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Abstract: In the present paper, we investigate 2-local linear operators on vector spaces. Sufficient conditions
are obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do this,
families of matrices of a certain type are selected and it is proved that every 2-local linear operator generated
by these families is a linear operator. Based on these results we prove that each 2-local derivation of a finite-
dimensional null-filiform Zinbiel algebra is a derivation. Also, we develop a method of construction of 2-local
linear operators which are not linear operators. To this end, we select matrices of a certain type and using
these matrices we construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear
operator constructed using these matrices is not a linear operator. Applying this method we prove that each
finite-dimensional filiform Zinbiel algebra has a 2-local derivation that is not a derivation. We also prove that
each finite-dimensional naturally graded quasi-filiform Leibniz algebras of type I has a 2-local automorphism
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1. Introduction

In 1997, P. Semrl [20] introduced and investigated so-called 2-local derivations and 2-local
automorphisms on operator algebras. He described such maps on the algebra B(H) of all bounded
linear operators on an infinite-dimensional separable Hilbert space H. Namely, he proved that
every 2-local derivation (automorphism) on B(H) is a derivation (respectively an automorphism).

A similar description of 2-local derivations for the finite-dimensional case appeared later in [17].
In the paper [19] 2-local derivations have been described on matrix algebras over finite-dimensional
division rings. In [9] Sh. Ayupov and K. Kudaybergenov suggested a new technique and have
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generalized the above-mentioned results of [20] and [17] for arbitrary Hilbert spaces. Namely, they
proved that every 2-local derivation on the algebra B(H) of all linear bounded operators on an
arbitrary Hilbert space H is a derivation. They obtained also a similar result for the automorphisms.
In [4, 10] the authors extended the above results for 2-local derivations and gave a proof of the
theorem for arbitrary von Neumann algebras.

Afterwards, 2-local derivations have been investigated by many authors on different algebras
and many results have been obtained. In [15] it was established that every 2-local *-homomorphism
from a von Neumann algebra into a C*-algebra is a linear *-homomorphism. These authors also
proved that every 2-local Jordan *-homomorphism from a JBW*-algebra into a JB*-algebra is a
Jordan #-homomorphism. Later, in [14] the authors prove that any 2-local automorphism on an
arbitrary AW*-algebra without finite type I direct summands is an automorphism.

In the paper [11] 2-local derivations of finite-dimensional Lie algebras are described. The
authors proved that every 2-local derivation on a finite-dimensional semi-simple Lie algebra over
an algebraically closed field of characteristic zero is a derivation. They also showed that each
finite-dimensional nilpotent Lie algebra L with dim L > 2 admits a 2-local derivation which is not
a derivation. At the same time, in [18] X. Lai and Z.X. Chen describe 2-local Lie derivations for
the case of finite-dimensional simple Lie algebras.

In the paper [12] the authors proved that every 2-local automorphism on a finite-dimensional
semi-simple Lie algebra over an algebraically closed field of characteristic zero is an automorphism
and showed that each finite-dimensional nilpotent Lie algebra with dimension > 2 admits a 2-local
automorphism which is not an automorphism. Later, in [13] similar results were obtained in the
case of finite-dimensional Leibniz algebras. Many papers were devoted to 2-local derivations and
automorphisms on Lie and Leibniz algebras. In particular, in the paper [6]it was proven that every
2-local inner derivation on the Lie ring of skew-symmetric matrices over a commutative ring is an
inner derivation. They also proved that every 2-local spatial derivation on various Lie algebras of
infinite-dimensional skew-adjoint matrix-valued maps on a set is a spatial derivation. In [8] the
previous results were extended of the Lie ring of skew-adjoint matrices over a commutative #-ring
and various Lie algebras of skew-adjoint operator-valued maps on a set, respectively.

In [5] 2-local inner derivations on the Jordan ring H,(R) of symmetric n x n matrices over
a commutative associative ring R were investigated. It was proven that every such 2-local inner
derivation is a derivation. In the paper [7], the authors introduced and investigated the notion
of 2- local linear maps on vector spaces. A sufficient condition was obtained for the linearity
of a 2-local linear map on a finite-dimensional vector space. Based on this result, the authors
proved that every 2-local inner derivation on finite-dimensional semi-simple Jordan algebras over
an algebraically closed field of characteristics different from 2 and a field of characteristics 0 is
a derivation. Also, they showed that every 2-local l-automorphism (i.e. implemented by single
symmetries) of the mentioned Jordan algebra is an automorphism.

The present paper is devoted to 2-local linear operators, 2-local derivations and automorphisms
on finite-dimensional vector spaces, Leibniz and Zinbiel algebras. This paper is organized as follows:

In Section 2, we investigate 2-local linear operators on vector spaces. Sufficient conditions are
obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do
this, families of matrices of a certain type are selected and it is proved that every 2-local linear
operator generated by these families is a linear operator.

In Section 3, we develop a method of construction of 2-local linear operators which are not
linear operators. For this purpose we select matrices of a certain type and using these matrices we
construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear operator
constructed using these matrices is not a linear operator.

In Section 4, basing on the results of Section 2 we describe 2-local derivations of finite-
dimensional null-filiform Zinbiel algebras. Namely, we prove that each 2-local derivation of a



6 Farhodjon Arzikulov, Feruza Nabijonova and Furkat Urinboyev

finite-dimensional null-filiform Zinbiel algebra is a derivation. Also, applying the method of Sec-
tion 3 we prove that n-dimensional filiform Zinbiel algebras, n > 5, have 2-local derivations that
are not derivations.

In Section 5, applying the method of Section 3 we prove that finite-dimensional naturally graded
quasi-filiform Leibniz algebras of type I have 2-local automorphisms which are not automorphisms.

2. 2-Local liner operators of finite-dimensional vector spaces which are liner
operators

Definition 1. Let V' be a vector space over a field F, A :'V — V be a map such that for
each pair v, w of elements in V there exists a linear operator L, ., of V satisfying the following
conditions

A(v) = Lyyw(v), A(w) = Lyp(w).

)

Then A is called a 2-local linear operator.

Definition 2. Let V' be a vector space of dimension n over a field F, and let v = {ej, ea,... e}
be a basis of the vector space V. Let M be a set of n x n matrices. Then a mapping A :V —V is
called a 2-local linear operator generated by matrices in M, if, for each pair v and w of elements
in V', there exists a linear operator L, ., generated by a matriz in M with respect to v such that

A(v) = Lyyw(v), A(w) = Lyyp(w).

Let n and m be natural numbers such that m < n. Let, for fixed k, p such that 1 < k < n,
I<p<m,

fij(@i, o, .. xp), i=1,2,...,m, j#k, j=12,...,n,

be functions with values in a field ' (including the function f;;(x1,22,...,2p) =0),
gi(xl,xg,...,xp), i:1,2,...m,
be functions with values in the field F such that, for any nonzero elements {a1,as, ...,a,} CF, the

following system of equations

gi(z1, 22, ..., 2p) = gi(ar,a2,...,ap), i=1,2,...m,
has a unique solution z; = a;, j = 1,2,...,p, and let M,, ,(k,p) be a set of m x n matrices A
with components a;; such that, there exist nonzero elements a; € F, i = 1,2,...,p, satisfying the
following equalities
air = gi(ar,a2,...,ap), 1=12,...m,

al-j:fij(al,ag,...,ap), i:1,2,...m, ]#k‘

Remark 1. Note that, in the definition of the set M,, ,(k,p) components of every matrix A in
Myn(k,p) are computed using some nonzero elements a; € F, i =1,2,...,p.

Also, note that, by the definition of the set M, ,(k,p), a matrix of this set may contain a row,
all components of which are zeros, since p < m.
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Theorem 1. Let V be a vector space of dimension n over the field F, and letv = {e,ea,...en}
be a basis of the vector space V. Let A be a 2-local linear operator on V generated by matrices
in My n(k,p) with respect to the basis v. Then A is a linear operator generated by a matriz in
M, (K, p) with respect to the basis v.

P r o o f. Without loss of the generality, we suppose that k = 1. Indeed, matrices in M,, ,,(k, p)

depend on the basis v = {ej, ea,...e,}. If we swap the vectors e; and ey, then we get the set of
matrices My, ,(1,p), i.e., k = 1. By the definition, for every element z € V,

n
T = 5 Zi€i,
1=1

there exists a matrix A, ¢, = (a;;“")"._; in M,, (1, p) such that

iy Ji,5=1
- =
Az) = Az e, T,
where = (x1,22,...,2,)7 is the vector corresponding to x, Z is an operation on Z such that
T = x, and
— > — Z,€e1 Z,e1 x,e1 x,e1\T
Aler) = Ageier = (ay] ' as) ag 5 ,a,10)"
Since A(e1) = Ly, (€1) = Ly, (e1), we have
_ T,e1 x,e1 z,e1 Te1\T __ Yy,e1 y,e1 Yy,e1 y,e1\T
Aler) = (ay] s agy hagg - a,) )" = (a) hag) hagy s anyt)
for each pair x, y of elements in V. Hence, af;iel = ag’lel7 q =1,2,...n. By the condition, there
exist nonzero elements a7, /' € F, i =1,2,...,p such that
x,e1 _  (,T,€1 x,e1 x,e1 .
agit =gilay"ay™ . a), i=1,2,...n,
yer _ yer  y.er €1 .
agi =gi(a{™, a5, ap), i=1,2,...n.
So, we have
z.e1  xT,e1 T.e1\ _ .. (Y€1 Y€l ,e1 .
gi(ay" ay™ o ayt) = gi(a ey ey ), i =1,2,.0.n.
By the definition of g;, i = 1,2,...n, we have
z,e1 __ _Y,€1 y —
a;” =a;, 1=12,...p
By the condition, for every component af]?el, j#1,0f A, ., we have
z,e1 __ L A”i€1 z,e1 z,e1 . .
a;; = fijlay™ a5 ayt), i =120, # 1
where 2 € {z,y}. Therefore a;;” = a{}", i,j =1,2,...n,ie. Aye; = Aye,, and
- =
A(r) =Aye, @

for any = € V, and the matrix of A(x) does not depend on z. Hence A is a linear operator, and
the matrix A, ., is the matrix of A. The proof is complete. O
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Let n be a natural number, and let {i1,2,...4,} and {j1, j2,...jq} be subsets of {1,2,...,n}
such that

p+q=mn, {il,’iQ,...ip}U{jl,jg,...jq}:{1,2,...,n}.
Let, for fixed k, m, [ and s such that 1 < k,m,l,s <n, k#m,
Mn(kamailaléy'"ipajl?j2a"'jQ7l55)

be a set of n x n matrices A = (aij):fj:l such that the p X n submatrix
Ajtagp,a € {it,i2,...9}, B=12,...,n,
belongs to the set M, ,(k,l) and the ¢ x n submatrix
As tagg,a € {J1,J2,---4qt, B=1,2,....n,
belongs to the set M, ,,(m,s). Then the following theorem takes place.

Theorem 2. Let V be a vector space of dimension n over the field F, and let v = {ey, ea,... e}
be a basis of the vector space V. Let A be a 2-local linear operator on V generated by matrices
in Mp(k,m,i1,i2,...19p,J1,J2, - - - Jq, [, 8) with respect to the basis v. Then A is a linear operator
generated by a matriz in

Mn(lﬁmailazér"ip7j17j27"'jQ7l78)
with respect to the basis v.

Proof. Without loss of generality, we suppose that k=1, m =n. Indeed, matri-
ces in M,y (k,m,iy,i2,...0p, j1,J2,- .. Jg,l,$) depend on the basis v ={ej,ez,...€,}. If we
swap the vectors e; and e, e, and e, respectively then we get the set of matrices
My (1,n,01,92, . . ip, 1,92, - - - Jg, 1, S), 1.e., k=1, m =mn. Then, by definition of A, for every el-

ement x € V,
n
T = E i€,
=1

there exists a matrix
_ Z,e1\n
Age; = (a’ij )z‘,j:l

in My, (1,n,i1,i2,...0p, j1, J2, - - - Jg, !, s) such that

- =
Az) = Az e, T,
where T = (x1,29,...,2,)7 is the vector corresponding to x, T is an operation on Z such that

T =z, and

A(el) = Lx,€1 (61) = Ax,€1a = (aﬁq?agzciel?agielv s 7a2’1€1)T7

where L, ., is a linear operator, generated by A, .,. Since A(e1) = Ly, (e1) = Ly, ¢, (1), we have

_ (,T€1 ,T.e1  X,e1 r,en\NT __ (. Y1,e1 Y1,e1  Y1,e1 y1,e1\T
Aler) = (a1 as1 agy s e,y t)" = (a7 a5y agy™ o agt ™)
for each pair, x, y; of elements in V. Hence,
x,e1 __ _Yi1,€e1 . . .
ay b =aly o € {iy, i, .. L ip ) (2.1)
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By the definition of M,,(1,n,11,42,...19p, 1,52, .- Jg, 1, s) the submatrix

{a,$7el} . . .
Oé] ae{217227"'217}7 ]:1,2,...,71

belongs to the set of matrices My, ,(1,1). Hence, by definition of the set M, ,(1,1) there exist
mappings

gi(xl,xg,...,xl), i:1,2,...p,

with values in the field F and nonzero elements {a]"",a5"",...,a;"'} C F depending on z and e;
such that
T,e1 __ Z,e1 Z,e1 Z,e1
a; = gol(ay, a5, . a)7), a€{l,2,...p}.

Also, there exist nonzero elements {a"“", a3, ..., a;""'} C F depending on z and e; such that

Yyi,e1 __ Y1,€1 Y1,€1 Y1,€1 . . .

agit = galait ™t ax e, a € {iy,da, . i)
By the equalities (2.1), we have
ze1 Tl Te1y _ yier  yi.el y1.e1
galay ™ ay ™o a7 ) = gala]V ™ agm ™, o a/YTY),  a e {1,2,...p}.

By the definition of the functions g,, v = 1,2,... p in the definition of the set M, ,,(1,1), we have

z,e1
)

a; M =aM, i=1,2,...1 (2.2)

By the definition of the set M, ,(1,1), there exist functions

faj(xl,xg,...,:cp), QE{il,ig,...ip}, j=2,....,n,
with values in the field F such that, for every component aZ’jel, a € {i,i2,...9}, j=2,3,...,n,
of A, ., we have
ai’jel = fmj(af’el,a;’el,...,af)’el), a € {it,ig,... i}, J=2,3,...,n.

where z € {z,y;}. Therefore, by (2.2), az’jel = aglj’el, a € {iy,iz,...9}, j=1,2,...n. Hence, for
the elements v € Vi, where Vj is the vector subspace, generated by the vectors {e;,,€,,...,¢€;,},
ie.,

V1 == <ei1,6i2,- .. ,el-p>
and w € Vo, where V5 is the vector subspace, generated by the vectors {ej,,ej,,...,¢€;,}, ie.,

‘/2 = <6j1,6j2,... ,6jp>
such that .

Ap e =v+w,

the elements t € V7 and r € V5 such that

o —

Ay e =t+r

we have
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Similarly, from Ly e, (en) = Ly, e, (en) it follows that

agn" = aiy™, o €{ji,j2, .. Jg}
and
az{’je" = affj’e", ac{j,jo.--Jqt» J=12,...n.

Hence, for the elements a € V7 and b € V5 such that

Aper®=atb,
the elements ¢ € V; and d € V5 such that

A;,e\nj =c+d
we have

b=d.

Therefore, if we take y1 = e,, y2 = e1, then, for the elements f € V4 and g € V5 such that
Acver®=Ff+g,
we have
Ay =v+w=ftw=f+b=f+g=A, @
since v =f, Aze, @ = Az, T and b= g. So,
Lye () = Lye, () = Le, e, (7).

for any x € V, and the matrix of A(z) does not depend on z. Hence A is a linear operator and
the matrix A, ¢, is the matrix of A. This ends the proof. O

Ezample 1. Let Js6 be the Jordan algebra with a basis {e1,n1,n2,n3} such that

1
2 .
ny =mng, enzg= ing, etn; =n;, 1=1,2

(see Table 3 in [16]). Then the matrix of its arbitrary derivation has the following form

00 0 0
0 a 0 0
0B 2 0
00 0 =~

If wetake k=2, m=4, i1 =2, io =3, j1 =4, | =2, s=1, then the set of such matrices we
can take as the set My(k,m,i1,12,71,1,5).

Therefore, by Theorem 2, each 2-local automorphism of the Jordan algebra Js¢ is an automor-
phism. In this case, My(k, m, 1,12, 1,1, s) is a set of 4 x 4 matrices such that the 3 x 4 submatrix

Aitaqnp, a€{l,2,3}, [=1,23/4,
belongs to the set M3 4(2,2), and, the 1 x 4 submatrix
Asianp, a=4, B=123/4,
belongs to the set M 4(4,1).
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3. 2-Local liner operators on finite-dimensional vector spaces which are not
linear operators

Let n be a natural number, V be a vector space of dimension n over a field F with a basis
{e1,€e2,...,ey}. Let, for fixed k, m, a, 3, v,  such that
1<kma,B<n, 2<n<n, k#m, a<p, 0<y<(n-pB)n+pn-n)

and, for fixed subsets {i1,42,...,93} and {j1,J2,...,J,} of natural numbers from {1,2,...,n} such
that k,m € {jl,jg, - ’jTi}7
fij(xhx%--wxa)a iE{il,iQ,...,iﬁ}, je{j17j27"'7j7)}7 j#ka ]#m7
fij(ml,mg,...,my), iE{1,2,...,n}\{il,ig,...,ig}, jE{l,Q,...,n} if ﬁ#n,
fij(wlax%--wx’y)? i€{1727---7n}7 je{1727-"7n}\{j17j27---7j7)} if 777&77‘

be functions with values in the field F (including the function f;; = 0) and, for fixed nonzero

elements ay, ag, ..., aq, b1, ba, ..., bg, 21, 22, ..., 2, in F,
Mﬁ’m’n(al,(m, A ,aa,bl,bg, . ,bﬁ,zl,ZQ, ... ,Zﬁ/)
be a n X n matrix with components a;;, i,j = 1,2,...,n, such that
1) for i € {i1,i2,...,ig}, air € {a1,a2,...aq} or a; = 0 and for any a € {ai,as,...a,} there
exists [ € {i1,42,...,9g} such that a; = a;
2) for every component a;;, i€ {i1,ia,...,ig}, JE€{ji,J2---sdnts JFk, JjFm, of
k7 b
Mnmn(al,CLQ,...,aa,bl,bQ,...,bﬁ,Zl,ZQ,...,ny),
al-j = fij(al,ag, e ,aa);
3) Qigm :b87 s = 1727"'75;

4) every component a;; of the submatrices

B:aij,ie {1,2,...,n}\{il,ig,...,ig}, je {1,2,...,77,},
C:aijie{1,2,...,n}, je{1,2,....,n}\ {j1,j2,---»in}

is equal to fij(z1,22,...,25);
5) if # =n and n = n, then v = 0 and we use the designation

Mﬁ’m’”(al,ag,...,aa,bl,bg,...,bn)
instead of Mﬁ’m’n(al,ag, ey Oy b1 ba, b 21, 20, 2y).
Let V1, V5 be vector subspaces generated by the sets of vectors
{ej:j#m, je{j,jo,  in}t}
and {e,,} respectively, i.e.,
Vi={{ej:j#m, j€{ji.do,---int}), Vo= (em).
If  # n, then let V3 be a vector subspace generated by the set of vectors
{ej:je{1,2,....n}\ {j1. g2, - dnt}

i.e.,

Vs = <{€j 1] € {1,27... ,n} \ {j17j27--' 7377}}>



12 Farhodjon Arzikulov, Feruza Nabijonova and Furkat Urinboyev

Lemma 1. If n # n, then, for any v € V3 and x1,22,... 2o, Y1,Y2,--.,Y3 €F,

Mﬁ’m’n(xh L2, Ta,Y1,Y25 - - - 7y[37 Z1yR2y 72’)/)@
= Mﬁ’m’n(al,(m, ceyQay b1, b9, ,bﬁ, 215,22, .. ,ny)_.
Proof. Wehave
n
MBI (@1, B2, Ty Y1 Y2y - YGs 215 22,5 2D = Y > aijvie; = C,
=1 j€{1727"'7n}\{j17j27"'7j7]}
where
v = Z vlej,
j€{1727"'7n}\{j17j27~~~7j7]}
C is a matrix from item 4) of the definition of Mﬁ’m’n(al, ag,...,00,b1,b2,...,bg,21,22,...,2y)
above. Since 1, T2, ... Ta, Y1, Y2, - .-, Yg in F are chosen arbitrarily we have the statement of the
lemma. O
Theorem 3. Let V be a vector space of dimension n over a field F with a basis {e1,ea,...,en}.
Then, for any nonzero elements c1,ca, ..., cq from the field F, a mapping A on V defined as follows

(I) in the case n # n,
1) ifv=vi4+v3or v=uv3, vi €Vi, v1 #0, vs € V3 then

A(v) = Mﬁ’m’"(al, ag,...0q,01,b2,...b3,21,22,...,2y)7,
2) ifv=wvi+va+uz, viEV], va€ Vo, va#0, vz Vs, then
A(U) = be’m’n(cl,CQ, ceey Cay b, bo, . bﬁ,Zl,ZQ, .. .,ny)’L_),

(IT) in the case n = n,
1) ifv=wvy, v € V4, v1 #0, then

Av) = Mﬁ’m’”(al, as,...aq,b1,b2,...b3,21,22,...,2y)7,
2) ifv=wv1+ve, v1 € Vi, v € Vo, w9 #0, then
m: Mﬁ’m’"(cl,c%...,ca,bl,bg,...65,21,22,...,zy)f)
is a 2-local linear operator, and A is a linear operator if and only if
a;=c¢, 1=12 ..., a.

Proof. We will prove the theorem in the case (I). In the case (II), the theorem is proved
similarly. We prove that the mapping A, defined in the theorem, is a 2-local linear operator on V.
Take the subspace V; & V3 and arbitrary two elements v, w from Vi @ V3. Then, by the definition
of A, item 1) of the theorem and by Lemma 1, for the linear operator L, ,, with the matrix

k7m7
Mn n(a17a27 ooy Qs b17 b27 ey bﬁ7 21522y« Z’y)a

we have A(v) = Ly (v), A(w) = Lyp(w).

) )
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Take the subspace V5 @ V3 and two elements v, w from V5 @ V3 such that
v=wvyFuv3, vaEVh w3#0, wv3eV;, w=wyr+ws, wr€ Vo wyFO0, ws€ Vs
Then, by item 2) of the theorem, for the linear operator L, ,, with the matrix
Mﬁ’m’"(cl,c% ey Cay b1, b2, 008, 21, 22, .y 2y),

we have A(v) = Ly, (v), A(w) = Ly (w).
Now, if we take elements v € Vi @ V3 such that

v=uv1t+uv3, v1€V, v1#0, v3eEV3, welhdV;

such that
w:w2—|—w3, U]2€V2, w2?£07 w3€v§3)

then, by items 1) and 2) of the theorem
A(v) = ./\/lfl’m’”(al, A9y eevy Gy b1, b9,y ooy bﬁ, 21422y euey ZV)Z_},
and
A(w) = ME™ (e ey, .., co, b1, ba, o bB, 21, 22, 00, 29)W
respectively. In this case, by Lemma 1, for the linear operator T, ,, with the matrix
Mﬁ’m’"(al, ag, ..., Aq, bl, bg, ey bg, 21522y ony Zq/),

we have

A) =Ty(v), A(w)=Typ(w).

)

Now, if v € V1 & Vo & V3 such that
v=wvtuva+uv3, viE€V, wve€Ve, w#0, vseElVs weVioVs

such that
w = w1 + ws, ZU1€V1, wl?é()? w3€v§3)

then, by items 2) and 1) of the theorem,
A(U) = Mﬁ’m’n(cl, €2,y .0y Co, b1, b9, ..., bg, 21522, eeny Zq/)@

and

k? b
A(w) = Mp™ay, az, ..., aa, b1, b2, ..., bg, 21, 22, ..., 24)W

respectively. In this case, there exist elements A1, A2, ..., Ag in the field F such that for the linear
operator L, ,, with the matrix

k,m,
Mn "(al, A2y vvvy Qgyy )\1, )\2, ceey )\B, Z15 Ry eeny ny),

we have
A(v) = Ly (v), A(w) = Lyp(w).
Indeed, the equality A(w) = Ly (w) is obviously true for any A1, A2, ... Ag in F by Lemma 1. As

for the equality A(v) = Ly (v), we rewrite it in the following form

)

P>

k,m, —
(V) = ME"™ a1, a2, ..oy oy A1y A2y ooy ABy 215 22,5 oy 24)0
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k7m7
= My (c1, ¢, .05 Cay b1, ba, s bg, 21, 22, .0y 24) 0.

The last equality is a system of linear equations with respect to the variables A, A2, ... Ag. By
Lemma 1, this system can be written in the following way

hi+v§”)\i:gi+v§nbi, 1€ {il,’ig,...,’iﬁ}, hj :hj, j e {1,2,...,71}\{il,’ig,...,iﬁ},
for some elements h;, i = 1,2,...,n and g;, j € {i1,i2,...,ig}, from F, where vy = v§'ey,. Since,

vy* # 0, this system of linear equations has the solution

1 o .
A = U—m(gi +v5'; — hy), i € {i1,i2,...,i5}.
2

Hence,
k;7m7
Mn ”(al, A2y ..y Qgyy )\1, )\2, ceey )\5, Z15 Ry eeey ny)

is a desired matrix.
The case

v=v+vatuvs, vi €V, wva€Vy wy#0, wg€E Vs,
w=w; +wy+w3, wy €V, wrela, wr#0, wzels

is also trivial, i.e., by item 2) of the theorem, for the linear operator L, ,, with the matrix
Mﬁ’m’n(cl, C2yeery Coyy bl, b2, vy bﬁ, 21522 eny ny),

we have A(v) = Ly, (v), A(w) = Ly (w).
The case v € V3 and w € V| & Vo ® V3 such that

w=w;+wr+ws, wi€V, w #£0, wee€Vy, wr#0, wszeVs
follows by Lemma 1. Indeed, we have
A(v) = ME™(ay, a9, ...y Qo by Doy ooy b, 21, 22, vy 240
by item 1 of the theorem, and,
Aw) = Mﬁ’m’”(cl,c%...,ca,bl,bg, e bB, 21, 22, 0, 29)W
by item 2 of the theorem. At the same time,
m = Mﬁ’m’"(cl,@, ey Cay b1, b2, b8, 21, 22, oy 24)D

by Lemma 1. Hence,
A(v) = Lyyw(v), A(w) = Lyu(w)
for the linear operator L, ,,, generated by the matrix .Mfl’m’"(cl, €2, oy Cas D1, b2, o, b3, 21, 22, ey 24).
Thus, in all cases, for any pair v and w of elements from V', there exists a linear operator L, ,
on V such that A(v) = Ly (v), A(w) = Ly w(w), ie., A is a 2-local linear operator.
Now, if a; = ¢;, i =1,2,...,, then, by items 1) and 2) of the theorem, for any v € V,

k;v El 77
A(v) = Mp™ay, ag, ..., Gq, b1, ba, ..., bg, 21, 22, ..., 2)U.

So A is linear.
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Suppose that (a1,as,...,as) # (c1,¢2,...,¢q). Then there exists a vector v € Vi, v # 0, such
that

k7m7 7 k7m7
M1, 2,50 Can b1, b2, o b, 21, 22,5 0y 24)0 # M (a1, g, ... Ga, b1, ba, -0, bg, 21, 22, .0, 24) D

Then, for any w € Vo, w # 0, we have

A(v+w) = ME™I (e ey, .0 cq, b, b, oo, bg, 21,22, ..., 2¢) (V + W),

k;v El 77
A(v) = Mp™ay, ag, ..., aq, b1, b2, ..., bg, 21, 22, ..., 24),

k? ’ 1T
A(w) = Mp™ (e, ¢, ...y Ca, b1, ba,y o, bg, 21, 22, .0y 24) 0.

So,
A(v+w) — (A(v) + A(w)) = Mﬁ’m’"(cl,@, s Cay b1, b2, ., b8, 21, 22, oy 24)D
—be’m’"(al, A2y ey O, b1, 0o, .y bﬁ, 21522, ey ny)’L_) 75 0,
i.e., A is not additive. This ends the proof. O

4. 2-Local derivations of complex null-filiform and filiform Zinbiel algebras

An algebra A over a field F is called Zinbiel algebra if, for any x,y, z € A, the identity
(zy)z = z(yz) + 2(zy)
holds. For a given Zinbiel algebra A, we define the following sequence:
./41 — .A, Ai+1 — ZAkAilefk, i>1.
k=1

A Zinbiel algebra A is said to be nilpotent if A? = 0 for some i € N. The minimal number 4
satisfying A’ = 0 is called index of nilpotency or nilindex of the algebra A.

It is clear that the index of nilpotency of an arbitrary n-dimensional nilpotent Zinbiel algebra
does not exceed the number n + 1.

Definition 3. An n-dimensional Zinbiel algebra A is said to be null-filiform if
dim A" = (n + 1) — 4,
where dim A* is the dimension of A', 1 <i<mn+ 1.

It is evident that the last definition is equivalent to the fact that the Zinbiel algebra A has
maximal index of nilpotency.

Theorem 4 [2]. An arbitrary n-dimensional null-filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to the algebra

FY . €i€; :CJJrjileH_j, 2<i1+475<n,

n (3

where omitted products ere; are equal to zero and {ey,es,...,e,} is a basis of the algebra, the
symbols C* are binomial coefficients defined as
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Definition 4. An n-dimensional Zinbiel algebra A is said to be filiform if
dimA' =n—i, 2<i<n.

Theorem 5 [2]. An arbitrary n-dimensional, n > 5, filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to one of the following pairwise non-isomorphic algebras:

FL.

n ' €i€j = Z']+j_16i+ja 2<i4+53<n—-1,

2. _ : : _
Fy:oeieg =0 iy, 2<i+j<n—1 ene1=c¢ep1,

3. _ I S _
E) . eej = CijleHj, 2<i4+j3<n—-1, epe,=¢én_1,

where omitted products ere; are equal to zero and {e1,es,...,e,} is a basis of the appropriate
algebra.

Theorem 6 [21]. A linear map A : F? — F? is a derivation if and only if A is of the following
form:
n .
Alei) = Z Cjz‘ilajfzﬁrleja 1<i<mn,
Jj=t

where o; € C, 1 <1 < n.

Theorem 7 [21]. A linear map A : F} — E} is a derivation if and only if /\ is of the following
form:

n n—1
A(el) = Zajej, A(ez) = ZC;*laj_iHej, 2<i1<n-—1, A(en) =bp_16n-1 + bnen,
= =i

where o; € C, 1 <1 < n.

Theorem 8 [21]. A linear map A : F? — F? is a derivation if and only if /\ is of the following

form:
n n—1
A(el) = Zajej, A(eg) = Z C}O&jflej + oanen_1,
j=1 J=2
n—1
A(e;) = Z C’;flaj,iﬂej, 3<i<n-—1, Alen) =bp_16n-1+ (n—2)agey,,
Jj=i

where a; € C, 1 <i<n.

Theorem 9 [21]. A linear map A : F> — F3 is a derivation if and only if A is of the following
form:

n n—1
A(el) = Zajej, A(el) = ZC’;flaj,Hlej, 2 S 7 S n — 1,
7j=1 j=t
n—1

A(en) = —apep—9 + bnflenfl +

Q1€n,

where o; € C, 1 <1< n.
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The following theorems are the main theorems of the present section.
Theorem 10. Each 2-local derivation on FV is a derivation.

Proof Let A bean arbitrary 2-local derivation on FY. By the definition, for any x, y € F?
there exists a derivation D, , on F)) such that

A(z) = Dy y(x),  Alx) = Dy y(2).

By Theorem 6, the matrix of the derivation D, , has the following matrix form:

ay? 0 0 0 0
ay?  CialV 0 0 0
D a3’ Ciay? Cial? ... 0 0
T,y —
Ty ol Ty oL oy Cn—é T,y 0
P s RS = . WS Y
oy Cra”y Cia”y ... Ch%ay” Ch oy

Clearly, the set of all n x n matrices of the form above we can set as a set M,, ,,(k,p) defined
in Section 2, where m =n, k=1, p=n, i.e., My, n(k,p) = M, (1, 1)

Each 2-local derivation on F? is a 2-local linear operator on F° generated by matrices in
M, (1,n) with respect to the basis {e1, 2, ..., e, }. Conversely, every 2-local linear operator on F?
generated by matrices in M, ,,(1,n) is a 2-local derivation on F? by Theorem 6.

Therefore, by Theorem 1, each 2-local derivation on F? is a linear operator generated by a
matrix from M,, ,(1,n). Hence, each 2-local derivation on F) is a derivation by Theorem 6. This
ends the proof. O

Theorem 11. The algebras F}, F2 and F3 have 2-local derivations which are not derivations.

P roof Let D bean arbitrary derivation on F!. By Theorem 7, the matrix of the derivation
D has the following form:

(651 0 0 e 0 0
a9 021041 0 e 0 0
a3 C%CYQ C?%Oél e 0 0
«a Cl ‘ 02 . Cn72 ‘
n—1 n—1%n—2 n—1%—-3 ... n—1%1 Bn—l
an, 0 0 e 0 Bn

Let a1 = ap—1, a2 = ay, by = /Bn—la by = /Bn and
1 = a1, 22 =02, .., 2Zp-2=0p_2.

Then, if this matrix we denote by M}L’n’n(al, a2,b1,b2, 21,22, .oy Zn—2), then
i’"’"(al,ag,bl,bg,zl,z%...,zn_g) satisfies the all conditions of the definition in Section 3
of a matrix

k,m,
Mn "(al,ag, coey Oy bl, bz, ceey bﬁ, 215 Ry oens Z,y)

inthecaseof k=1, m=n, n=n, a=2, f=2and y=n—2.
Therefore, by Theorem 3, we can find a 2-local derivation on F! which is not linear.
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Now we take the algebra F? and a derivation D on F2. By Theorem 8, the matrix of the
derivation D has the following form:

g 0 0 e 0 0

a9 C21a1 0 e 0 0

Qa3 C§a2 C??Oél N 0 0
Qp—1 Cyllflan—Z + an, Cy%floén—fﬂ cee 02:12041 Br-1

anp 0 0 e 0 (n—2)ay

Similar to the previous case, we take a1 = a;,_1, b1 = 5,1 and
g1 =01, Z2=0Q2, .., 2Zp-2=0p-2, Zp-1= Qn.

Then, if this matrix we denote by My™" (a1, b1, 21, 22, s Zn_1), then Mp™™(ay, by, 21, 22, ..y Zn—1)
satisfies the all conditions of the definition in Section 3 of a matrix

k,m,
Mn n(al,ag, ceey Qg bl, b2, ceey bﬁ, Z15 Ry eeny Z’Y)

inthecaseof k=1, m=n, n=n, a=1, f=1and y=n—1.

Therefore, by Theorem 3, we can find a 2-local derivation on F! which is not linear.

Similarly we prove that F> has 2-local derivations which are not derivations. This ends the
proof. O

5. 2-Local automorphisms of naturally graded quasi-filiform Leibniz algebras
of type 1

A vector space with a bilinear bracket (L, [-,-]) is called a Leibniz algebra if, for any x, y, z € L,
the so-called Leibniz identity

[z, [y, 2]] = ([, ], 2] = [z, 2], 9]

holds. For a given Leibniz algebra (L, [-,]), the sequence of two-sided ideals is defined recursively
as follows:

ct=c, cHl=[ck g, k>1

This sequence is said to be the lower central series of L.

A Leibniz algebra L is said to be nilpotent, if there exists n € N such that £" = {0}.

It is easy to see that the sum of two nilpotent ideals of a Leibniz algebra is also nilpotent.
Therefore, the maximal nilpotent ideal of a finite-dimensional Leibniz algebra always exists. The
maximal nilpotent ideal of a Leibniz algebra is said to be the nilradical of the algebra.

Now we give the definitions of automorphisms and 2-local automorphisms.

Let A be an algebra. A linear bijective map ¢ : A — A is called an automorphism if it satisfies

o([z,y]) = [p(x), o(y)] forall z,y € A.

Let A be an algebra. A (not necessarily linear) map A : A — A is called a 2-local automorphism
if, for any elements x, y € A, there exists an automorphism ¢, , : A — A such that

A(.%') - (Px,y(x)v A(y) = ¢$7y(y)'

Below we define the notion of a quasi-filiform Leibniz algebra.
An n-dimensional Leibniz algebra £ is called quasi-filiform if £~2 # {0} and £"~! = {0}.
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Given an n-dimensional nilpotent Leibniz algebra £ such that £5~! # {0} and £° = {0}, put
Li=LY/LH 1<i<s—1,

and
gr(L)=L1® Ly ®--- DLy 1.

Due to [£;,L;] € L;4; we obtain the graded algebra gr(£). If gr(£) and £ are isomorphic, i.e., if
gr(L) = L, then we say that £ is naturally graded.

Let = be a nilpotent element of the set £\£?. For the nilpotent operator of right multiplica-
tion R, we define a decreasing sequence C'(x) = (ni,ng,...,ng), where n = ny +ng + -+ - + ng,
which consists of the dimensions of Jordan blocks of the operator R,. On the set of such sequences
we consider the lexicographic order, that is,

C(x) = (n1,n2,...,n,) < Cly) = (my,ma,...,my)

iff there exists ¢ € N such that n; = m; for any j <i and n; < m;.
The sequence
C(L) = max C(x
(£)= n 1, (z)
is called the characteristic sequence of the algebra L.
A quasi-filiform non Lie Leibniz algebra L is called an algebra of the type I (respectively, type II)
if there exists an element 2 € £\L£? such that the operator R, has the form

oz 0 (respectivel Jo 0 )
0 J2 Y p Y? 0 Jn72 N

The following theorem obtained in [1] gives the classification of naturally graded quasifiliform
Leibniz algebras of type I.

Theorem 12. An arbitrary n-dimensional naturally graded quasi-filiform Leibniz algebra of
type I is isomorphic to one of the pairwise non-isomorphic algebras of the following families:

[62‘761]:6“_1, 1§i§n—3,

[
1, . _ 2. len—1,€e1] = en,
R S b VPR ) i CA S O}
[enfl, 6nfl] = €n,
[ei,el]:eHl, 1§’L'§’I’L—3, [ei,el]:eHl, 1§’L'§’I’L—3,
EE’L’A 14 [en—1,€1] = en + €2, L2 Jen_1,e1] = e, + ea,
le1,en—1] = Aen, A€ {-1,0,1}, [en—1,€n—1] = pen, u#0,

ei,e1] =ejp1, 1<i<n—3,

e1,en—1] = Aen, (A, ) =(1,1) or (2,4),

[
5\ [en—1,e1] = en + €2,
n * [
[enfla 6nfl] = le€n,

where {e1,ea,...,en} is a basis of the algebra.

In this section we use the following theorem from [3] concerning automorphisms of naturally
graded quasi-filiform Leibniz algebras of type I.
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Theorem 13. A linear map ¢ : L — L is an automorphism if and only if @ has the following
form:

p(e1) = 2o, qiei,
@ (e2) = ( 1% aimrei+ a1+ Nea ),
® <£%{)\> 1y ele) = Z:L;f Qi—jyie, 3<j<n-—2
¢ (en—1) = Z," n_3 Di€i,
¢ (en) = a1 (bn-3en—2 + bp—1€5) ,

where a; € C, 1 <1< n, arby,_1 #0;

(
(e2) = oy 2 vy 1€ + a1 (a1 + 1) €n,
(6.7) = a‘{il Z:L;]2 Qj—j+164, 3 < ] <n-— 2’
(

2
2
® (53{0) )
2

[ ¢ (en) = (a1 + an-1) bn1€n,
where a; € C, 1<i<n, arby_1#0, by_1 =01+ ap_1;
p(er) =321 10%6@,
@ (e2) = 0412 2 ai—16; + a1 (200 + 1) g,
P (L3 - v (ej) = Z? f aijr1e, 3<j<n-—2,
o (
o (

En— 1)—bn 26n—2 + bp_1€n—1 + bpey,

en) = (1 + an_1) bp_16n,
where a; € C, 1<i<n, ajby_1#0, bp_1 =01 +an_1;
p(e1) = Zz 10%6“
(ﬁi’_l) Was (ej) = a1 Mo + 1) ej +af ! Z?;JQH ai—jt1€i, 2<j<n-—2,
¢ (en—1) = 15 cvie; + bp_nen—2 + (01 + 1) €n_1 + bpen,
¢ (en) = on (a1 +an-1) en,
where a; € C, 1<i<mn, aj(a;+ay_1) #0;

el) ZZ 1 Q€4

e2) = oy (a1 +oap_1)es + o ZZ T 1€ + Q10 _1€p,

=S aies 4 by 3en 34 by_sen o+ (a1 + @n_1) €n1 + bneén,

en) = ( n—3 — On— 3)a16n 2+a16na

~—

(

(

() =af ™ (a1 +ap-1)ej+ai ' 02 qisje, 2<j<n—2
(en—1

(

’
’
P (L3%) 10
’
v
<1

where a; € C, 1 <n, ai(a1+an_1) # 0; for the algebras Ly, Ly, Lo

p(er) = 2"712 aie; + amen,

¢ (ej) = ai” IZZ j Qi—jy1€i, 2<j<n-—2,
@ (en—1) = bp—2en_2 + are,_1 + byen,

¢ (en) = 207en,

where a; € C, 1<i<n—2, a,€C, a; #0.
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The following theorem is one of the main results of the present paper concerning 2-local auto-
morphisms.

Theorem 14. The algebras L, £27, where X € {0,1}, L3, where X € {~1,0,1}, L* and
LM, where A\ p) = (1,1) or (2,4), have 2-local automorphisms which are not automorphisms.

Proof. Let ¢ be an arbitrary automorphism on LA By Theorem 13, the matrix of the
automorphism ¢ has the following form:

aq 0 0 0 0 0 .. 0 0 0
s a? 0 0 0 0 e 0 0 0
Qg Q1o oz‘(f 0 0 0 .. 0 0 0
Opd o1 0,—5 a2, g . 0/1%6042 042“4 0 0 0 0
Op—3 10,4 a2, s . a’ll_6a3 0/11_5(12 a?_g 0 B3 0
Qn-2  MQn_3  an_4 Qo5 ... o Pag aftas ol Bu2 a1fa-s
Q1 0 0 0 0 . 0 0 Bur 0
Qo an,1(1 + )\) 0 0 0 ... 0 0 B a18n-1

Let a1 = o, ap_1 =0, by =, and
21 =01, Z2=0Q2, .., Zp-2=0p-2, Zn—1=Pn-1, Zn=PLn-2, Znt1 = Pn-3.

Then, denoting  this  matrix by M}L’n’n(al, b1, 215 22y ooy Znt1)s we see  that
M}L’n’"(al,bl,zl,zg,...,zn+1) satisfies all conditions of the definition in Section 3 of a ma-
trix

k7m7
Mn "(al,ag, ceey Qg bl, b2, ceey bﬁ, K152y eeny Z’Y)

inthecaseof k=1, m=n—-1, n=n—-1, a=1, f=1and y=n+1.
Therefore, by Theorem 3, we can find a 2-local automorphism on E}L’A which is not linear.

Now we take the algebra £2 and an automorphism ¢ on £ By Theorem 13, the matrix of
the automorphism ¢ has the following form:

[e%1 0 0 0 0 0 0 0 0

as a? 0 0 0 0 0 0 0

as alog ol 0 0 0 0 0 0
Qn_a a10n—_5 alan_g ozll_ﬁozg a?_4 0 0 0 0
Qn_3 Q1Qn—_4 alan_5 a?76a3 a?75a2 CM?73 0 0 0
Qn_2 a1am—3 Cl%an_4 a?an_s a?75a3 a?74a2 CM?72 Brn—2 0
Qn—1 0 0 0 0 0 0 a1l + an—1 0

Qn an_1(a1 +an_1) 0 0 0 0 0 Bn (Cll1 +an_1)2

Similar to the previous case, we take a1 = «a;,, a1 =0, by =3, and
21 =01, 22=0Q2, .., Zp-2=0p-2, Zn—1= Ppn-2.

Then, if this matrix we denote by M%{n’n(al, b1, 21,22, ...y Zn—1), then M%{n’n(al, b1, 21522, oy Zn—1)
satisfies all conditions of definition in Section 3 of a matrix

k7m7
Mn "(al,ag, coey Aoy bl, bz, ceey bﬁ, 215 Ry oens Z,y)

inthecaseof k=1, m=n—1, n=n—1, a=1, § =1and v =n—1. Therefore, by Theorem 3,
we can find a 2-local automorphism on E?L’)‘ which is not linear.
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Similarly we prove that £2! has 2-local automorphisms which are not automorphisms.
Now, we take E‘:’L’fl, Ei’o, E‘:’L’l, Eﬁ’“ and E%”\’“ . By Theorem 13, the matrix of automorphisms
of £271 and £2° has the following forms respectively:

[e%1 0 0 0 0 0 0 0 0
(e D) A2 0 0 0 0 . 0 a2 0
as "ty A3 0 0 0 . 0 as 0
Qn—a a?_lan,5 ozll_loznfe .. a?_laz An—4a 0 0 Qn—a 0
Qn_3 a?ilan_4 arfflan_5 e a?71a3 o/lklag An—3 0 Qn—3 0
an—2 oy o lagg o lan_s o " lag o laz An-2 Brn—2 018n-3
Qn—1 0 0 0 0 0 0 a1 + ap—1 0
Qn 0 0 0 0 0 0 Bn al(al +an_1)
and
o 0 0 0 0 0 0
a9 )\2 0 0 0 a9 0
Qs 102 )\3 0 0 Qs 0
oy a1 a%ag A4 0 y 0
Qs a0y Oé%Oég 04:1”042 0 s 0

Op—q4 Q10p_5 Oé%an,(; a§an77 0 Onp—q 0
On-3 Q10n_4 QFon_5 QFon_g 0 Br—3 0
Qn—2 Q10n_3 Qfan_4 OSan_s5 ... Ao Bn—2 (Bn—3 — an—3)a1
O —1 0 0 0 . 0 a1+ a1 0
Op Q10— 0 0 .. 0 Bn a%
where \; = ozifl (a1 +ap-1),1=2,3,...,n— 2.

For the algebras Ef’;l, Eﬁ’“ and E?{)"“ the matrix of their automorphisms has the following
form

o1 0 0 0 0 0 0
as a? 0 0 0 0 0
3 2oy o3 0 0 0 0
oy adas adag ai 0 0 0
as atay afas ooy 0 0 0
09 o{h?’an,g a?73an,4 oz?*?’ozn,g) e a?72 Bn_o 0
0 0 0 0 - 0 o1 0
an, 0 0 0 0 Bn 202

By these forms and Theorem 3, similar to the cases of E}L’)‘ and £2° we can prove that the algebras
E%’fl, E%’O, E%’l, Efl’“ and Ei)"“ also have 2-local automorphisms which are not automorphisms.
This ends the proof. O

Conclusion

In conclusion, it can be said that the article generalizes the methods of studying 2-local deriva-
tions and automorphisms of algebras. The method proposed in the second section allows one to
make a direct conclusion about whether all 2-local derivations (respectively, automorphisms) are
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derivations (respectively, automorphisms) based on the general matrix form of the matrix of a
derivation (respectively, an automorphism) of an algebra. This method is useful since often the
derivation (automorphism) of an algebra has the matrix form in the method under consideration.
In the third section, a method is developed that allows one to obtain an entire subspace (an entire
subgroup) of 2-local derivations (respectively, 2-local automorphisms) that are not derivations (re-
spectively, automorphisms). As is known, the set of all 2-local derivations (2-local automorphisms)
of an algebra forms a vector space (respectively, a group) and the description of this vector space
(this group) is an open problem. We think that the method developed in the third section allows
to solve this problem.
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