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Abstract: In this paper, we consider the problem of mean-square approximation of complex variables
functions which are regular in the unit disk of the complex plane. We obtain sharp estimates of the value of
the best approximation by algebraic polynomials in terms of K-functionals. Exact values of some widths of the
specified class of functions are calculated.
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Introduction and preliminary facts

We consider the problem of mean-square approximation by Fourier sums of complex functions
f which are regular in a simply connected domain D ⊂ C and belong to the space L2 := L2(D)
with the finite norm

‖f‖ := ‖f‖L2(D) =

(

1

π

∫∫

(D)
|f(z)|2dσ

)1/2

,

where the integral is understood in the Lebesgue sense and dσ is an element of area.
The study of the mean-square approximation of functions in the domain D ⊂ C is closely related

to the theory of orthogonal functions. A sequence of complex functions {ϕk(z)} (k = 0, 1, 2, ...) is
called an orthogonal system on the domain D if

1

π

∫∫

(D)
ϕk(z)ϕl(z)dσ = 0, k 6= l.

Such a sequence of functions is called orthonormal system if

1

π

∫∫

(D)
ϕk(z)ϕl(z)dσ = δk,l,

where δk,l = 0, k 6= l, and δk,k = 1, k ∈ N. If f ∈ L2, then the numbers

ak(f) =
1

π

∫∫

(D)
f(z)ϕk(z)dσ (1)

are called the Fourier coefficients of the function f with respect to the orthonormal system {ϕk(z)}
(k = 0, 1, 2, ...). We associate with a given function f its Fourier series with respect to the specified
orthogonal system:

f(z) ∼
∞
∑

k=0

ak(f)ϕk(z). (2)

Let

Sn−1(f, z) =

n−1
∑

k=0

ak(f)ϕk(z)
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be the partial sum of order n of the series (2). We form a linear combination of the first n functions
of the system {ϕk(z)}:

pn−1(z) =

n−1
∑

k=0

dkϕk(z),

where dk ∈ C are arbitrary complex coefficients. We call this linear combination a generalized
polynomial. It is well known (see, for example, [1], p.263) that

En−1(f) = inf {‖f − pn−1‖ : dk ∈ C}

= ‖f − Sn−1(f)‖ =

{

∞
∑

k=n

|ak(f)|2
}1/2

,
(3)

where ak(f) are the Fourier coefficients of the function f defined by (1).
In the case of the mean approximation of complex functions in a simply connected domain

D ⊂ C by Fourier series with respect to an orthogonal system of functions {ϕk(z)}∞k=0 on D, the
problem of finding the exact constant in the Jackson-Stechkin inequality was studied in [2]. Recall
that Jackson-Stechkin inequalities are inequalities in which the value of the best approximation of
a function by a finite dimensional subspace of a given normed space is estimated by the modulus
of smoothness of the function itself or some its derivative. In this paper, we use the same methods
as in [2, 3, 5, 15].

We study in more detail the case where D is the unit disk U := {z ∈ C : |z| < 1}. In this case,
it is clear that the system of functions ϕk(z) = zk(k = 0, 1, 2, ...) is orthogonal in the disk U :

1

π

∫∫

(U)
ϕk(z)ϕl(z)dσ =

1

π

∫ 1

0

∫ 2π

0
rk+l+1ei(k−l)tdrdt = 0, k 6= l.

However, this system is not orthonormal, since

1

π

∫∫

(U)
|ϕk(z)|2dσ =

1

π

∫ 1

0

∫ 2π

0
r2k+1drdt =

1

k + 1
.

Therefore, the system of functions ϕ∗
k(z) =

√
k + 1zk (k = 0, 1, 2, ...) is orthonormal. We denote by

A(U) the set of all functions f analytic in U . The Maclaurin series of such a function has the form

f(z) =
∞
∑

k=0

ck(f)z
k, (4)

where ck(f) are the Maclaurin coefficients of f . We note that

‖f‖2 =
∞
∑

k=0

|ck(f)|2
k + 1

, E2
n−1(f) =

∞
∑

k=n

|ck(f)|2
k + 1

. (5)

It was proved in the monograph [1] that the Fourier series of a function f with respect to the
orthonormal system ϕ∗

k(z) =
√
k + 1zk, k = 0, 1, 2, ..., coincides with the series (4) for f ∈ A(U);

i.e.,

f(z) =
∞
∑

k=0

ak(f)ϕ
∗
k(z) =

∞
∑

k=0

ck(f)z
k. (6)

Therefore, the series (6) can be differentiated term by term any number of times and, according to
the Weierstrass theorem [6, p.107], for any r ∈ N, we get

f (r)(z) =

∞
∑

k=r

ck(f)k(k − 1) · · · (k − r + 1)zk−r :=

∞
∑

k=r

αk,rck(f)z
k−r, (7)
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where

αk,r := k(k − 1) · · · (k − r + 1), k ∈ N, r ∈ Z+, k ≥ r.

We denote by L
(r)
2 := L

(r)
2 (U) (L

(0)
2 := L2(U)) the class of all functions f ∈ L2 such that

f (r) ∈ L2 (r ∈ Z+, f
(0) ≡ f).

1. Sharp estimates of the value of the best approximation by means of

K-functionals

In this section, we prove some sharp inequalities relating the value En−1(f) of the best approx-

imation of functions in the class L
(r)
2 and Peetre K-functionals. The definition and some properties

of Peetre K-functionals are given in [7]. The direct and inverse theorems of the theory of approx-
imation by means of K-functionals were proved in [8, 9]. We define the K-functional constructed

by the spaces L2 and L
(m)
2 as follows:

Km(f, tm)2 := K
(

f, tm;L2;L
(m)
2

)

= inf
{

‖f − g‖2 + tm · ‖g(m)‖2 : g ∈ L
(m)
2

}

, (8)

where m ∈ N and 0 < t ≤ 1. We note that a weak equivalence of the K-functional defined by (8)
and a special generalized modulus of continuity of order m was established in [8].

Theorem 1. Let n,m ∈ N and r ∈ Z+ be arbitrary numbers such that n ≥ r +m. Then the

following equality holds:

sup
f∈L

(r)
2

f /∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

) = 1. (9)

P r o o f. Using (7), we easily find that

E2
n−r−1(f

(r)) =

∞
∑

k=n

α2
k,r

|ck(f)|2
k − r + 1

, r ∈ Z+. (10)

Taking into account equality (10), we obtain

E2
n−1(f) =

∞
∑

k=n

|ck(f)|2
k + 1

=

∞
∑

k=n

k − r + 1

(k + 1)α2
k,r

· α2
k,r ·

|ck(f)|2
k − r + 1

≤ max
k∈N
k≥n

{

k − r + 1

(k + 1)α2
k,r

}

·
∞
∑

k=n

α2
k,r

|ck(f)|2
k − r + 1

=
n− r + 1

n+ 1
· 1

α2
n,r

·E2
n−r−1

(

f (r)
)

.

(11)

Now, for an arbitrary function f ∈ L
(r)
2 , we write

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r
En−r−1

(

f (r)
)

≤
√

n− r + 1

n+ 1
· 1

αn,r
‖f (r) − Sn−r−1(g)‖, (12)
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where Sn−r−1(g) is the partial sum of order n − r of the Fourier series of an arbitrary function

g ∈ L
(m)
2 . In view of (2) and (11), we get

‖g − Sn−r−1(g)‖ = En−r−1(g) ≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
En−r−m−1

(

g(m)
)

≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

∥

∥

∥
g(m)

∥

∥

∥
.

(13)

It follows from inequalities (12) and (13) that

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r

{

‖f (r) − g‖+ ‖g − Sn−r−1(g)‖
}

≤
√

n− r + 1

n+ 1
· 1

αn,r

{

‖f (r) − g‖+
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

∥

∥

∥
g(m)

∥

∥

∥

}

.

(14)

Now, we note that the left-hand side of inequality (14) does not depend on g ∈ L
(m)
2 . Therefore,

passing to the infimum over all functions g ∈ L
(m)
2 on the right-hand side of (14) and using the

definition (8) of K, we get

En−1(f) ≤
√

n− r + 1

n+ 1
· 1

αn,r
Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.

This implies the following upper bound:

sup
f∈L

(r)
2

f /∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)
≤ 1, (15)

where Pr is the subspace of complex algebraic polynomials of degree at most r.
To obtain a lower bound of the extremal characteristic on the left-hand side of (15), in (8),

we put f(z) := pn(z), where pn(z) is an arbitrary complex algebraic polynomial in Pn. Since the

function g(z) ≡ 0 belongs to the class L
(m)
2 , we obtain from (8) the upper bound

Km(pn; t
m)2 ≤ ‖pn‖.

Since the function g(z) := pn(z) also belongs to the class L
(m)
2 , we find from (8) that

Km(pn; t
m)2 ≤ tm‖p(m)

n ‖.

Thus, the last two relations imply that, for any element pn(z) ∈ Pn,

Km(pn; t
m)2 ≤ min

{

‖pn‖; tm‖p(m)
n ‖

}

. (16)

We consider the function f0(z) = zn. Since

f
(r+m)
0 = n(n− 1) · · · (n− r + 1) · · · (n− r −m+ 1)zn−r−m = αn,r · αn−r,mzn−r−m,

according to (16), we have

K
(

f
(r)
0 ;

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤
√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
‖f (r+m)

0 ‖

=

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m
· αn,r · αn−r,m√

n− r −m+ 1
=

αn,r√
n− r + 1

.
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Using the obtained inequality and the second equality in (5), we establish that

sup
f∈L

(r)
2

f∈Pr

√

(n+ 1)/(n − r + 1) · αn,rEn−1(f)

Km

(

f (r),

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≥
√

(n + 1)/(n − r + 1) · αn,rEn−1(f0)

Km

(

f
(r)
0 ,

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

) ≥ 1.

(17)

We obtain equality (9) by comparing the upper bound (15) with the lower bound (17). The theorem
is proved.

2. Exact values of n-widths of a class of functions

We assume that S is the unit ball in the space L2, Λn ⊂ L2 is an n-dimensional subspace,
and Λn ⊂ L2 is a subspace of codimension n. Let L : L2 → Λn be a continuous linear operator,
let L⊥ : L2 → Λn be a continuous linear projection operator, and let M be a convex centrally
symmetric subset of L2. The quantities

bn(M, L2) = sup {sup {ε > 0; εS ∩ Λn+1 ⊂ M} : Λn+1 ⊂ L2} ,

dn(M, L2) = inf {sup {inf {‖f − g‖ : g ∈ Λn} : f ∈ M} : Λn ⊂ L2} ,

δn(M, L2) = inf {inf {sup {‖f − Lf‖ : f ∈ M} : LL2 ⊂ Λn} : Λn ⊂ L2} ,

dn(M, L2) = inf {sup {‖f‖2,γ : f ∈ M ∩ Λn} : Λn ⊂ L2} ,

Πn(M, L2) = inf
{

inf
{

sup
{

‖f − L⊥f‖ : f ∈ M

}

: L⊥L2 ⊂ Λn

}

: Λn ⊂ L2

}

are called, respectively, the Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of the
subset M in the space L2. These widths are monotone with respect to n, and the following relation
holds (see, for example, [10, 11]):

bn(M, L2) ≤ dn(M, L2) ≤ dn(M, L2) = δn(M, L2) = Πn(M, L2). (18)

We recall (see, for example, [12, p. 25]) that a nondecreasing function Ψ on R+ is called a
k-majorant if the function t−kΨ(t) is nonincreasing in R+, Ψ(0) = 0, and Ψ(t) → 0 as t → 0. For
k = 1, the function Ψ is simply called a majorant.

Let W
(r)
2 (Km,Ψ), r ∈ Z+,m ∈ N, be the class of all functions f ∈ L

(r)
2 whose derivatives f (r)

satisfy the condition

Km(f (r), tm) ≤ Ψ(tm), 0 < t < 1.

In this definition, Ψ is a majorant, L
(0)
2 ≡ L2, and W

(0)
2 (Km,Ψ) = W2(Km,Ψ). For any subset

M ⊂ L2, we define

En−1(M)L2 := sup {En−1(f) : f ∈ M} .

We note that, in the Bergman space, values of widths of some classes of analytic functions in a
disk were calculated, for example, in [13–19].
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Theorem 2. Let Ψ be the majorant defining the class W
(r)
2 (Km,Ψ), m ∈ N, and r ∈ R+.

Then, for any natural number n ≥ m+ r, we have

λn

(

W
(r)
2 (Km,Ψ), L2

)

= En−1

(

W
(r)
2 (Km,Ψ)

)

=

√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

,
(19)

where λn(·) is any of the n-widths bn(·), dn(·), dn(·), δn(·), and Πn(·).

P r o o f. Let n be a natural number such that n ≥ m+ r. In view of the definition of the class
W

(r)
2 (Km,Ψ), relations (15) and (18) imply that

λn

(

W
(r)
2 (Km,Ψ), L2

)

≤ dn

(

W
(r)
2 (Km,Ψ), L2

)

≤ En−1

(

W
(r)
2 (Km,Ψ)

)

≤
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.
(20)

To find the corresponding lower bound, in view of (18), it suffices to estimate the Bernstein

n-width of the class W
(r)
2 (Km,Ψ). On the set Pn ∩ L2, we define the ball

Mn+1 :=

{

pn ∈ Pn : ‖pn‖ ≤
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)}

.

Now, we note that, in view of formula (7) and the identity αk,r+m = αk,r αk−r,m, for an arbitrary
pn(z) =

∑n
k=0 ak(pn)z

k ∈ Pn, the following equality holds:

p(r+m)
n (z) =

n
∑

k=r+m

ak(pn)αk,r+mzk−r−m :=
n
∑

k=r+m

ak(pn)αk,r · αk−r,mzk−r−m.

Hence, using the Parseval equality and the inequality αk,r ≤ αn,r, k ≤ n, we obtain the Bernstein
type inequality

‖p(r+m)
n ‖ =

{

n
∑

k=r+m

|ak(pn)|2α2
k,r · α2

k−r,m

}1/2

≤ αn,r · αn−r,m‖pn‖. (21)

By definition, for the majorant Ψ and for any 0 < τ1 ≤ τ2 ≤ 1, we have the inequality τ1Ψ(τ2) ≤
τ2Ψ(τ1). Therefore, for any 0 < t1 ≤ t2 ≤ 1, setting τ1 = tm1 and τ2 = tm2 , we obtain

t−m
1 Ψ(tm1 ) ≥ t−m

2 Ψ(tm2 ). (22)

We now show that Mn+1 ⊂ W
(r)
2 (Km,Ψ). Thus, we need to prove that, for any polynomial

pn ⊂ Mn+1,

Km(p(r)n , tm) ≤ Ψ(tm), 0 < t ≤ 1.

Since, by assumption, m,n ∈ N, r ∈ Z+, and n ≥ m+ r, we consider two cases:

0 < t ≤
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m
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and
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

≤ t ≤ 1.

First, assume that

0 < t ≤
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

.

In this case, using inequality (22) with

t1 = t, t2 =

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

and applying (12) and (21), for any pn ∈ Mn+1, we obtain

Km(p(r)n , tm)2 ≤ tm · ‖p(r+m)
n ‖ ≤ tm · αn,r · αn−r,m‖pn‖

≤ tm · αn,r · αn−r,m ·
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ tm · αn−r,m ·
√

n− r + 1

n− r −m+ 1
·Ψ
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ(tm).

(23)

Now, let
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)1/m

≤ t ≤ 1.

Then using (16) and the Bernstein type inequality

‖p(r)n ‖ ≤ αn,r · ‖pn‖

and taking into account that the majorant Ψ is nondecreasing, we find that

Km(p(r)n , tm)2 ≤ ‖p(r)n ‖2 ≤ αn,r‖pn‖2

≤ αn,r

√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤
√

n− r + 1

n+ 1
·Ψ
(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

≤ Ψ(tm).

(24)

The definition of the classW
(r)
2 (Km,Ψ) along with (23) and (24) implies thatMn+1 ⊂ W

(r)
2 (Km,Ψ).

Then, taking into account the definition of the Bernstein n-width and (18), we obtain

λn

(

W
(r)
2 (Km,Ψ), L2

)

≥ bn

(

W
(r)
2 (Km,Ψ), L2

)

≥ bn(Mn+1;L2) ≥
√

n− r + 1

n+ 1
· 1

αn,r
Ψ

(

√

n− r −m+ 1

n− r + 1
· 1

αn−r,m

)

.
(25)

Comparing the upper bound (20) and the lower bound (25), we get the required equality (19). The
theorem is proved.
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