence. If λ = {λs}s∈N represents a nondecreasing
sequence of positive real numbers tending to infinity, satisfying λ1 = 1 and λs+1 ≤ λs + 1, s ∈ N,
then for any subset T ⊂ N, the λ-density dλ(T ) is defined as

dλ (T ) = lim
s→∞

|{k ∈ Is : k ∈ T}|
λs

,
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where Is = [s− λs + 1, s].
A sequence t = {tα}α∈N of real numbers is called λ-statistically convergent or Sλ-convergent to

t0 ∈ R if, for every ε > 0, dλ(T (ε)) = 0, where

T (ε) = {α ∈ N : |tα − t0| ≥ ε} .

The generalized de la Vallée-Poussin mean is defined by

qs (t) =
1

λs

∑
α∈Is

tα

where Is = [s− λs + 1, s]. A sequence is called (V, λ)-summable to a number t0 if qs (t) → t0 as
s → ∞.

If λs = s for all s ∈ N, then the notions of λ-density and λ-statistical convergence coincide
with the notions of natural density and statistical convergence, respectively. Some discussions and
applications related to λ-statistical convergence can be found in [2, 4, 5, 12, 14, 15, 17–20].

Let X be a normed space. The concept of the difference sequence space Z(Δ) was first intro-
duced by Kizmaz [10] and is defined as follows:

Z(Δ) = {t = (tα) : (Δtα) ∈ X} ,

where Δt = (Δtα) = (tα − tα+1) for all α ∈ N. Later, Et and Çolak [3] extended this idea by
defining generalized difference sequence spaces, expressed as

Z (Δp) = {t = (tα) : (Δ
ptα) ∈ X}

for Z = �∞, c, and c0, where Δptα = Δp−1tα −Δp−1tα+1 and Δ0tα = tα for all α ∈ N.
The binomial expansion for this generalized difference operator is given by

Δptα =

p∑
d=0

(−1)d
(
p

d

)
tα+d, for all α ∈ N. (1.1)

These generalized difference sequence spaces have been further studied by researchers such as
Tripathy [22, 23], Tripathy and Esi [24], among others.

Definition 1. Let V be a real vector space and let u, v ∈ V . Then, the set of all convex
combinations of u and v is the set of points

{w� ∈ V : w� = (1− �) u+ �v, 0 ≤ � ≤ 1} . (1.2)

In, say, R2, this set is exactly the line segment joining the two points u and v. We now introduce
the concept of a convex set.

Definition 2. Let M ⊂ V . Then the set M is said to be convex if, for any two points u, v ∈ M,
the set defined in (1.2) is a subset of M .

An Orlicz function U : [0,∞) → [0,∞) is defined such that U(0) = 0, U(t) > 0 for t > 0, and
U(t) → ∞ as t → ∞. This function is continuous, nondecreasing, and convex.

Lindenstrauss and Tzafriri [11] introduced the concept of an Orlicz function to define the
sequence space

�U =

{
(ti) ∈ ω :

∞∑
i=1

U
( |ti|

v

)
< ∞ for some v > 0

}
,
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where ω denotes the class of all sequences. The norm on the sequence space �U is defined by

‖t‖ = inf

{
v > 0 :

∞∑
i=1

U
( |ti|

v

)
≤ 1

}
,

which turns �U into a Banach space, commonly referred to as an Orlicz sequence space. Various
researchers, including Khan [6], Khan et al. [7–9], Parashar and Choudhury [16], and Tripathy and
Mahanta [21], have explored different forms of Orlicz sequence spaces.

Definition 3. A sequence (ti) in a normed linear space X is called weakly convergent to an
element t0 ∈ X if

lim
i→∞

f (ti − t0) = 0 for all f ∈ X ′,

where X ′ denotes the continuous dual space of X.

Definition 4. A sequence (ti) in a normed linear space X is said to be λ-weakly convergent to
t0 ∈ X if

lim
s→∞

1

λs

∑
k∈Is

f (tk − t0) = 0

for every f ∈ X ′, where X ′ is the continuous dual space of X. In this context, the notation Dw
λ is

used to denote the set of all λ-weakly convergent sequences.

Definition 5. A sequence space E is called solid if, for any scalar sequence (βi) with |βi| ≤ 1
for all i ∈ N, the condition (ti) ∈ E implies that (βiti) ∈ E.

Definition 6. A sequence space E ⊂ ω is called monotone if it contains all preimages of its
step spaces.

Definition 7. A sequence space E ⊂ ω is called symmetric if, whenever (ti) ∈ E, the permuted
sequence

(
tπ(i)

)
also belongs to E, where π is a permutation of N.

Lemma 1. A sequence space E being solid does not necessarily mean that E is monotone.

Definition 8. An Orlicz function U satisfies the Δ2-condition if there exists a constant T > 0
such that for all u ≥ 0,

U(2u) ≤ TU(u).

2. Main result

This section presents the following classes of sequences and establishes results related to them:

[Dw
λ ,U ,Δp]0 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U
( |f(Δptα)|

v

)
= 0 for some v > 0

}
,

[Dw
λ ,U ,Δp]1 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U |f(Δptα − t0)|
v

for some t0 and v > 0

}
,

[Dw
λ ,U ,Δp]∞ =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U
( |f(Δptα)|

v

)
< ∞ for some v > 0

}
.

The following result is presented here with a sketch of the proof.
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Theorem 1. The classes of sequences [Dw
λ ,U ,Δp]0 , [Dw

λ ,U ,Δp]1 , and [Dw
λ ,U ,Δp]∞ are linear

spaces.

P r o o f. The proof is provided only for the class [Dw
λ ,U ,Δp]0; the other cases can be established

using a similar approach. Let (tα) , (qα) ∈ [Dw
λ ,U ,Δp]0 , and let y, z ∈ C. To prove the result, we

need to find some v3 > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (yΔptα + zΔpqα)|

v3

)
= 0.

Since (tα) , (qα) ∈ [Dw
λ ,U ,Δp]0, there exist v1, v2 > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δptα)|

v1

)
= 0

and

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δpqα)|

v2

)
= 0.

We set v3 = max (2|y|v1, 2|z|v2). Suppose that U is both convex and nondecreasing; it follows that

1

λs

∑
α∈Is

U
( |f (yΔptα + zΔpqα)|

v3

)
≤ 1

λs

∑
α∈Is

U
( |f (yΔptα)|

v3
+

|f (zΔpqα)|
v3

)

≤ 1

λs

∑
α∈Is

1

2

[
U
(
f (yΔptα)

v1
+

f (zΔpqα)

v2

)]
→ 0 as s → ∞.

This proves that [Dw
λ ,U ,Δp]0 is a linear space over the field C of complex numbers.

Theorem 2. For any Orlicz function U , the space [Dw
λ ,U ,Δp]∞ forms a normed linear space

with respect to the norm

κΔp(t) =

p∑
i=1

|f (xi)|+ inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
.

P r o o f. To prove the theorem, we begin by examining the implications of κΔp(t) = κΔp(−t)
and t = θ, which leads to Δptα = 0. As a result, we find U(θ) = 0, which consequently yields
κΔp(θ) = 0. Conversely, suppose κΔp(t) = 0, which implies that

p∑
i=1

|f (ti)|+ inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
= 0.

Thus, we conclude that

p∑
i=1

|f (ti)| = 0 and inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
= 0.

From the first part, it follows that

ti = θ̄ for i = 1, 2, 3, . . . ,m, (2.1)
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where θ̄ denotes the zero element. For the second part, for any σ > 0, there exists some vσ with
0 < vσ < σ such that

sup
s

1

λs

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1 ⇒

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1.

Therefore, ∑
α∈Is

U
( |f (Δptα)|

σ

)
≤

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1.

Suppose that Δptqi 
= θ̄ for each i ∈ N. As σ → 0, it follows that

|f (Δptqi)|
σ

→ ∞.

Thus,
1

λs

∑
α∈Is

U
( |f (Δptα)|

σ

)
→ ∞

as σ → 0, where qi ∈ Is, which leads to a contradiction. Hence, Δptqi = θ̄ for each i ∈ N, and
consequently Δtα = θ̄ for all α ∈ N. Therefore, it follows from (1.1) and (2.1) that tα = θ̄ for all
α ∈ N, implying that t = θ.

Next, let v1, v2 > 0 be such that

sup
s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v1

)
≤ 1

and

sup
s

1

λs

∑
α∈Is

U
( |f (Δp�α)|

v2

)
≤ 1.

Let v = v1 + v2, then we have

sup
s

1

λs

∑
α∈Is

U
( |f (Δp (tα +�α))|

v

)
≤ 1.

Since v is nonnegative, we have

κΔpf(t+�)=

p∑
i=1

|f (ti+�i)|+ inf

{
v>0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δp (tα+�α))|

v

)
≤1

}

⇒ κΔpf(t+�) ≤ κΔpf(t) + κΔpf(�).

Let ϑ 
= 0 and ϑ ∈ C. Then

κΔp (ϑt)=

p∑
i=1

|ϑti|+ inf

{
v>0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δp (ϑtα))|

v

)
≤1

}
≤ |ϑ|κΔpf (t) .

This completes the proof. �

Every normed space is convex. In fact, we will show that the space [Dw
λ ,U ,Δp]∞, defined in

this work, is convex, as stated in the following result.
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Corollary 1. The sequence space [Dw
λ ,U ,Δp]∞ is convex.

P r o o f. Let (tα), (�α) ∈ [Dw
λ ,U ,Δp]∞. Then, from the definition of the space, we can write

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (tα))|

vt

)
< ∞ for some vt > 0,

and

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (�α))|

v�

)
< ∞ for some v� > 0.

For � = μt+ (1− μ)�, we have to show that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (μtα + (1− μ)�α))|

v�

)
< ∞ for some v� > 0.

Since U is a convex function, we have

U
( |f (Δp (μtα + (1− μ)�α))|

v�

)
≤ μU

( |f (Δp (tα))|
vt

)
+ (1− μ)U

( |f (Δp (�α))|
v�

)
,

where v� = μvt + (1− μ)v�.
Now, taking the limit as s → ∞, we have

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp�α)|

v�

)
≤μ lim

s→∞
1

λs

∑
α∈Is

U
( |f (Δp (tα))|

vt

)
+(1−μ) lim

s→∞
1

λs

∑
α∈Is

U
( |f (Δp�α)|

v�

)
.

Therefore,
� = μt+ (1− μ)� ∈ [Dw

λ ,U ,Δp]∞ .

Hence, the space [Dw
λ ,U ,Δp]∞ is convex. �

Theorem 3. Let U1 and U2 be Orlicz functions satisfying the Δ2-condition. Then the following
strict inclusions hold :

(i) [Dw
λ ,U1,Δ

p]K ⊆ [Dw
λ ,U2 · U1,Δ

p]K ;
(ii) [Dw

λ ,U1,Δ
p]K ∩ [Dw

λ ,U2,Δ
p]K ⊆ [Dw

λ ,U1 + U2,Δ
p]K , where K = 0, 1, and ∞.

P r o o f. We first prove the statement in the case K = 0. The same methods can then be
applied to the remaining cases.

(i) Let (tα) ∈ [Dw
λ ,U1,Δ

p]0. Then there exists v > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U1

( |f (Δptα)|
v

)
= 0.

Let 0 < σ < 1 and 0 < β < 1 be such that U2(m) < σ for 0 ≤ m < β.
Define

�α = U1

( |f (Δptα)|
v

)
.

Consider the expression
∑
α∈Is

U2 (�α) =
∑
1

U2 (�α) +
∑
2

U2 (�α) ,
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where the first summation runs over terms with �α > β and the second summation includes terms
with �α ≤ β. Since

1

λs

∑
1

U2 (�α) < U2(2)
1

λs

∑
1

(�α) (2.2)

for �α > β, we have

�α < 1 +
�α

β
.

Since U2 is nondecreasing and convex, it follows that

U2 (�α) <
1

2
U2(2) +

1

2
U2

(
2�α

β

)
.

Since U2 satisfies the Δ2-conditions, we have

U2 (�α) = T
�α

β
U2(2).

Hence,
1

λs

∑
2

U2 (�α) ≤ max
(
1, Tβ−1U2(2)

) 1

λs

∑
2

�α. (2.3)

Taking the limit as s → ∞, from (2.2) and (2.3), we obtain

(tα) ∈ [Dw
λ ,U2 · U1,Δ

p]0 .

A similar approach can be applied to demonstrate the result for the remaining cases.

(ii) The proof is standard and is omitted. �

By taking U1(t) = t and U2 = U(t) in Theorem 3 (i), we obtain the following particular case.

Corollary 2. The inclusion [Dw
λ ,Δ

p]0 ⊆ [Dw
λ ,U ,Δp]0 is strict.

Here, the space [Dw
λ ,Δ

p]0 is defined by

[Dw
λ ,Δ

p]0 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

( |f(Δptα)|
v

)
= 0 for some v > 0

}
.

Theorem 4. Let p ≥ 1 and K = 1, 2,∞. Then, the inclusion
[Dw

λ ,U ,Δp−1
]
K ⊂ [Dw

λ ,U ,Δp]K
is strict. In general,

[Dw
λ ,U ,Δi

]
K ⊂ [Dw

λ ,U ,Δp]K for i = 0, 1, 2, . . . , p − 1.

P r o o f. Let (tα) ∈
[Dw

λ ,U ,Δp−1
]
0
. Then we have

lim
s→∞

1

λs

∑
α∈Is

U
( |f(Δp−1tα)|

v

)
= 0 for some v > 0. (2.4)

Since U is both convex and nondecreasing, we can deduce that

1

λs

∑
α∈Is

U
( |f(Δptα)|

2v

)
=

1

λs

∑
α∈Is

U
( |f(Δp−1tα −Δp−1tα+1)|

2v

)

≤
(

1

λs

∑
α∈Is

U
( |f(Δp−1tα)|

v

)
− 1

λs

∑
α∈Is

U
( |f(Δp−1tα+1)|

v

))
.
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As s → ∞, we have
1

λs

∑
α∈Is

U
( |f(Δptα)|

2v

)
= 0

by (2.4), which implies (tα) ∈
[Dw

λ ,U ,Δp−1
]
0
.

The other cases will follow by a similar approach. Using induction, we can establish that

[Dw
λ ,U ,Δi

]
K ⊂ [Dw

λ ,U ,Δp]K

and i = 0, 1, . . . , p − 1. �

The following example directly illustrates this inclusion.

Example 1. Let λs = (s) be a sequence and U(t) = t. Consider the sequence (tα) =
(
αp−1

)
.

Then
Δptα = 0, Δp−1tα = (−1)p−1(p − 1)!

for all α ∈ N. Therefore, (tα) ∈ [Dw
λ ,U ,Δp]0 but (tα) /∈ [Dw

λ ,U ,Δp−1
]
0
.

Theorem 5. The space [Dw
λ ,U ,Δp]K, where K = 0, 1,∞, is generally not solid. The spaces

[Dw
λ ,U ]0 and [Dw

λ ,U ]∞ are solid.

P r o o f. Let (tα) ∈ [Dw
λ ,U ]0. Then there exists v > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (tα)|

v

)
= 0.

Let (δα) be a sequence of scalars such that |δα| ≤ 1. Then, for each s, we can write

1

λs

∑
α∈Is

U
( |f(δαtα)|

v

)
≤ 1

λs

∑
α∈Is

U
( |f(tα)|

v

)

⇒ lim
s→∞

1

λs

∑
α∈Is

U
( |f (δαtα)|

v

)
= 0

⇒ (δαtα) ∈ [Dw
λ ,U ]0 .

(2.5)

From the inequality presented in (2.5), it follows that [Dw
λ ,U ]∞ is solid. �

To demonstrate that the spaces [Dw
λ ,U ,Δp]1 and [Dw

λ ,U ,Δp]∞ are generally not solid, we pro-
vide the following example.

Example 2. Consider the function f(t) = t for all t ∈ R. Let X = R with p = 1. Let the
sequence (tα) be defined by tα = α for all α ∈ N. Let U(t) = tr with r ≥ 1, and λs = (s). Then
(tα) ∈ [Dw

λ ,U ,Δp]1 and (tα) ∈ [Dw
λ ,U ,Δp]∞. Let (γα) = ((−1)α). Then (γαtα) /∈ [Dw

λ ,U ,Δp]1 and
(γαtα) /∈ [Dw

λ ,U ,Δp]∞.

The following example illustrates that [Dw
λ ,U ,Δp]0 is generally not solid.

Example 3. Let X = R and consider the function f(t) = t for all t ∈ R. Let p = 1. Consider
the sequence (tα) defined by tα = 1 for all α ∈ N. Assume U(t) = tr with r = 2 and λs = (s). Let
(γα) = ((−1)α) for all α ∈ N. Then (γαtα) /∈ [Dw

λ ,U ,Δp]0. Thus, the set [Dw
λ ,U ,Δp]0 is not solid.

The following result is a consequence of Lemma 1 and Theorem 5.
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Corollary 3. The spaces [Dw
λ ,U ]0 and [Dw

λ ,U ]∞ are monotone.

Remark 1. The space [Dw
λ ,U ,Δp]0 is not convergence free.

P r o o f. The following example clearly illustrates this point. �

Example 4. Let p = 1, U = t and consider the sequence λs = (s). Consider the sequence (tα)
defined by

tα =
1

2
(1− (−1)α) .

Then (tα) ∈ [Dw
λ ,U ,Δp]0.

Now consider the sequence (�α) defined by

�α =

{
α if α is odd,
θ̄ if α is even.

Then (�α) /∈ [Dw
λ ,U ,Δp]0.

Remark 2. The spaces [Dw
λ ,U ,Δp]K, where K = 0, 1,∞, are generally not symmetric. The

following example illustrates this fact.

Example 5. Let p = 1, X = R, and consider the function f(t) = t for all t ∈ R. Let U(t) = t
and λs = (s). Consider the sequence (tα) defined by tα = α for all α ∈ N. Then (tα) ∈ [Dw

λ ,U ,Δp]0.
Now, rearrange the sequence (tα) to obtain the sequence (�α) defined by

�α = (t1, t2, t4, t3, t9, . . .) .

Then (�α) /∈ [Dw
λ ,U ,Δp]K, where K = 0, 1,∞. Hence, the spaces [Dw

λ ,U ,Δp]K, where K = 0, 1,∞,
are generally not symmetric.

3. Conclusion

In this paper, we introduced and analyzed the concept of difference λ-weak convergence for
sequences defined by an Orlicz function. Our study provided an in-depth examination of the
algebraic and topological properties of these sequences, offering a foundational perspective on their
structure and behavior. We also established key inclusion relationships between these newly defined
spaces and existing sequence spaces, thereby enhancing the overall framework of sequence space
theory. Our results contribute to the broader field of functional analysis, particularly in the context
of sequence spaces and Orlicz functions, and open new avenues for future research.
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14. Nabiev A.A., Savaş E., Gürdal M. Statistically localized sequences in metric spaces. J. Appl. Anal.
Comput., 2019. Vol. 9, No. 2. P. 739–746. DOI: 10.11948/2156-907X.20180157

15. Nuray F. Lacunary weak statistical convergence. Math. Bohem., 2011. Vol. 136, No. 3. P. 259–268.
DOI: 10.21136/MB.2011.141648

16. Parashar S.D., Choudhary B. Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math.,
1994. Vol. 25. P. 419–428.

17. Sharma A., Kumari R., Kumar V. Some aspects of λ-weak convergence using difference operator. J. Appl.
Anal., 2024. DOI: 10.1515/jaa-2024-0094
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