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Abstract: To explore the impact of toxicants on a marine ecological food chain system consisting of three
species, this work develops and analyzes a non-linear mathematical model. The model consists of five state
variables: phytoplankton, zooplankton, fish, environmental toxicant, and organismal toxicant. We have incor-
porated the Monod-Haldane functional response as a predation function for each species. Using the Jacobian
matrix, the stability analysis was conducted, and necessary constraints were obtained for the system’s local and
global stability. Hopf bifurcation analysis was performed for carrying capacity (K) and the rate of decrease in
the growth rate of phytoplankton due to the presence of toxicants (r1). Also, phase portraits are presented for
different parameters of the model. In addition, numerical simulations are executed using MATLAB to prove
theoretical findings and explore the impact of parameter variation on ecological species behavior.
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1. Introduction

It is well known that environmental contamination poses a significant threat to marine ecosys-
tems. The main causes of it are industrial discharge and chemical spills. The rapid expansion of
modern industry and agriculture significantly contributes to environmental pollution and habitat
degradation. These pollutants contain harmful elements such as cadmium, zinc, copper, iron and
mercury. As a result of the destruction of their natural ecosystems and increased exposure to
dangerous pollutants, many species face serious risks to their survival, and many are on the verge
of becoming extinct. Therefore, it is essential to study toxic substances in marine ecosystems from
an environmental and conservational point of view.

In recent decades, mathematical models have become tremendously helpful in understanding
and assessing the feeding relationships between species within ecosystems. In [2], Babu et al. ex-
plored the dynamic difficulties of a three-species food chain model. From the stability analysis,
sufficient constraints for the survival and extinction of the population under toxicant stress have
been revealed. Zhang et al. [22] considered an experimental marine food chain with three levels
(microalgae → zooplankton → fish) to evaluate how feeding selectivity affects the transmission
of methylmercury (MeHg+) across the food chain system. In [11], Misra and Babu proposed
and examined a three-species mathematical model in the presence of environmental and organis-
mal toxicants. They found that Hopf bifurcation occurs at the predation rate of the intermediate
predator. They also note that the system containing toxicants appears to be more stable than the
toxicant-free system. Kalyan Das et al. [5] determine how the nanoparticle influences the inter-
action between phytoplankton and zooplankton. They observed that when zooplankton consumes
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phytoplankton, the growth of the zooplankton is slowed down by nanoparticles. Majeed and Kad-
him [13] discussed the occurrence of local bifurcation and persistence under suitable food chain
conditions, including a model of prey-first predator-second predator under the influence of toxins
on all species. Talb et al. [20] considered a three-species aquatic food chain model in a polluted
environment. It is noted that there are rich dynamics in the proposed food chain model, including
periodic and chaotic. Kavita Yadav et al. [21] examined a marine tri-trophic food chain system
that has distributed delay and environmental toxicants. They observed that distributed delay and
environmental toxicants are crucial variables in the occurrence of Hopf bifurcation. Mandal et
al. [14] created a mathematical model to study the control of the harmful effects of toxicants on the
phytoplankton-zooplankton system by raising public awareness among people. They reveal that
a moderate level of anthropogenic pollution might cause the phytoplankton-zooplankton system
to become unstable. However, the contaminated system becomes stable due to public awareness.
Smith and Weis [18] have observed that fish from polluted environments have much higher mortality
rates than fish from unpolluted areas when they were exposed to a predator (blue crab Callinectes
sapidus Rathbun).

Although several mathematical models may be used to explain the dynamics of interacting
species, predator-prey theory is still based on the predator’s functional response. Pal et al. [17]
developed a simplified Monad Haldane (MH) functional response for toxin-producing phytoplankton
and zooplankton populations and investigated how the toxication process of phytoplankton affects
bloom creation and termination. Lui and Tan [9] where MH functional response is used for group
defense theory. Several studies, based on theoretical and experimental data, have examined tri-
trophic food chain systems, focusing on the impact of toxicants on the system’s survival or extinction
[1, 3, 4, 6–8, 10, 15, 16, 19]. So, these investigations encourage us to investigate the dynamics of
the fish, phytoplankton, and zooplankton systems when toxicants are present.

In this paper, we formulated a mathematical model to study the impact of toxicants in a three-
species marine food chain system considering Monad–Haldane functional responses. The existence
of several equilibrium points has been examined. Then we established the local stability of the
system using the Jacobian matrix. We also use the Lyapunov function and the Routh–Hurwitz
criteria to assess the global stability and durability of the system.

2. Model formulation

Here, we consider an ecological model with three marine species. There are two ways through
which toxicants can enter an organism. It can be absorbed by the population through resources
(food chain) or directly from the environment. The model assumes that organismal toxicants have
a negative impact on the growth rate of prey populations. In the absence of organismal toxicants,
the prey’s population growth follows logistic growth. In the model there are five state variables:
x(t) density of phytoplankton, y(t) density of zooplankton, z(t) density of fish, ce(t) concentration
of environmental toxicants and c0(t) concentration of organism toxicant in the prey population. By
considering these as state variables, we formulate a mathematical model to investigate the effects
of toxicants on a three-species marine food chain system using the following system of non-linear
ordinary differential equations

dx

dt
= xr(c0)

(

1− x

K

)

− axy

αx2 +m
, (2.1)

dy

dt
=

bxy

αx2 +m
− d1y −

cyz

βy2 + h
− g1y

2, (2.2)
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dz

dt
=

dyz

βy2 + h
− d2z − g2z

2, (2.3)

dce
dt

= q0 − a1ce − a2xce + vxc0, (2.4)

dc0
dt

= a2xce − b1c0 − vxc0, (2.5)

with x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, c0 ≥ 0, ce(0) > 0. Here, we assumed that the growth of
phytoplankton is negatively affected by organismal toxicants, we consider

r(c0) = r0 − r1c0,

where r0 denotes the intrinsic growth rate of phytoplankton, r1 is the constant that determines the
rate of decrease in the growth rate of phytoplankton due to the presence of toxicants, and K is the
environmental capacity.

The expression axy/(αx2 +m) describes the predation of phytoplankton by zooplankton fol-
lowing Monad Haldane functional response, a is the predation rate, m is the saturation constant
which is scaling the impact of the predator interference, food chain and food weighting factor, α
denotes the inhibitory effect.

As the zooplankton population consumes the phytoplankton population, the growth is directly
related to the rate at which phytoplankton is consumed, i.e., response function for zooplankton is
bxy/(αx2 +m), where b is conversion coefficient, d1 is the natural death rate of zooplankton and g1
is the intraspecies competition coefficient among zooplankton population.

The term cyz/(βy2 + h) describes the predation of zooplankton by fish, c denotes the predation
rate, h is the saturation constant which is scaling the impact of the predator interference, food
chain and food weighting factor, and β denotes the inhibitory effect.

As zooplankton is consumed by the fish population, so the growth of fish is dyz/(βy2 + h),
where d is the conversion coefficient of zooplankton to fish, d2 is the natural death rate of fish
population and g2 is the intraspecies competition coefficient among fish population.

Let q0 represents the external input of toxicant into the environment. The parameter v denotes
the removal rate of a toxicant from the prey population (phytoplankton) due to its death. The
parameter a2 denotes the removal rate of a toxicant from the environment due to uptake by the
phytoplankton (prey) populations. Furthermore, b1 and a1 denote the washout rates of organismal
and environmental toxicant, respectively.

3. Boundedness of the Model

Determining the boundedness of solutions is essential to ensuring the system’s biological feasi-
bility. It guarantees that all population densities remain finite and non-negative for all time. Now
we will determine the region of attraction, where our system is bounded.

Theorem 1. Let the set

Ω =
{

(x, y, z, ce, co) ∈ R
5 : x(t) ≤ K, x(t) +

a

b
y(t) +

ac

bd
z(t) ≤ K1,

ce(t) + c0(t) ≤ K2, ce(t) ≥ K3, x(t) + ce(t) ≥ K4

}

,

then all solutions of the system are bounded in the region Ω, where

K1 =
(r0 + 1)K

φ1
, K2 =

q0
φ2

, K3 =
q0

a1 + a2K
, K4 =

(q0 − aK1)

φ3
,

φ1 = min{d, d2, 1}, φ2 = min{a1, b1}, φ3 = max{r1K2 − r0, a1 + a2K}.
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P r o o f. From (2.1), we get
dx

dt
≤ xr0

(

1− x

K

)

.

By the usual comparison theorem, we get as t → ∞,

x(t) ≤ K.

Now, let us consider the following function:

F (t) = x(t) +
a

b
y(t) +

ac

bd
z(t)

by using (2.1), (2.2) and (2.3), we get

dF

dt
+ φ1F ≤ K(r0 + 1),

where φ1 = min{1, d, d2} then, by the usual comparison theorem, we get as t → ∞

F (t) ≤ K(r0 + 1)

φ1
, F (t) = x(t) +

a

b
y(t) +

ac

bd
z(t) ≤ K1, K1 =

K(r0 + 1)

φ1
.

Again, consider the following function:

G(t) = ce(t) + c0(t),

then by using (2.4), (2.5), we get

dG

dt
+ (a1ce + b1c0) ≤ q0,

then again using usual comparison theorem, we get as t → ∞,

G(t) ≤ q0
φ2

,

where φ2 = min{a1, b1}, and hence

ce(t) + c0(t) ≤ K2, K2 =
q0
φ2

.

From (2.4) we get,
dce
dt

+ (a1 + a2K)ce ≥ q0,

then, we get as t → ∞,

ce(t) ≥ K3, K3 =
q0

a1 + a2K
.

Now let us consider the following function:

H(t) = x(t) + ce(t),

by using (2.1) and (2.4) we get,
dH

dt
+ φ3H ≥ (q0 − aK1),

where
φ3 = max{r1K2 − r0, a1 + a2K},

then we get as t → ∞,
H(t) ≥ (q0 − aK1),

and hence,

x(t) + ce(t) ≥ K4, K4 =
(q0 − aK1)

φ3
.

Hence, all the solutions of the system are bounded in the region Ω. �
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4. Analysis of Model

4.1. Existence of equilibrium points

In steady-state solutions, where population densities do not change over time, the system’s equi-
librium points are found. These can be determined by solving the system of algebraic equations
obtained by setting the right-hand sides of differential equations to zero. The set of four equi-
librium points considered in this study includes all biologically feasible configurations of species
survival and extinction under the influence of toxicants. Specifically, we examine: (i) the trivial
equilibrium where no species survive, (ii) boundary equilibria representing partial survival of one
or two species, and (iii) the interior equilibrium where all species coexist. Thus, the mathematical
model has the following four positive equilibrium points, namely, E0(0, 0, 0, ce, 0), Ē1(x̄, 0, 0, c̄e, c̄0),
Ê2(x̂, ŷ, 0, ĉe, ĉ0), E⋆

3(x
⋆, y⋆, z⋆, c⋆e, c

⋆
0).

• For the equilibrium point E0(0, 0, 0, ce, 0):

– from (2.4) we get ce = q0/a1. When only an environmental toxicant is present, then the
equilibrium point is E0(0, 0, 0, q0/a1, 0).

• In the absence of Zooplankton and Fish Ē1(x̄, 0, 0, c̄e, c̄0):

– from (2.1) x̄ = K;
– from (2.5) c̄0 = a2Kc̄e/(b1 + vK);
– from (2.4)

c̄e =
q0

a1 + a2K − a2vK2/(b+ vK)
,

c̄e > 0 if (a1 + a2K)(b+ vK) > a2vK
2.

• In the absence of Fish Ê2(x̂, ŷ, 0, ĉe, ĉ0):

– from (2.2) we get

ŷ =
1

g1

[ bx̂

αx̂2 +m
− d1

]

(4.1)

ŷ > 0 if bx̂ > (αx̂2 +m)d1;

– from (2.4)

ĉe =
q0(b1 + vx̂)

(a1 + a2x̂)(b1 + vx̂)− va2x̂2

ĉe > 0 provided (a1 + a2x̂)(b1 + vx̂) > va2x̂
2;

– from (2.5)

ĉ0 =
a2x̂ĉe
b1 + vx̂

; (4.2)

– from (2.1) we get an algebraic equation in x̂ variable,

(r0 − r1ĉ0)(αx̂
2 +m)

(

1− x̂

K

)

− aŷ = 0.

A positive solution is obtained by solving the above equation for x̂ and then the values of ĉ0,
ĉe, ŷ can be computed from equations (4.1) to (4.2).

• When all the species are present (non-trivial equilibrium point) E⋆
3(x

⋆, y⋆, z⋆, c⋆e , c
⋆
0): the

existence of the equilibrium point E⋆
3 has been established through the isocline method [12],



150 Kavita Yadav, Raveendra Babu A., B. P. S. Jadon

– from (2.1)

c⋆0 =
K

r1(K − x)

[

r0

(

1− x

K

)

− ay

αx2 +m

]

= m1(x, y); (4.3)

– from (2.4) and (2.5),

c⋆e =
1

a1
[q0 − b1m1(x, y)] = m2(x, y);

– from (2.2),

z⋆ =
βy2 + h

c

[ bx

αx2 +m
− d1 − g1y

]

= m3(x, y). (4.4)

Now, considering two functions (from (2.2) to (2.4)),

S11(x, y) = q0 − (a1 + a2x)m2(x, y) + vxm1(x, y),

S12(x, y)
bdxy

αx2 +m
+ vxm1(x, y) + q0 − d1y(d+ g1y)− cz(d2 + g2z)− (a1 + a2x)m2(x, y).

For the existence of x⋆ and y⋆, the two isoclines,

S11(x, y) = 0, (4.5)

S12(x, y) = 0, (4.6)

must intersect. We note that

S11(0, 0) =
br0
r1

> 0, S12(0, 0) =
br0
r1

+ hd1d2 −
g2h

2d21
c

,

S12(0, 0) > 0 if
br0
r1

+ hd1d2 >
g2h

2d21
c

.

Also considering, S11(x, 0) = 0 then x will be a positive root (say) φ1, from the following
value of x,

x =
ba1r0

a2(br0 − r1q0)− va1r0
> 0,

if a2(br0 − r1q0)− va1r0 > 0.
Now, consider S11(0, y) = 0 then,

y =
mr0
a

= φ2.

Now, let us consider S12(x, 0) = 0, then x will have one positive root (say) φ3, from the
following cubic equation of x,

αBx3 + αAx2 + (αmB − bh)x+mA = 0,

if αmB < bh and mA > 0, where,

A =
r0b1
r1

+ d1h > 0, B =
[r0v

r1
− a2

a1

(

q0 −
b1r0
r1

)]

.

Now S12(0, y) = 0, then y will have one positive root (say) φ4, from the following equation
of y,

A1y
6 +A2y

5 +A3y
4 −A4y

3 +A5y
2 +A6y −A7 = 0,

A1 =
g2β

2

c
, A2 =

2d1g1β
2g2

c
, A3 =

2g2βg
2
1h

c
+

g2β
2d21
c

,

A4 = g1d2β − 4g2g1d1hβ

c
, A5 =

2βhd21g2
c

− g21g2h
2

c
− d1d2β + g1d1,

A6 =
2g1g2d1h

2

c
− d2hg1 + dd1 +

ab1
r1m

, A7 =
b1r0
r1

+ d1d2h− g2d
2
1h

2

c
,
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if A4 > 0, A5 < 0, A6 and A7 > 0. Thus, both the isoclines intersect each other in the
region ω

ω =
{

(x, y) : 0 < x < φ3, 0 < y < φ2

}

,

in the following two cases (see Fig. 1):

(i) : φ3 > φ2, φ1 > φ4,

(ii) : φ3 < φ2, φ1 < φ4.

This point of intersection will give x⋆, y⋆. For the uniqueness of the (x⋆, y⋆), we must have
dy/dx < 0 for the curves in the region ω. For the curve (4.5),

dy

dx
=

(αx2 +m)

aKF2

(

F1r1(K−x)(αx2+m)−F2K
(

− r0(K − x)

K
+

2aαxy

αx2 +m
+A8

))

< 0, (4.7)

where

F1 =
a2
a1

(q0 − b1m1)− vm1, F2 =
a1 + a2x

a1
b1 + vx, A8 = r0

(

1− x

K

)

− ay

αx2 +m

and for curve (4.6)

dy

dx
=

G1 −G2 − cm′
3(x, y)(d2 + 2g2m3)− bdy/(αx2 +m)

d1(d+ 2gy) − bd/(αx2 +m)
< 0, (4.8)

where

G1 = m′
1(x, y)

[

vx+
b1(a1 + a2x)

a1

]

, G2 = m1(x, y)
[

v +
a2b1
a1

− a2q0
a1

]

.

In case (i), the absolute value of dy/dx given by (4.7) is less than the absolute value of dy/dx
given by (4.8). For the case (ii), the condition is the opposite. Knowing the value of x⋆, y⋆;
z⋆, c⋆e and c⋆0 can be computed from the (4.3) to (4.4).

Case (i): φ3 > φ2, φ1 > φ4. Case (ii): φ3 < φ2, φ1 < φ4.

Figure 1. Existence of equilibrium point E⋆

3
of the Model.
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4.2. Local stability of the Model

Local stability analysis investigates the behavior of solutions in proximity to equilibrium points
through the examination of the Jacobian matrix. To validate the local stability of the equilibrium,
the eigenvalues of the Jacobian matrix are computed at each equilibrium point. If all eigenvalues
have a negative real part, the equilibrium point is locally asymptotically stable.

The Jacobian matrix associated with the Model is

J =













d11 −d12 0 −d13 0
d21 −d22 −d23 0 0
0 d32 d33 0 0
d41 0 0 d44 d45
d51 0 0 d54 d55













,

d11 = r(c0)
(

1− 2x

K

)

− ay(m− αx2)

(αx2 +m)2
, d12 =

ax

αx2 +m
, d13 = r1x

(

1− x

K

)

,

d21 =
by(m− αx2)

(αx2 +m)2
, d22 = d1 + 2g1y +

cz(h − βy2)

(βy + h)2
, d23 =

cy

βy2 + h
,

d32 =
dz(h− βy2)

(βy + h)2
, d33 =

dy

βy2 + h
− d2 − 2g2z,

d44 = xv, d41 = −a2ce + vc0, d45 = −a1 − a2x,

d51 = a2ce − vc0, d54 = −b1 − vx, d55 = a2.

• At E0, the eigenvalues of the characteristic equation are r0,−d1, −d2 and ±
√
a1b1, showing

the instability of E0 since one eigenvalue is positive.
• At Ē1, two eigenvalues of the characteristic equation are,−d1,−d2, and the remaining three

eigenvalues are given by the roots of the following cubic equation

λ3 + S1λ
2 + S2λ+ S3 = 0,

where

S1 =
x̄r(c̄0)

K
− (a1 + a2x̄)− r(c̄0)

(

1− x̄

K

)

,

S2 = c1x̄(a2 + v) + a13(vc̄0 − a2c̄e)− a2b1x̄− a1b1 − a1vx̄,

S3 = a13a1(vc̄0 − a2c̄e) + c1(a2b1x̄+ a1b1 + a1vx̄),

c1 =
x̄r(c̄0)

K
− (a1 + a2x̄)− r(c̄0)

(

1− x̄

K

)

.

According to Routh Hurwitz criteria Ē1 is locally asymptotically stable if S1 > 0 and
S1S2 − S3 > 0.

• At Ê2, one of the eigenvalues of the characteristic equation is dŷ/(βŷ2 + h) − d2 and the
remaining four eigenvalues are given by the roots of the following equation

λ4 +Q1λ
3 +Q2λ

2 +Q3λ+Q4 = 0,

where

Q1 = d1 + 2g1ŷ − (a2 + v)x̂− abx̂ŷ(m− αx̂2)

(αx2 +m)3
− w1,

Q2 = −w1

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

− a1b1 − (a1v + a2b1)x̂

−(a2 + v)x̂
[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3
− w1

]

,



Impacts of Toxicants in the Marine Three Ecological Food Chain Environment 153

Q3 = x̂(a2 + v)w1

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

− (a1v + a2b1)x̂

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3
− w1

]

,

Q4 = a1b1 + (a1v + a2b1)x̂− w1

[

d1 + 2g1ŷ − (a2 + v)x̂− abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

,

w1 = r(ĉ0)
(

1− x̂

K

)

+
x̂r(c0)

K
+

aŷ(m− αx̂2)

(αx̂2 +m)2
.

Applying Routh–Hurwitz criteria, it is found that Ê2 is locally asymptotically stable if the
following conditions hold:

dŷ

βŷ2 + h
< d2,

Q1 > 0, Q1Q2 > Q3, Q1Q2Q3 > Q2
3 +Q2

1Q4.

• The characteristic equation of E⋆
3 is given as:

λ5 +R1λ
4 +R2λ

3 +R3λ
2 +R4λ+R5 = 0,

where

R1 = −(a44 + a55 + a11 + a22 + a33),

R2 = a44a55 − a51a45 + (a44 + a55)(a22 + a33 + a11) + a22a33

−a23a32 + a11(a22 + a33) + a12a21,

R3 = −[(a44a55 − a51a45)(a22 + a33 + a11) + (a44 + a55)(a22a33 − a23a32

+a11(a22 + a33) + a12a21)] + a13(a44a55 − a51a45) + a41a13(a22 + a33),

R4 = (a44a55 − a51a45)(a22a33 − a23a32 + a11(a22 + a33) + a12a21)+

(a44 + a55)(a12a21a33 + a11(a22a33 − a32a23)),

R5 = −(a44a55 − a51a45)(a12a21a33 + a11(a22a33 − a32a23))− (a41a55 − a51a45)

(a213a23a32 − a13a22a33).

and

a11 = r(c⋆0)

(

1− x⋆

K

)

− x⋆r(c⋆0)

K
− ay⋆(m− αx⋆2)

(αx⋆2 +m)2
, a12 =

ax⋆

αx⋆2 +m
,

a13 = r1x
⋆

(

1− x⋆

K

)

, a21 =
by⋆(m− αx⋆2)

(αx⋆2 +m)2
, a22 = d1 + 2g1y

⋆ +
cz⋆(h− βy⋆2)

(βy⋆ + h)2
,

a23 =
cy⋆

βy⋆2 + h
, a32 =

dz⋆(h− βy⋆2)

(βy⋆ + h)2
, a33 =

dy⋆

βy⋆2 + h
− d2 − 2g2z

⋆,

a41 = −a2c
⋆
e + vc⋆0, a44 = vx⋆, a45 = −a1 − a2x

⋆,

a51 = a2c
⋆
e − vc⋆0, a54 = −b1 − vx⋆, a55 = a2x

⋆.

According to Routh–Hurwitz criterion, the equilibrium point E⋆
3 is locally asymptotically

stable if

R1 > 0, R1R2 −R3 > 0, R1R2R3 > R2
3 +R2

1R4, R1R2R3 +R1R5 > R2
3 +R2

1R4.



154 Kavita Yadav, Raveendra Babu A., B. P. S. Jadon

5. Global stability

Global stability is analyzed using Lyapunov functions, ensuring that the system will settle into
a steady-state solution over time.

Theorem 2. If the following constraints are satisfied in the region Ω :

r(c⋆0)η1 > Kaαy⋆(xl + x⋆), (5.1)

(d1 + g1(yu + y⋆)) > M4, (5.2)

η2(d2 + g2(zu + z⋆)) > dy⋆(h− βyuy
⋆), (5.3)

(r(c⋆0)

K
− aαy⋆(xu + x⋆)

η1

)

M1 > M3, (5.4)

M1M2η2 + d(hzu + βyuy
⋆z⋆) > cy⋆(h+ βyly

⋆2), (5.5)

(b+ x⋆)(a1 + a2x
⋆) > (a2 + v)x⋆, (5.6)

(b+ x⋆)
(r(c⋆0)

K
− aαy⋆(xu + x⋆)

η1

)

> (a2(cel − vc0u), (5.7)

where

M1 = (d1 + g1(yu + y⋆))−
(x⋆(1 + xuαb)

η1
− c(zuh− βyuy

⋆z⋆)

η2

)

,

M2 = d2 + g2(zu + z⋆)− dy⋆(h− βyuy
⋆)

η2
,

M3 =
[a(m+ αx⋆2)

η1
− b(myu + αxux

⋆y⋆)

η2

]2
,

M4 =
(x⋆(1 + xlαb)

η1
− c(zlh− βyly

⋆z⋆)

η2

)

,

η1 = (αx2u +m)(αx⋆2 +m), η2 = (βy2u + h)(βy⋆2 + h),

where xl and xu, yl and yu, cel and c0u, zu denote the lower (l) and upper (u) bounds of the

respective state variables,

xl = K4 −K2, xu = K, cel = K3, c0u = K2, yl =
b(K4 −K2)

a
, yu = K1, zu =

K1bd

ac
,

(where values of Ki, i = 1, 2, 3, 4 can be seen at Theorem 1) then the positive equilibrium point E⋆
3

is globally asymptotically stable in the region Ω.

P r o o f. We assumed the following positive definite function about E⋆
3 :

L1 =
(

x− x⋆ − x⋆ ln
( x

x⋆

))

+
n1

2
(y − y⋆)2 +

n2

2
(z − z⋆)2 +

n3

2
(ce − c⋆e)

2 +
n4

2
(c0 − c⋆0)

2.

Differentiating L1 with respect to time t, we get

dL1

dt
=

(x− x⋆

x

)dx

dt
+ n1(y − y⋆)

dy

dt
+ n2(z − z⋆)

dz

dt
+ n3(ce − c⋆e)

dce
dt

+ n4(c0 − c⋆0)
dc0
dt

.

After performing some algebraic manipulations using system of equations (2.1), (2.5), we obtain

dL1

dt
= −(x− x⋆)2

(r(c⋆0)

K
− aαy⋆(x+ x⋆)

η1

)

−(y − y⋆)2
[

n1d1 + n1g1(y + y⋆)−
(x⋆(1 + xαb)

η1
− c(zh− βyy⋆z⋆)

η2

)]

−(z − z⋆)2
[

n2(d2 + g2(z + z⋆))− n2dy
⋆(h− βyy⋆)

η2

]
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−(ce − c⋆e)
2n4(a1 + a2x

⋆)− (c0 − c⋆0)
2n3(b+ x⋆)

−(x− x⋆)(y − y⋆)
[a(m+ αx⋆2)

η1
− n1b(my + αxx⋆y⋆)

η2

]

−(y − y⋆)(z − z⋆)
1

η2

(

n1c(hy
⋆ + βyy⋆2)− n2d(hz + βyy⋆z⋆)

)

−(x− x⋆)(c0 − c⋆0)
(

r1 −
r1x

K
− n3a2ce + n3vc0

)

−(x− x⋆)(ce − c⋆e)n4(a2ce − vc0) + (c0 − c⋆0)(ce − c⋆e)x
⋆(a2 + n4v),

where

η1 = (αx2 +m)(αx⋆2 +m), η2 = (βy2 + h)(βy⋆2 + h).

Now dL1/dt can further be written as sum of the quadratic forms as

dL1

dt
≤ −

[

(b11/2)(x − x⋆)2 − b12(x− x⋆)(y − y⋆) + (b22/2)(y − y⋆)2

+(b11/2)(x− x⋆)2 + b14(x− x⋆)(ce − c⋆e) + (b44/2)(ce − c⋆e)
2

+(b11/2)(x − x⋆)2 − b15(x− x⋆)(c0 − c⋆0) + (b55/2)(c0 − c⋆0)
2

+(b22/2)(y − y⋆)2 + b23(y − y⋆)(z − z⋆) + (b33/2)(z − z⋆)

+(b44/2)(ce − c⋆e)
2 − b45(ce − c⋆e)(c0 − c⋆0) + (b55/2)(c0 − c⋆0)

2
]

,

where

b11 =
r(c⋆0)

K
− aαy⋆(x+ x⋆)

η1
, b22 = n1d1 + n1g1(y + y⋆)−

(

x⋆(1 + xαb)

η1
− c(zh − βyy⋆z⋆)

η2

)

,

b33 = n2(d2 + g2(z + z⋆))− n2dy
⋆(h− βyy⋆)

η2
, b44 = n4(a1 + a2x

⋆), b55 = n3(b+ x⋆),

b12 =
a(m+ αx⋆2)

η1
− n1b(my + αxx⋆y⋆)

η2
, b23 =

1

η2
(n1c(hy

⋆ + βyy⋆2)− n2d(hz + βyy⋆z⋆)),

b45 = x⋆(a2 + n4v), b15 = (r1 −
r1x

K
− n3a2ce + n3vc0).

Now, by using Sylvesters criteria and by choosing

n1 =
a(m+ αx⋆2)η2

η1b(my + αxx⋆y⋆)
> 0

and n2 = n3 = n4 = 1 we get dL1/dt is negative definite under the following conditions:

b11 > 0, (5.8)

b22 > 0, (5.9)

b33 > 0, (5.10)

b11b22 > b212, (5.11)

b11b44 > b214, (5.12)

b22b33 > b223, (5.13)

b11b55 > b215, (5.14)

b44b55 > b245. (5.15)



156 Kavita Yadav, Raveendra Babu A., B. P. S. Jadon

0 50 100 150 200 250
Time t

0

1

2

3

4

5

6

7

x,
 y

, z
, c

e
, c

0

x
y
z
c

e

c
0

(a) Stable graph around the equilibrium point Ē1.
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(b) Stable graph around the equilibrium point Ê2.

Figure 2. Stable graph around the equilibrium points Ē1 and Ê2

It is observed that the fourth inequality, i.e., b11b22 > b212 is satisfied due to the proper choice
of n1, and for other inequalities, (5.1) ⇒ (5.8), (5.2) ⇒ (5.9), (5.3) ⇒ (5.10), (5.4) ⇒ (5.12),
(5.5) ⇒ (5.13), (5.6) ⇒ (5.14), (5.7) ⇒ (5.15). Hence L1 is a Lyapunov function with respect to
E⋆

3 , whose domain contains the region of attraction Ω, which proves the theorem. �

6. Simulations and discussion

In this section, we numerically explore the effects of key parameters on population interaction
using MATLAB and MATHEMATICA software.

We have taken the following parameter values for Ē1:

r0 = 3.05, r1 = 0.75, K = 6.5, a = 1.12, α = 0.49, m = 1.48, c = 0.01,

b = 1.21, d1 = 0.571, g1 = 0.02, d = 3.1, β = 1.42, h = 7, d2 = 0.223,

g2 = 0.025, q0 = 0.515, v = 0.21, a1 = 0.81, a2 = 0.142, b1 = 0.52.

It has been found that under the above set of parameters, the equilibrium point Ē1 is locally
asymptotically stable (see Fig. 2a).

x̄ = 6.5, ȳ = 0, z = 0, c̄e = 0.4837, c̄0 = 0.2368.

We select the following parameter values for the equilibrium Ê2:

r0 = 3.65, r1 = 0.52, K = 15, a = 1.99, α = 0.25, m = 8.0458, c = 0.01,

b = 1.01, d1 = 0.0571, g1 = 0.025, d = 1.0571, β = 2.192, h = 0.1568, d2 = 0.35,

g2 = 0.0351, q0 = 0.515, v = 0.821, a1 = 0.92881, a2 = 0.63, b1 = 0.252.

It has been observed that under the above set of parameters, the equilibrium point Ê2 is locally
asymptotically stable (see Fig. 2b).

x̂ = 13.85, ŷ = 7.4350, z = 0, ĉe = 0.4611, ĉ0 = 0.3453.
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Figure 3. Stable graph around the equilibrium point E⋆

3
.

We choose the following parameter values for E⋆
3 :

r0 = 0.58, r1 = 0.26, K = 10, a = 2.891, α = 0.653, m = 4.2, c = 0.671,

b = 1.46, d1 = 0.171, g1 = 0.085, d = 0.59, β = 0.52, h = 10.53, d2 = 0.03,

g2 = 0.0351, q0 = 0.155, v = 0.8421, a1 = 0.81, a2 = 0.492, b1 = 0.1252.

It has been found that under the above set of parameters, the equilibrium point E⋆
3 is locally

asymptotically stable (see Fig. 3 and Fig. 4).

x⋆ = 0.7446, y⋆ = 0.9126, z = 0.5445, c⋆e = 0.1780, c⋆0 = 0.08689.

The bifurcation diagrams of phytoplankton, zooplankton, and fish with respect to K are presented
in Fig. 5 and Fig. 6, where

r0 = 0.58, r1 = 0.26, a = 2.891, α = 0.653, m = 4.2, c = 0.671,

b = 1.46, d1 = 0.171, g1 = 0.085, d = 0.59, β = 0.52, h = 10.53, d2 = 0.03,

g2 = 0.0351, q0 = 0.155, v = 0.8421, a1 = 0.81, a2 = 0.492, b1 = 0.1252.

For the above set of parameter values, we observed that if we change K from 6 ≤ K ≤ 7.5 the
system remains stable but shows oscillatory behavior in 7.55 ≤ K ≤ 10.

Again, let us choose the following parameters

r0 = 3.28, K = 10, a = 12.891, α = 0.0653, m = 4.2, c = 9.8671,

b = 11.46, d1 = 0.9971, g1 = 0.07685, d = 5.59, β = 2.952, h = 10.53, d2 = 0.39,

g2 = 0.015351, q0 = 0.151, v = 0.8421, a1 = 0.81, a2 = 0.493, b1 = 0.1252.
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Figure 5. Bifurcation diagram of the model with respect to K.
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Figure 6. Phase graph of the system for different values of K.
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Figure 7. Bifurcation diagram of the system with respect to different values of r1.

Bifurcation diagrams of phytoplankton and zooplankton with respect to r1 are presented in Fig. 7a
and 7b. Phase graphs for different values of r1 showing limit cycle behavior are given at Fig. 8.
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For the above set of parameter values, we observed that if we change r1 from 1 ≤ r1 ≤ 2.55 the
system shows oscillatory behavior, but is stable in 2.55 ≤ r1 ≤ 10.
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Figure 8. Phase graph of the system with respect to different values of r1.

7. Conclusion

In this study, we proposed a mathematical model to explore the impact of toxicants in a tri-
trophic marine food chain system. We established the boundedness of the system, which ensures
that the population of the species remains within the feasible region. The local stability of the equi-
librium point in the model has been analyzed using the Jacobian matrix. From the stability of Ē1,
it can be concluded that the only population of phytoplankton will survive, and the population of
zooplankton and fish would tend to go extinct (see Fig. 2a). The stability of Ê2 indicates that the
phytoplankton and zooplankton population will survive and the fish will extinct (see Fig. 2b). The
interior equilibrium point E⋆

3 is locally and globally stable, showing coexistence of all three popula-
tions (see Fig. 3). From this analysis, it is seen that some parameter associated with our proposed
model can make the system unstable. Our investigation shows that a few parameters related to our
suggested model have the potential to cause system instability. The numerical simulation indicates
that increasing the system’s carrying capacity K keeps it stable up to a critical value, after which
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it becomes unstable (Fig. 5). Also, it is concluded that r1 has a significant role in the stability of
the ecosystem (Fig. 7). Phase portraits are also presented, which show the limit cycle behavior of
the system for different values of the parameters.
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