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Abstract: In the present paper, we investigate 2-local linear operators on vector spaces. Sufficient conditions
are obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do this,
families of matrices of a certain type are selected and it is proved that every 2-local linear operator generated
by these families is a linear operator. Based on these results we prove that each 2-local derivation of a finite-
dimensional null-filiform Zinbiel algebra is a derivation. Also, we develop a method of construction of 2-local
linear operators which are not linear operators. To this end, we select matrices of a certain type and using
these matrices we construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear
operator constructed using these matrices is not a linear operator. Applying this method we prove that each
finite-dimensional filiform Zinbiel algebra has a 2-local derivation that is not a derivation. We also prove that
each finite-dimensional naturally graded quasi-filiform Leibniz algebras of type I has a 2-local automorphism
that is not an automorphism.
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1. Introduction

In 1997, P. Šemrl [20] introduced and investigated so-called 2-local derivations and 2-local
automorphisms on operator algebras. He described such maps on the algebra B(H) of all bounded
linear operators on an infinite-dimensional separable Hilbert space H. Namely, he proved that
every 2-local derivation (automorphism) on B(H) is a derivation (respectively an automorphism).

A similar description of 2-local derivations for the finite-dimensional case appeared later in [17].
In the paper [19] 2-local derivations have been described on matrix algebras over finite-dimensional
division rings. In [9] Sh. Ayupov and K. Kudaybergenov suggested a new technique and have
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generalized the above-mentioned results of [20] and [17] for arbitrary Hilbert spaces. Namely, they
proved that every 2-local derivation on the algebra B(H) of all linear bounded operators on an
arbitrary Hilbert space H is a derivation. They obtained also a similar result for the automorphisms.
In [4, 10] the authors extended the above results for 2-local derivations and gave a proof of the
theorem for arbitrary von Neumann algebras.

Afterwards, 2-local derivations have been investigated by many authors on different algebras
and many results have been obtained. In [15] it was established that every 2-local ∗-homomorphism
from a von Neumann algebra into a C∗-algebra is a linear ∗-homomorphism. These authors also
proved that every 2-local Jordan ∗-homomorphism from a JBW∗-algebra into a JB∗-algebra is a
Jordan ∗-homomorphism. Later, in [14] the authors prove that any 2-local automorphism on an
arbitrary AW∗-algebra without finite type I direct summands is an automorphism.

In the paper [11] 2-local derivations of finite-dimensional Lie algebras are described. The
authors proved that every 2-local derivation on a finite-dimensional semi-simple Lie algebra over
an algebraically closed field of characteristic zero is a derivation. They also showed that each
finite-dimensional nilpotent Lie algebra L with dimL ≥ 2 admits a 2-local derivation which is not
a derivation. At the same time, in [18] X. Lai and Z.X. Chen describe 2-local Lie derivations for
the case of finite-dimensional simple Lie algebras.

In the paper [12] the authors proved that every 2-local automorphism on a finite-dimensional
semi-simple Lie algebra over an algebraically closed field of characteristic zero is an automorphism
and showed that each finite-dimensional nilpotent Lie algebra with dimension ≥ 2 admits a 2-local
automorphism which is not an automorphism. Later, in [13] similar results were obtained in the
case of finite-dimensional Leibniz algebras. Many papers were devoted to 2-local derivations and
automorphisms on Lie and Leibniz algebras. In particular, in the paper [6]it was proven that every
2-local inner derivation on the Lie ring of skew-symmetric matrices over a commutative ring is an
inner derivation. They also proved that every 2-local spatial derivation on various Lie algebras of
infinite-dimensional skew-adjoint matrix-valued maps on a set is a spatial derivation. In [8] the
previous results were extended of the Lie ring of skew-adjoint matrices over a commutative ∗-ring
and various Lie algebras of skew-adjoint operator-valued maps on a set, respectively.

In [5] 2-local inner derivations on the Jordan ring Hn(ℜ) of symmetric n × n matrices over
a commutative associative ring ℜ were investigated. It was proven that every such 2-local inner
derivation is a derivation. In the paper [7], the authors introduced and investigated the notion
of 2- local linear maps on vector spaces. A sufficient condition was obtained for the linearity
of a 2-local linear map on a finite-dimensional vector space. Based on this result, the authors
proved that every 2-local inner derivation on finite-dimensional semi-simple Jordan algebras over
an algebraically closed field of characteristics different from 2 and a field of characteristics 0 is
a derivation. Also, they showed that every 2-local 1-automorphism (i.e. implemented by single
symmetries) of the mentioned Jordan algebra is an automorphism.

The present paper is devoted to 2-local linear operators, 2-local derivations and automorphisms
on finite-dimensional vector spaces, Leibniz and Zinbiel algebras. This paper is organized as follows:

In Section 2, we investigate 2-local linear operators on vector spaces. Sufficient conditions are
obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do
this, families of matrices of a certain type are selected and it is proved that every 2-local linear
operator generated by these families is a linear operator.

In Section 3, we develop a method of construction of 2-local linear operators which are not
linear operators. For this purpose we select matrices of a certain type and using these matrices we
construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear operator
constructed using these matrices is not a linear operator.

In Section 4, basing on the results of Section 2 we describe 2-local derivations of finite-
dimensional null-filiform Zinbiel algebras. Namely, we prove that each 2-local derivation of a
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finite-dimensional null-filiform Zinbiel algebra is a derivation. Also, applying the method of Sec-
tion 3 we prove that n-dimensional filiform Zinbiel algebras, n ≥ 5, have 2-local derivations that
are not derivations.

In Section 5, applying the method of Section 3 we prove that finite-dimensional naturally graded
quasi-filiform Leibniz algebras of type I have 2-local automorphisms which are not automorphisms.

2. 2-Local liner operators of finite-dimensional vector spaces which are liner

operators

Definition 1. Let V be a vector space over a field F, ∆ : V → V be a map such that for
each pair v, w of elements in V there exists a linear operator Lv,w of V satisfying the following
conditions

∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Then ∆ is called a 2-local linear operator.

Definition 2. Let V be a vector space of dimension n over a field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let M be a set of n× n matrices. Then a mapping ∆ : V → V is
called a 2-local linear operator generated by matrices in M, if, for each pair v and w of elements
in V , there exists a linear operator Lv,w generated by a matrix in M with respect to ν such that

∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Let n and m be natural numbers such that m ≤ n. Let, for fixed k, p such that 1 ≤ k ≤ n,
1 ≤ p ≤ m,

fij(x1, x2, . . . , xp), i = 1, 2, . . . ,m, j 6= k, j = 1, 2, . . . , n,

be functions with values in a field F (including the function fij(x1, x2, . . . , xp) ≡ 0),

gi(x1, x2, . . . , xp), i = 1, 2, . . . m,

be functions with values in the field F such that, for any nonzero elements {a1, a2, . . . , ap} ⊂ F, the
following system of equations

gi(x1, x2, . . . , xp) = gi(a1, a2, . . . , ap), i = 1, 2, . . . m,

has a unique solution xj = aj , j = 1, 2, . . . , p, and let Mm,n(k, p) be a set of m × n matrices A
with components aij such that, there exist nonzero elements ai ∈ F, i = 1, 2, . . . , p, satisfying the
following equalities

aik = gi(a1, a2, . . . , ap), i = 1, 2, . . . m,

aij = fij(a1, a2, . . . , ap), i = 1, 2, . . . m, j 6= k.

Remark 1. Note that, in the definition of the set Mm,n(k, p) components of every matrix A in
Mm,n(k, p) are computed using some nonzero elements ai ∈ F, i = 1, 2, . . . , p.

Also, note that, by the definition of the set Mm,n(k, p), a matrix of this set may contain a row,
all components of which are zeros, since p ≤ m.
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Theorem 1. Let V be a vector space of dimension n over the field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let ∆ be a 2-local linear operator on V generated by matrices
in Mn,n(k, p) with respect to the basis ν. Then ∆ is a linear operator generated by a matrix in
Mn,n(k, p) with respect to the basis ν.

P r o o f. Without loss of the generality, we suppose that k = 1. Indeed, matrices in Mn,n(k, p)
depend on the basis ν = {e1, e2, . . . en}. If we swap the vectors e1 and ek, then we get the set of
matrices Mn,n(1, p), i.e., k = 1. By the definition, for every element x ∈ V ,

x =

n∑

i=1

xiei,

there exists a matrix Ax,e1 = (ax,e1ij )ni,j=1 in Mn,n(1, p) such that

∆(x) = Âx,e1x̄,

where x̄ = (x1, x2, . . . , xn)T is the vector corresponding to x, ̂̄x is an operation on x̄ such that
̂̄x = x, and

∆(e1) = Ax,e1e1 = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T .

Since ∆(e1) = Lx,e1(e1) = Ly,e1(e1), we have

∆(e1) = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T = (ay,e111 , ay,e121 , ay,e131 , . . . , ay,e1n1 )T

for each pair x, y of elements in V . Hence, ax,e1q1 = ay,e1q1 , q = 1, 2, . . . n. By the condition, there
exist nonzero elements ax,e1i , ay,e1i ∈ F, i = 1, 2, . . . , p such that

ax,e1q1 = gi(a
x,e1
1 , ax,e12 , . . . , ax,e1p ), i = 1, 2, . . . n,

ay,e1q1 = gi(a
y,e1
1 , ay,e12 , . . . , ay,e1p ), i = 1, 2, . . . n.

So, we have

gi(a
x,e1
1 , ax,e12 , . . . , ax,e1p ) = gi(a

y,e1
1 , ay,e12 , . . . , ay,e1p ), i = 1, 2, . . . n.

By the definition of gi, i = 1, 2, . . . n, we have

ax,e1i = ay,e1i , i = 1, 2, . . . p.

By the condition, for every component az,e1ij , j 6= 1, of Az,e1 we have

az,e1ij = fij(a
z,e1
1 , az,e12 , . . . , az,e1p ), i = 1, 2, . . . n, j 6= 1.

where z ∈ {x, y}. Therefore ax,e1ij = ay,e1ij , i, j = 1, 2, . . . n, i.e. Ax,e1 = Ay,e1 , and

∆(x) = Ây,e1 x̄

for any x ∈ V , and the matrix of ∆(x) does not depend on x. Hence ∆ is a linear operator, and
the matrix Ay,e1 is the matrix of ∆. The proof is complete. �
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Let n be a natural number, and let {i1, i2, . . . ip} and {j1, j2, . . . jq} be subsets of {1, 2, . . . , n}
such that

p + q = n, {i1, i2, . . . ip} ∪ {j1, j2, . . . jq} = {1, 2, . . . , n}.

Let, for fixed k, m, l and s such that 1 ≤ k,m, l, s ≤ n, k 6= m,

Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s)

be a set of n× n matrices A = (aij)
n
i,j=1 such that the p× n submatrix

A1 : aαβ, α ∈ {i1, i2, . . . ip}, β = 1, 2, . . . , n,

belongs to the set Mp,n(k, l) and the q × n submatrix

A2 : aαβ , α ∈ {j1, j2, . . . jq}, β = 1, 2, . . . , n,

belongs to the set Mq,n(m, s). Then the following theorem takes place.

Theorem 2. Let V be a vector space of dimension n over the field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let ∆ be a 2-local linear operator on V generated by matrices
in Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s) with respect to the basis ν. Then ∆ is a linear operator
generated by a matrix in

Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s)

with respect to the basis ν.

P r o o f. Without loss of generality, we suppose that k = 1, m = n. Indeed, matri-
ces in Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s) depend on the basis ν = {e1, e2, . . . en}. If we
swap the vectors e1 and ek, em and en respectively then we get the set of matrices
Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s), i.e., k = 1, m = n. Then, by definition of ∆, for every el-
ement x ∈ V ,

x =

n∑

i=1

xiei,

there exists a matrix
Ax,e1 = (ax,e1ij )ni,j=1

in Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s) such that

∆(x) = Âx,e1x̄,

where x̄ = (x1, x2, . . . , xn)T is the vector corresponding to x, ̂̄x is an operation on x̄ such that
̂̄x = x, and

∆(e1) = Lx,e1(e1) = Ax,e1e1 = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T ,

where Lx,e1 is a linear operator, generated by Ax,e1 . Since ∆(e1) = Lx,e1(e1) = Ly1,e1(e1), we have

∆(e1) = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T = (ay1,e111 , ay1,e121 , ay1,e131 , . . . , ay1,e1n1 )T

for each pair, x, y1 of elements in V . Hence,

ax,e1α1 = ay1,e1α1 , α ∈ {i1, i2, . . . ip}. (2.1)
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By the definition of Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s) the submatrix

{ax,e1αj }α∈{i1,i2,...ip}, j=1,2,...,n

belongs to the set of matrices Mp,n(1, l). Hence, by definition of the set Mp,n(1, l) there exist
mappings

gi(x1, x2, . . . , xl), i = 1, 2, . . . p,

with values in the field F and nonzero elements {ax,e11 , ax,e12 , . . . , ax,e1l } ⊂ F depending on x and e1
such that

ax,e1iα1
= gα(ax,e11 , ax,e12 , . . . , ax,e1l ), α ∈ {1, 2, . . . p}.

Also, there exist nonzero elements {ax,e11 , ax,e12 , . . . , ax,e1l } ⊂ F depending on x and e1 such that

ay1,e1α1 = gα(ay1,e11 , ay1,e12 , . . . , ay1,e1l ), α ∈ {i1, i2, . . . ip}.

By the equalities (2.1), we have

gα(ax,e11 , ax,e12 , . . . , ax,e1l ) = gα(ay1,e11 , ay1,e12 , . . . , ay1,e1l ), α ∈ {1, 2, . . . p}.

By the definition of the functions gv , v = 1, 2, . . . p in the definition of the set Mp,n(1, l), we have

ax,e1i = ay1,e1i , i = 1, 2, . . . l. (2.2)

By the definition of the set Mp,n(1, l), there exist functions

fαj(x1, x2, . . . , xp), α ∈ {i1, i2, . . . ip}, j = 2, . . . , n,

with values in the field F such that, for every component az,e1αj , α ∈ {i1, i2, . . . ip}, j = 2, 3, . . . , n,
of Az,e1 we have

az,e1αj = fα,j(a
z,e1
1 , az,e12 , . . . , az,e1p ), α ∈ {i1, i2, . . . ip}, j = 2, 3, . . . , n.

where z ∈ {x, y1}. Therefore, by (2.2), ax,e1αj = ay1,e1αj , α ∈ {i1, i2, . . . ip}, j = 1, 2, . . . n. Hence, for
the elements v ∈ V1, where V1 is the vector subspace, generated by the vectors {ei1 , ei2 , . . . , eip},
i.e.,

V1 = 〈ei1 , ei2 , . . . , eip〉

and w ∈ V2, where V2 is the vector subspace, generated by the vectors {ej1 , ej2 , . . . , ejp}, i.e.,

V2 = 〈ej1 , ej2 , . . . , ejp〉

such that

Âx,e1x̄ = v + w,

the elements t ∈ V1 and r ∈ V2 such that

Ây1,e1x̄ = t + r

we have

v = t.



10 Farhodjon Arzikulov, Feruza Nabijonova and Furkat Urinboyev

Similarly, from Lx,en(en) = Ly2,en(en) it follows that

ax,enαn = ay2,enαn , α ∈ {j1, j2, . . . jq}

and

ax,enαj = ay2,enαj , α ∈ {j1, j2, . . . jq}, j = 1, 2, . . . n.

Hence, for the elements a ∈ V1 and b ∈ V2 such that

Âx,enx̄ = a + b,

the elements c ∈ V1 and d ∈ V2 such that

Ây2,enx̄ = c + d

we have

b = d.

Therefore, if we take y1 = en, y2 = e1, then, for the elements f ∈ V1 and g ∈ V2 such that

Âe1,enx̄ = f + g,

we have

Âx,e1x̄ = v + w = f + w = f + b = f + g = Âe1,enx̄

since v = f , Ax,e1x̄ = Ax,enx̄ and b = g. So,

Lx,e1(x) = Lx,en(x) = Le1,en(x).

for any x ∈ V , and the matrix of ∆(x) does not depend on x. Hence ∆ is a linear operator and
the matrix Ae1,en is the matrix of ∆. This ends the proof. �

Example 1. Let J56 be the Jordan algebra with a basis {e1, n1, n2, n3} such that

n2
1 = n2, e1n3 =

1

2
n3, e1ni = ni, i = 1, 2

(see Table 3 in [16]). Then the matrix of its arbitrary derivation has the following form



0 0 0 0
0 α 0 0
0 β 2α 0
0 0 0 γ


 .

If we take k = 2, m = 4, i1 = 2, i2 = 3, j1 = 4, l = 2, s = 1, then the set of such matrices we
can take as the set M4(k,m, i1, i2, j1, l, s).

Therefore, by Theorem 2, each 2-local automorphism of the Jordan algebra J56 is an automor-
phism. In this case, M4(k,m, i1, i2, j1, l, s) is a set of 4× 4 matrices such that the 3× 4 submatrix

A1 : aα,β , α ∈ {1, 2, 3}, β = 1, 2, 3, 4,

belongs to the set M3,4(2, 2), and, the 1 × 4 submatrix

A2 : aα,β, α = 4, β = 1, 2, 3, 4,

belongs to the set M1,4(4, 1).
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3. 2-Local liner operators on finite-dimensional vector spaces which are not

linear operators

Let n be a natural number, V be a vector space of dimension n over a field F with a basis
{e1, e2, . . . , en}. Let, for fixed k, m, α, β, γ, η such that

1 ≤ k,m,α, β ≤ n, 2 ≤ η ≤ n, k 6= m, α ≤ β, 0 ≤ γ ≤ (n− β)n + β(n − η)

and, for fixed subsets {i1, i2, . . . , iβ} and {j1, j2, . . . , jη} of natural numbers from {1, 2, . . . , n} such
that k,m ∈ {j1, j2, . . . , jη},

fij(x1, x2, . . . , xα), i ∈ {i1, i2, . . . , iβ}, j ∈ {j1, j2, . . . , jη}, j 6= k, j 6= m,

fij(x1, x2, . . . , xγ), i ∈ {1, 2, . . . , n} \ {i1, i2, . . . , iβ}, j ∈ {1, 2, . . . , n} if β 6= n,

fij(x1, x2, . . . , xγ), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη} if η 6= n

be functions with values in the field F (including the function fij ≡ 0) and, for fixed nonzero
elements a1, a2, . . . , aα, b1, b2, . . . , bβ , z1, z2, . . . , zγ in F,

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)

be a n× n matrix with components aij , i, j = 1, 2, . . . , n, such that

1) for i ∈ {i1, i2, . . . , iβ}, aik ∈ {a1, a2, . . . aα} or aik = 0 and for any a ∈ {a1, a2, . . . aα} there
exists l ∈ {i1, i2, . . . , iβ} such that alk = a;

2) for every component aij , i ∈ {i1, i2, . . . , iβ}, j ∈ {j1, j2, . . . , jη}, j 6= k, j 6= m, of

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ),

aij = fij(a1, a2, . . . , aα);

3) aism = bs, s = 1, 2, . . . , β;
4) every component aij of the submatrices

B : aij , i ∈ {1, 2, . . . , n} \ {i1, i2, . . . , iβ}, j ∈ {1, 2, . . . , n},

C : aij , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

is equal to fij(z1, z2, . . . , zγ);
5) if β = n and η = n, then γ = 0 and we use the designation

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bn)

instead of Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ).

Let V1, V2 be vector subspaces generated by the sets of vectors
{
ej : j 6= m, j ∈ {j1, j2, . . . , jη}

}

and {em} respectively, i.e.,

V1 =
〈{

ej : j 6= m, j ∈ {j1, j2, . . . , jη}
}〉

, V2 = 〈em〉.

If η 6= n, then let V3 be a vector subspace generated by the set of vectors
{
ej : j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

}
,

i.e.,
V3 =

〈{
ej : j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

}〉
.
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Lemma 1. If η 6= n, then, for any v ∈ V3 and x1, x2, . . . xα, y1, y2, . . . , yβ ∈ F,

Mk,m,η
n (x1, x2, . . . xα, y1, y2, . . . , yβ, z1, z2, . . . , zγ)v̄

= Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)v̄.

P r o o f. We have

Mk,m,η
n (x1, x2, . . . xα, y1, y2, . . . , yβ , z1, z2, . . . , zγ)v̄ =

n∑

i=1

∑

j∈{1,2,...,n}\{j1,j2,...,jη}

aijvjei = Cv̄,

where
v =

∑

j∈{1,2,...,n}\{j1,j2,...,jη}

vjej ,

C is a matrix from item 4) of the definition of Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)

above. Since x1, x2, . . . xα, y1, y2, . . . , yβ in F are chosen arbitrarily we have the statement of the
lemma. �

Theorem 3. Let V be a vector space of dimension n over a field F with a basis {e1, e2, . . . , en}.
Then, for any nonzero elements c1, c2, . . . , cα from the field F, a mapping ∆ on V defined as follows

(I) in the case η 6= n,

1) if v = v1 + v3 or v = v3, v1 ∈ V1, v1 6= 0, v3 ∈ V3 then

∆(v) = Mk,m,η
n (a1, a2, . . . aα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄,

2) if v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3, then

∆(v) = Mk,m,η
n (c1, c2, . . . , cα, b1, b2, . . . bβ , z1, z2, . . . , zγ)v̄,

(II) in the case η = n,

1) if v = v1, v1 ∈ V1, v1 6= 0, then

∆(v) = Mk,m,η
n (a1, a2, . . . aα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄,

2) if v = v1 + v2, v1 ∈ V1, v2 ∈ V2, v2 6= 0, then

∆(v) = Mk,m,η
n (c1, c2, . . . , cα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄

is a 2-local linear operator, and ∆ is a linear operator if and only if

ai = ci, i = 1, 2, . . . , α.

P r o o f. We will prove the theorem in the case (I). In the case (II), the theorem is proved
similarly. We prove that the mapping ∆, defined in the theorem, is a 2-local linear operator on V .
Take the subspace V1 ⊕ V3 and arbitrary two elements v, w from V1 ⊕ V3. Then, by the definition
of ∆, item 1) of the theorem and by Lemma 1, for the linear operator Lv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
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Take the subspace V2 ⊕ V3 and two elements v, w from V2 ⊕ V3 such that

v = v2 + v3, v2 ∈ V2, v2 6= 0, v3 ∈ V3, w = w2 + w3, w2 ∈ V2, w2 6= 0, w3 ∈ V3.

Then, by item 2) of the theorem, for the linear operator Lv,w with the matrix

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
Now, if we take elements v ∈ V1 ⊕ V3 such that

v = v1 + v3, v1 ∈ V1, v1 6= 0, v3 ∈ V3, w ∈ V2 ⊕ V3

such that
w = w2 + w3, w2 ∈ V2, w2 6= 0, w3 ∈ V3,

then, by items 1) and 2) of the theorem

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄,

and

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

respectively. In this case, by Lemma 1, for the linear operator Tv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ ),

we have
∆(v) = Tv,w(v), ∆(w) = Tv,w(w).

Now, if v ∈ V1 ⊕ V2 ⊕ V3 such that

v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3, w ∈ V1 ⊕ V3

such that
w = w1 + w3, w1 ∈ V1, w1 6= 0, w3 ∈ V3,

then, by items 2) and 1) of the theorem,

∆(v) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

and

∆(w) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

respectively. In this case, there exist elements λ1, λ2, ..., λβ in the field F such that for the linear
operator Lv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ ),

we have
∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Indeed, the equality ∆(w) = Lv,w(w) is obviously true for any λ1, λ2, ... λβ in F by Lemma 1. As
for the equality ∆(v) = Lv,w(v), we rewrite it in the following form

∆(v) = Mk,m,η
n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ)v̄
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= Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

The last equality is a system of linear equations with respect to the variables λ1, λ2, ... λβ. By
Lemma 1, this system can be written in the following way

hi + vm2 λi = gi + vm2 bi, i ∈ {i1, i2, ..., iβ}, hj = hj , j ∈ {1, 2, ..., n} \ {i1, i2, ..., iβ},

for some elements hi, i = 1, 2, ..., n and gj , j ∈ {i1, i2, ..., iβ}, from F, where v2 = vm2 em. Since,
vm2 6= 0, this system of linear equations has the solution

λi =
1

vm2
(gi + vm2 bi − hi), i ∈ {i1, i2, ..., iβ}.

Hence,
Mk,m,η

n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ)

is a desired matrix.
The case

v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3,

w = w1 + w2 + w3, w1 ∈ V1, w2 ∈ V2, w2 6= 0, w3 ∈ V3

is also trivial, i.e., by item 2) of the theorem, for the linear operator Lv,w with the matrix

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
The case v ∈ V3 and w ∈ V1 ⊕ V2 ⊕ V3 such that

w = w1 + w2 + w3, w1 ∈ V1, w1 6= 0, w2 ∈ V2, w2 6= 0, w3 ∈ V3

follows by Lemma 1. Indeed, we have

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

by item 1 of the theorem, and,

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

by item 2 of the theorem. At the same time,

∆(v) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

by Lemma 1. Hence,

∆(v) = Lv,w(v), ∆(w) = Lv,w(w)

for the linear operator Lv,w, generated by the matrix Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ).

Thus, in all cases, for any pair v and w of elements from V , there exists a linear operator Lv,w

on V such that ∆(v) = Lv,w(v), ∆(w) = Lv,w(w), i.e., ∆ is a 2-local linear operator.
Now, if ai = ci, i = 1, 2, ..., α, then, by items 1) and 2) of the theorem, for any v ∈ V ,

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

So ∆ is linear.
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Suppose that (a1, a2, ..., aα) 6= (c1, c2, ..., cα). Then there exists a vector v ∈ V1, v 6= 0, such
that

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄ 6= Mk,m,η

n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

Then, for any w ∈ V2, w 6= 0, we have

∆(v + w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)(v + w),

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄,

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄.

So,

∆(v + w) − (∆(v) + ∆(w)) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ )v̄

−Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄ 6= 0,

i.e., ∆ is not additive. This ends the proof. �

4. 2-Local derivations of complex null-filiform and filiform Zinbiel algebras

An algebra A over a field F is called Zinbiel algebra if, for any x, y, z ∈ A, the identity

(xy)z = x(yz) + x(zy)

holds. For a given Zinbiel algebra A, we define the following sequence:

A1 = A, Ai+1 =

i∑

k=1

AkAi+1−k, i ≥ 1.

A Zinbiel algebra A is said to be nilpotent if Ai = 0 for some i ∈ N. The minimal number i
satisfying Ai = 0 is called index of nilpotency or nilindex of the algebra A.

It is clear that the index of nilpotency of an arbitrary n-dimensional nilpotent Zinbiel algebra
does not exceed the number n + 1.

Definition 3. An n-dimensional Zinbiel algebra A is said to be null-filiform if

dimAi = (n + 1) − i,

where dimAi is the dimension of Ai, 1 ≤ i ≤ n + 1.

It is evident that the last definition is equivalent to the fact that the Zinbiel algebra A has
maximal index of nilpotency.

Theorem 4 [2]. An arbitrary n-dimensional null-filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to the algebra

F 0
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n,

where omitted products ekel are equal to zero and {e1, e2, . . . , en} is a basis of the algebra, the
symbols Ct

s are binomial coefficients defined as

Ct
s =

s!

t!(s − t!)
.
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Definition 4. An n-dimensional Zinbiel algebra A is said to be filiform if

dimAi = n− i, 2 ≤ i ≤ n.

Theorem 5 [2]. An arbitrary n-dimensional, n ≥ 5, filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to one of the following pairwise non-isomorphic algebras:

F 1
n : eiej = Cj

i+j−1ei+j, 2 ≤ i + j ≤ n− 1,

F 2
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n− 1, ene1 = en−1,

F 3
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n− 1, enen = en−1,

where omitted products ekel are equal to zero and {e1, e2, . . . , en} is a basis of the appropriate
algebra.

Theorem 6 [21]. A linear map △ : F 0
n → F 0

n is a derivation if and only if △ is of the following
form:

△(ei) =

n∑

j=i

Ci−1
j αj−i+1ej , 1 ≤ i ≤ n,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 7 [21]. A linear map △ : F 1
n → F 1

n is a derivation if and only if △ is of the following
form:

△(e1) =

n∑

j=1

αjej , △(ei) =

n−1∑

j=i

Ci−1
j αj−i+1ej, 2 ≤ i ≤ n− 1, △(en) = bn−1en−1 + bnen,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 8 [21]. A linear map △ : F 2
n → F 2

n is a derivation if and only if △ is of the following
form:

△(e1) =
n∑

j=1

αjej , △(e2) =
n−1∑

j=2

C1
j αj−1ej + αnen−1,

△(ei) =
n−1∑

j=i

Ci−1
j αj−i+1ej , 3 ≤ i ≤ n− 1, △(en) = bn−1en−1 + (n− 2)α1en,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 9 [21]. A linear map △ : F 3
n → F 3

n is a derivation if and only if △ is of the following
form:

△(e1) =

n∑

j=1

αjej , △(ei) =

n−1∑

j=i

Ci−1
j αj−i+1ej , 2 ≤ i ≤ n− 1,

△(en) = −αnen−2 + bn−1en−1 +
n− 1

2
α1en,

where αi ∈ C, 1 ≤ i ≤ n.
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The following theorems are the main theorems of the present section.

Theorem 10. Each 2-local derivation on F 0
n is a derivation.

P r o o f. Let ∆ be an arbitrary 2-local derivation on F 0
n . By the definition, for any x, y ∈ F 0

n

there exists a derivation Dx,y on F 0
n such that

∆(x) = Dx,y(x), ,∆(x) = Dx,y(x).

By Theorem 6, the matrix of the derivation Dx,y has the following matrix form:

Dx,y =




αx,y
1 0 0 . . . 0 0

αx,y
2 C1

2α
x,y
1 0 . . . 0 0

αx,y
3 C1

3α
x,y
2 C2

3α
x,y
1 . . . 0 0

...
...

...
. . .

...
...

αx,y
n−1 C1

n−1α
x,y
n−2 C2

n−1α
x,y
n−3 . . . Cn−2

n−1α
x,y
1 0

αx,y
n C1

nα
x,y
n−1 C2

nα
x,y
n−2 . . . Cn−2

n αx,y
2 Cn−1

n αx,y
1




.

Clearly, the set of all n × n matrices of the form above we can set as a set Mm,n(k, p) defined
in Section 2, where m = n, k = 1, p = n, i.e., Mm,n(k, p) = Mn,n(1, n)

Each 2-local derivation on F 0
n is a 2-local linear operator on F 0

n generated by matrices in
Mn,n(1, n) with respect to the basis {e1, e2, ..., en}. Conversely, every 2-local linear operator on F 0

n

generated by matrices in Mn,n(1, n) is a 2-local derivation on F 0
n by Theorem 6.

Therefore, by Theorem 1, each 2-local derivation on F 0
n is a linear operator generated by a

matrix from Mn,n(1, n). Hence, each 2-local derivation on F 0
n is a derivation by Theorem 6. This

ends the proof. �

Theorem 11. The algebras F 1
n , F

2
n and F 3

n have 2-local derivations which are not derivations.

P r o o f. Let D be an arbitrary derivation on F 1
n . By Theorem 7, the matrix of the derivation

D has the following form:




α1 0 0 . . . 0 0
α2 C1

2α1 0 . . . 0 0
α3 C1

3α2 C2
3α1 . . . 0 0

...
...

...
. . .

...
...

αn−1 C1
n−1αn−2 C2

n−1αn−3 . . . Cn−2
n−1α1 βn−1

αn 0 0 . . . 0 βn




.

Let a1 = αn−1, a2 = αn, b1 = βn−1, b2 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2.

Then, if this matrix we denote by M1,n,n
n (a1, a2, b1, b2, z1, z2, ..., zn−2), then

M1,n,n
n (a1, a2, b1, b2, z1, z2, ..., zn−2) satisfies the all conditions of the definition in Section 3

of a matrix
Mk,m,η

n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n, η = n, α = 2, β = 2 and γ = n− 2.
Therefore, by Theorem 3, we can find a 2-local derivation on F 1

n which is not linear.
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Now we take the algebra F 2
n and a derivation D on F 2

n . By Theorem 8, the matrix of the
derivation D has the following form:




α1 0 0 . . . 0 0
α2 C1

2α1 0 . . . 0 0
α3 C1

3α2 C2
3α1 . . . 0 0

...
...

...
. . .

...
...

αn−1 C1
n−1αn−2 + αn C2

n−1αn−3 . . . Cn−2
n−1α1 βn−1

αn 0 0 . . . 0 (n− 2)α1




.

Similar to the previous case, we take a1 = αn−1, b1 = βn−1 and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = αn.

Then, if this matrix we denote by M1,n,n
n (a1, b1, z1, z2, ..., zn−1), then M1,n,n

n (a1, b1, z1, z2, ..., zn−1)
satisfies the all conditions of the definition in Section 3 of a matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n, η = n, α = 1, β = 1 and γ = n− 1.
Therefore, by Theorem 3, we can find a 2-local derivation on F 1

n which is not linear.
Similarly we prove that F 3

n has 2-local derivations which are not derivations. This ends the
proof. �

5. 2-Local automorphisms of naturally graded quasi-filiform Leibniz algebras

of type I

A vector space with a bilinear bracket (L, [·, ·]) is called a Leibniz algebra if, for any x, y, z ∈ L,
the so-called Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds. For a given Leibniz algebra (L, [·, ·]), the sequence of two-sided ideals is defined recursively
as follows:

L1 = L, Lk+1 = [Lk,L], k ≥ 1.

This sequence is said to be the lower central series of L.
A Leibniz algebra L is said to be nilpotent, if there exists n ∈ N such that Ln = {0}.
It is easy to see that the sum of two nilpotent ideals of a Leibniz algebra is also nilpotent.

Therefore, the maximal nilpotent ideal of a finite-dimensional Leibniz algebra always exists. The
maximal nilpotent ideal of a Leibniz algebra is said to be the nilradical of the algebra.

Now we give the definitions of automorphisms and 2-local automorphisms.
Let A be an algebra. A linear bijective map ϕ : A → A is called an automorphism if it satisfies

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ A.

Let A be an algebra. A (not necessarily linear) map ∆ : A → A is called a 2-local automorphism
if, for any elements x, y ∈ A, there exists an automorphism ϕx,y : A → A such that

∆(x) = ϕx,y(x), ∆(y) = ϕx,y(y).

Below we define the notion of a quasi-filiform Leibniz algebra.
An n-dimensional Leibniz algebra L is called quasi-filiform if Ln−2 6= {0} and Ln−1 = {0}.
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Given an n-dimensional nilpotent Leibniz algebra L such that Ls−1 6= {0} and Ls = {0}, put

Li = Li/Li+1, 1 ≤ i ≤ s− 1,

and

gr(L) = L1 ⊕ L2 ⊕ · · · ⊕ Ls−1.

Due to [Li,Lj ] ⊆ Li+j we obtain the graded algebra gr(L). If gr(L) and L are isomorphic, i.e., if
gr(L) ∼= L, then we say that L is naturally graded.

Let x be a nilpotent element of the set L\L2. For the nilpotent operator of right multiplica-
tion Rx we define a decreasing sequence C(x) = (n1, n2, . . . , nk), where n = n1 + n2 + · · · + nk,
which consists of the dimensions of Jordan blocks of the operator Rx. On the set of such sequences
we consider the lexicographic order, that is,

C(x) = (n1, n2, . . . , nk) ≤ C(y) = (m1,m2, . . . ,mt)

iff there exists i ∈ N such that nj = mj for any j < i and ni < mi.

The sequence

C(L) = max
x∈L\L2

C(x)

is called the characteristic sequence of the algebra L.

A quasi-filiform non Lie Leibniz algebra L is called an algebra of the type I (respectively, type II)
if there exists an element x ∈ L\L2 such that the operator Rx has the form

(
Jn−2 0

0 J2

)
, (respectively,

(
J2 0
0 Jn−2

)
).

The following theorem obtained in [1] gives the classification of naturally graded quasifiliform
Leibniz algebras of type I.

Theorem 12. An arbitrary n-dimensional naturally graded quasi-filiform Leibniz algebra of
type I is isomorphic to one of the pairwise non-isomorphic algebras of the following families:

L1,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en,
[e1, en−1] = λen, λ ∈ C,

L2,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en,
[e1, en−1] = λen, λ ∈ {0, 1},
[en−1, en−1] = en,

L3,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[e1, en−1] = λen, λ ∈ {−1, 0, 1},

L4,µ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[en−1, en−1] = µen, µ 6= 0,

L5,λ,µ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[e1, en−1] = λen, (λ, µ) = (1, 1) or (2, 4),
[en−1, en−1] = µen,

where {e1, e2, . . . , en} is a basis of the algebra.

In this section we use the following theorem from [3] concerning automorphisms of naturally
graded quasi-filiform Leibniz algebras of type I.
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Theorem 13. A linear map ϕ : L → L is an automorphism if and only if ϕ has the following
form:

ϕ
(
L1,λ
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1

(∑n−2
i=2 αi−1ei + αn−1(1 + λ)en

)
,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n

i=n−3 biei,

ϕ (en) = α1 (bn−3en−2 + bn−1en) ,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0;

ϕ
(
L2,0
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1
∑n−2

i=2 αi−1ei + αn−1 (α1 + αn−1) en,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + bn−1en−1 + bnen,
ϕ (en) = (α1 + αn−1) bn−1en,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0, bn−1 = α1 + αn−1;

ϕ
(
L2,1
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1
∑n−2

i=2 αi−1ei + αn−1 (2α1 + αn−1) en,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + bn−1en−1 + bnen,

ϕ (en) = (α1 + αn−1) bn−1en,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0, bn−1 = α1 + αn−1;

ϕ
(
L3,−1
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (ej) = αj−1
1 (α1 + αn−1) ej + αn−1

1

∑n−2
i=j+1 αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n−3

i=2 αiei + bn−2en−2 + (α1 + αn−1) en−1 + bnen,

ϕ (en) = α1 (α1 + αn−1) en,

where αi ∈ C, 1 ≤ i ≤ n, α1 (α1 + αn−1) 6= 0;

ϕ
(
L3,0
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1 (α1 + αn−1) e2 + α1
∑n−2

i=3 αi−1ei + α1αn−1en,

ϕ (ej) = αj−1
1 (α1 + αn−1) ej + αj−1

1

∑n−2
i=j+1 αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n−4

i=2 αiei + bn−3en−3 + bn−2en−2 + (α1 + αn−1) en−1 + bnen,

ϕ (en) = (bn−3 − αn−3)α1en−2 + α2
1en,

where αi ∈ C, 1 ≤ i ≤ n, α1 (α1 + αn−1) 6= 0; for the algebras L3,1
n ,L4,µ

n ,L5,λ,µ
n





ϕ (e1) =
∑n−2

i=1 αiei + αnen,

ϕ (ej) = αi−1
1

∑n−2
i=j αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + α1en−1 + bnen,

ϕ (en) = 2α2
1en,

where αi ∈ C, 1 ≤ i ≤ n− 2, αn ∈ C, α1 6= 0.
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The following theorem is one of the main results of the present paper concerning 2-local auto-
morphisms.

Theorem 14. The algebras L1,λ
n , L2,λ

n , where λ ∈ {0, 1}, L3,λ
n , where λ ∈ {−1, 0, 1}, L4,µ

n and

L5,λ,µ
n , where (λ, µ) = (1, 1) or (2, 4), have 2-local automorphisms which are not automorphisms.

P r o o f. Let ϕ be an arbitrary automorphism on L1,λ
n . By Theorem 13, the matrix of the

automorphism ϕ has the following form:




α1 0 0 0 0 0 . . . 0 0 0
α2 α2

1 0 0 0 0 . . . 0 0 0
α3 α1α2 α3

1 0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...

αn−4 α1αn−5 α2
1αn−6 . . . αn−6

1 α2 αn−4
1 0 0 0 0

αn−3 α1αn−4 α2
1αn−5 . . . an−6

1 a3 αn−5
1 α2 αn−3

1 0 βn−3 0

αn−2 α1αn−3 α2
1αn−4 α3

1αn−5 . . . αn−5
1 α3 αn−4

1 α2 αn−2
1 βn−2 α1βn−3

αn−1 0 0 0 0 . . . 0 0 βn−1 0
αn αn−1(1 + λ) 0 0 0 . . . 0 0 βn α1βn−1




.

Let a1 = αn, αn−1 = 0, b1 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = βn−1, zn = βn−2, zn+1 = βn−3.

Then, denoting this matrix by M1,n,n
n (a1, b1, z1, z2, ..., zn+1), we see that

M1,n,n
n (a1, b1, z1, z2, ..., zn+1) satisfies all conditions of the definition in Section 3 of a ma-

trix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n− 1, η = n− 1, α = 1, β = 1 and γ = n + 1.
Therefore, by Theorem 3, we can find a 2-local automorphism on L1,λ

n which is not linear.
Now we take the algebra L2,0

n and an automorphism ϕ on L2,0
n . By Theorem 13, the matrix of

the automorphism ϕ has the following form:
































α1 0 0 0 0 0 . . . 0 0 0
α2 α2

1
0 0 0 0 . . . 0 0 0

α3 α1α2 α3

1
0 0 0 . . . 0 0 0

...
...

...
. . .

...
...

...
...

...
...

αn−4 α1αn−5 α2

1
αn−6 . . . αn−6

1
α2 αn−4

1
0 0 0 0

αn−3 α1αn−4 α2

1
αn−5 . . . an−6

1
a3 αn−5

1
α2 αn−3

1
0 0 0

αn−2 α1αn−3 α2

1
αn−4 α3

1
αn−5 . . . αn−5

1
α3 αn−4

1
α2 αn−2

1
βn−2 0

αn−1 0 0 0 0 . . . 0 0 α1 + αn−1 0
αn αn−1(α1 + αn−1) 0 0 0 . . . 0 0 βn (α1 + αn−1)2

































.

Similar to the previous case, we take a1 = αn, αn−1 = 0, b1 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = βn−2.

Then, if this matrix we denote by M1,n,n
n (a1, b1, z1, z2, ..., zn−1), then M1,n,n

n (a1, b1, z1, z2, ..., zn−1)
satisfies all conditions of definition in Section 3 of a matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n−1, η = n−1, α = 1, β = 1 and γ = n−1. Therefore, by Theorem 3,
we can find a 2-local automorphism on L2,λ

n which is not linear.
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Similarly we prove that L2,1
n has 2-local automorphisms which are not automorphisms.

Now, we take L3,−1
n , L3,0

n , L3,1
n , L4,µ

n and L5,λ,µ
n . By Theorem 13, the matrix of automorphisms

of L3,−1
n and L3,0

n has the following forms respectively:
































α1 0 0 0 0 0 . . . 0 0 0
α2 λ2 0 0 0 0 . . . 0 α2 0

α3 αn−1

1
α2 λ3 0 0 0 . . . 0 α3 0

...
...

...
. . .

...
...

...
...

...
...

αn−4 αn−1

1
αn−5 αn−1

1
αn−6 . . . αn−1

1
α2 λn−4 0 0 αn−4 0

αn−3 αn−1

1
αn−4 αn−1

1
αn−5 . . . αn−1

1
α3 αn−1

1
α2 λn−3 0 αn−3 0

αn−2 αn−1

1
αn−3 αn−1

1
αn−4 αn−1

1
αn−5 . . . αn−1

1
α3 αn−1

1
α2 λn−2 βn−2 α1βn−3

αn−1 0 0 0 0 . . . 0 0 α1 + αn−1 0
αn 0 0 0 0 . . . 0 0 βn α1(α1 + αn−1)

































and



α1 0 0 0 . . . 0 0 0
α2 λ2 0 0 . . . 0 α2 0
α3 α1α2 λ3 0 . . . 0 α3 0
α4 α1α3 α2

1α2 λ4 . . . 0 α4 0
α5 α1α4 α2

1α3 α3
1α2 . . . 0 α5 0

...
...

...
...

. . .
...

...
...

αn−4 α1αn−5 α2
1αn−6 α3

1αn−7 . . . 0 αn−4 0
αn−3 α1αn−4 α2

1αn−5 α3
1αn−6 . . . 0 βn−3 0

αn−2 α1αn−3 α2
1αn−4 α3

1αn−5 . . . λn−2 βn−2 (βn−3 − αn−3)α1

αn−1 0 0 0 . . . 0 α1 + αn−1 0
αn α1αn−1 0 0 . . . 0 βn α2

1




,

where λi = αi−1
1 (α1 + αn−1), i = 2, 3, . . . , n− 2.

For the algebras L3,1
n , L4,µ

n and L5,λ,µ
n the matrix of their automorphisms has the following

form



α1 0 0 0 . . . 0 0 0
α2 α2

1 0 0 . . . 0 0 0
α3 α2

1α2 α3
1 0 . . . 0 0 0

α4 α3
1α3 α3

1α2 α4
1 . . . 0 0 0

α5 α4
1α4 α4

1α3 α4
1α2 . . . 0 0 0

...
...

...
...

. . .
...

...
...

αn−2 αn−3
1 αn−3 αn−3

1 αn−4 αn−3
1 αn−5 . . . αn−2

1 βn−2 0
0 0 0 0 . . . 0 α1 0
αn 0 0 0 . . . 0 βn 2α2

1




By these forms and Theorem 3, similar to the cases of L1,λ
n and L2,0

n we can prove that the algebras
L3,−1
n , L3,0

n , L3,1
n , L4,µ

n and L5,λ,µ
n also have 2-local automorphisms which are not automorphisms.

This ends the proof. �

Conclusion

In conclusion, it can be said that the article generalizes the methods of studying 2-local deriva-
tions and automorphisms of algebras. The method proposed in the second section allows one to
make a direct conclusion about whether all 2-local derivations (respectively, automorphisms) are
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derivations (respectively, automorphisms) based on the general matrix form of the matrix of a
derivation (respectively, an automorphism) of an algebra. This method is useful since often the
derivation (automorphism) of an algebra has the matrix form in the method under consideration.
In the third section, a method is developed that allows one to obtain an entire subspace (an entire
subgroup) of 2-local derivations (respectively, 2-local automorphisms) that are not derivations (re-
spectively, automorphisms). As is known, the set of all 2-local derivations (2-local automorphisms)
of an algebra forms a vector space (respectively, a group) and the description of this vector space
(this group) is an open problem. We think that the method developed in the third section allows
to solve this problem.
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