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Abstract: In this paper, we consider the Lotka–Volterra equation with displacements and diffusion, that is
transport-diffusion system describing the evolution of prey and predator populations with their displacements
and their diffusion, in a periodic domain in R. It is shown that the solution to this equation and its logarithm are
globally bounded, and that, when the solution converges to the stationary solution in mean value, it converges
uniformly with respect to the time variable as well as the space variable. These results are obtained by using
L2-estimate of the well-known Lyapunov functional, and, in particular, an estimate of the point-wise growth of
the solution by means of the application of the fundamental solution of the heat equation.

Keywords: Lotka–Volterra equation, Asymptotic behavior, Diffusion, Transport/displacement, Numerical
example.

1. Introduction

As is well-known, the system of equations called Lotka–Volterra equation,










d

dt
u1 = αu1 − βu1u2,

d

dt
u2 = −γu2 + δu1u2,

(α, β, γ, δ > 0) was proposed to model the evolution of prey and predator populations (represented
by u1 and u2, respevtively). This system of equations has the particularity that all its (positive)
solutions are periodic, as illustrated in [16]. In [16], we also find a detailed analysis of the behavior
of the solution and various versions of the equation.

As for the Lotka–Volterra equation with diffusion, Rothe [15] considered the Lotka–Volterra
equation with diffusion (with the same diffusion coefficient for both species) in one-dimensional
domain 0 < x < 1 with periodic boundary conditions in x (or homogeneous Neumann conditions)
and proved the uniform convergence to the time-periodic solution of the Lotka–Volterra equation
(independent of x) (see also [14], which had made similar reasoning). On the other hand, Gabbuti
and Negro [8] proved the convergence of the solution of the Lotka–Volterra equation with diffusion
in a bounded domain of R2 with the homogeneous Neumann condition to the time-periodic solution
of the Lotka–Volterra equation (independent of x); in the article [8], the diffusion coefficients are
not the same for both species and the convergence is in an integral sense, but sufficiently strong.
Successively, the asymptotic behavior of the solution of the Lotka–Volterra equation with diffusion
with the Dirichlet condition was studied in [18], while the aspects of spatial propagation of the
solution to the Lotka–Volterra equation continue to attract the interest of researchers (see for
example [4, 5]).
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As far as concerns the Lotka–Volterra equation with diffusion in one spatial dimension, the
question concerning the travelling waves has attracted the interest of many researchers. However,
the results of [14] and [15] exclude the existence of a travelling wave for the classical Lotka–Volterra
equation with simple diffusion. For this reason, several researchers have sought some aspects of
travelling wave for slightly modified equations (see for example [2, 3, 6, 10, 17]).

In the context of stochastic equations, the Lotka–Volterra equation with logistic effect and
diffusion has been studied in [7] and [9]. In [7] the existence and uniqueness theorem of the solution
has been proved, and in [9] the existence of an invariant measure has been shown.

In [13] the author has considered the Lotka–Volterra equation with diffusion and population
displacements. The results of this article are essentially numerical. However, the question of
population displacement/immigration has attracted the attention of many researchers, as evidenced
by several recent publications (see for example [1, 11, 12]).

In this article, we consider the Lotka–Volterra equation for the population density u1(t, x)
and u2(t, x) with diffusion and population displacements on the periodic domain of R and prove
the uniform boundedness of u1(t, x), u2(t, x), log u1(t, x), log u2(t, x). We also prove that in the
case where the solution (u1, u2) tends to the stationary solution in mean value, (u1, u2) converges
uniformly to the stationary solution. In order to obtain this result, we use the function

U = −α log(u2)− γ log(u1) + βu2 + δu1,

but due to the population displacements we cannot directly deduce a conclusion from the equation
for U , as the authors of [14] and [15] did. In order to overcome this difficulty, we estimate not
only U in L2(0, 2π) but also point-wise growth of u1(t, x) and u2(t, x).

Our study is motivated not only by the general interest of the effect of displacement/immigration
for population dynamics but also by the specific behavior that arises from the numerical calculation
of the solution of the Lotka–Volterra equation with population displacement in opposite directions
for prey and predator populations. This will be illustrated in the following section.

2. Motivation and some numerical examples

As we mentioned in Introduction, the evolution of prey and predator populations is described,
in its basic form, by Lotka–Volterra equation

d

dt
u1(t) = αu1(t)− βu1(t)u2(t), (2.1)

d

dt
u2(t) = −γu2(t) + δu1(t)u2(t), (2.2)

where u1(t) and u2(t) denote the prey and predator populations, respectively, while the coefficients
α, β, γ and δ are assumed to be constants and strictly positive. We consider the system of
equations (2.1)–(2.2) with the initial conditions

u1(0) = u1,0 > 0, u2(0) = u2,0 > 0. (2.3)

We first recall the well-known fundamental properties of the solution of the system of equa-
tions (2.1)–(2.2). For this, we define the function U0(·, ·) as

U0(u1, u2) = −α log u2 − γ log u1 + βu2 + δu1, u1 > 0, u2 > 0.

Remark 1. For any initial data u1,0 > 0, u2,0 > 0, the solution (u1(t), u2(t)) of the Cauchy prob-
lem (2.1)–(2.3) exists for all t > 0 and it is periodic in t. Furthermore, the function U0(u1(t), u2(t))
remains constant, i.e.

U0(u1(t), u2(t)) = U0(u1(0), u2(0)) = −α log(u2(0)) − γ log(u1(0)) + βu2(0) + δu1(0)
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for all t ≥ 0 and the solution (u1(t), u2(t)) moves along the closed curve

γ = { (u1, u2) |u1 > 0, u2 > 0, U0(u1, u2) = U0(u1(0), u2(0)) }
with a constant period.

The proof of this fact can be found in [16] (and in many other manuals on population dynamics).
The model (2.1)–(2.2) is constructed for the prey and predators populations homogeneously

distributed in a territory. But, if the populations are not homogeneously distributed and if there
are population displacements, the relations mentioned in Remark 1 will not be guaranteed. Let us
see an example of changing the behavior of the solution.

Consider the equation system
{

∂tu1(t, x) = −v1(t)∂xu1(t, x) + αu1(t, x)− βu1(t, x)u2(t, x),

∂tu2(t, x) = −v2(t)∂xu2(t, x) − γu2(t, x) + δu1(t, x)u2(t, x),
t > 0, x ∈ R, (2.4)

with the initial condition
u1(0, x) = u1(x), u2(0, x) = u2(x).

Let us choose a particular initial data (u1(x), u2(x)) defined as follows: consider the equation
system (2.1)–(2.2) and write x instead of t in the solution (u1(·), u2(·)) to these equations. It is
clear that the thus defined functions u1(x) and u2(x) can be defined on R and are periodic in x.
Let us further assume that

v1(t) = −v2(t) ∀t ≥ 0

and that they are periodic in t with the same period as the solution of the equation system (2.1)–
(2.2). Then, for a certain choice of functions (v1(t), v2(t)) we find the amplification of the oscillation
of the solution in certain points x and the contraction in certain points x, as illustrated in the graphs
obtained by numerical calculation (see Fig. 1–2).
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Figure 1. Solution of the equation system (2.4) at a point where amplification occurs and at a point where
contraction occurs.

However, even with displacements, the equation system (2.4) in a periodic domain x ∈ R/modL
has a globally similar behavior to what we have seen in Remark 1.

Remark 2. Let L be a strictly positive number. Let u1,0(x) and u2,0(x) be two functions with
strictly positive values and periodic in x ∈ R with period L. If the solution (u1(t, x), u2(t, x)) to
the equation system (2.4) with the initial condition

u1(0, x) = u1,0(x), u2(0, x) = u2,0(x),
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Figure 2. Trajectories of the solution of the equation system (2.4) on the phase plane at a point where
amplification occurs and at a point where contraction occurs in the space (u1, u2).

exists and is periodic in x ∈ R with period L, then we have

∫ L

0
U0(u1(t, x), u2(t, x))dx = Const =

∫ L

0
U0(u1,0(x), u2,0(x))dx. (2.5)

Indeed, it follows immediately from (2.4) that

∂t log u1 = −v1∂x log u1 + α− βu2, (2.6)

∂t log u2 = −v2∂x log u2 − γ + δu1, (2.7)

from (2.4), (2.6) and (2.7), by direct calculations, we obtain

∂tU0(u1(t, x), u2(t, x)) = −v1∂x(−γ log u1 + δu1)− v2∂x(−α log u2 + βu2). (2.8)

Given the assumption that u1(t, x) and u2(t, x) are periodic in x with period L, we have

∫ L

0
∂x(−γ log u1 + δu1)dx =

∫ L

0
∂x(−α log u2 + βu2)dx = 0.

Thus
d

dt

∫ L

0
U0(u1(t, x), u2(t, x))dx = 0,

which implies (2.5). But, we cannot deduce that sup0≤x≤2π U0(u1(t, x), u2(t, x)) is bounded at t.

Given these circumstances, we are interested in the asymptotic behavior of the solution
(u1(t, x), u2(t, x)) of the Lotka–Volterra equation with displacements and diffusion (see (3.1)–(3.2)
in the next section).

3. Position of problem and preliminary result

We consider in this article the following equation system

∂tu1(t, x) = −v1(t)∂xu1(t, x) + κ∂2
xu1(t, x) + αu1(t, x) − βu1(t, x)u2(t, x), (3.1)

∂tu2(t, x) = −v2(t)∂xu2(t, x) + κ∂2
xu2(t, x)− γu2(t, x) + δu1(t, x)u2(t, x), (3.2)
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for t ≥ 0 and x ∈ R, where α, β, γ, δ and κ are strictly positive constants and v1(t) and v2(t) are
functions of t. The system (3.1)–(3.2) will be considered with the initial condition

ui(t, x) = ui,0(x), i = 1, 2. (3.3)

For the functions u1,0(x) and u2,0(x), it is assumed that

ui,0(x) > 0, ui,0(x) = ui,0(x+ 2π) ∀x ∈ R, ui,0(·) ∈ L∞(R), i = 1, 2. (3.4)

Since the equations (3.1)–(3.2) are parabolic equations subject to the conditions (3.3)–(3.4), the
existence and uniqueness of the local solution follow from the classical theory of parabolic equations.
Furthermore, considering the equations (3.1)–(3.2) on R+ × T with the torus T = R/mod2π, the
periodicity in x of the solution (u1(t, x), u2(t, x)) follows automatically. As far as concerns the
global solution, we will first prove the inequality (4.3) on the interval of the existence of the solution
(u1(t, x), u2(t, x)) and then deduce from the inequality (4.3) and the theorem of the existence and
the uniqueness of the local solution the existence and the uniqueness of the global solution.

We now define the functions U1(u1), U2(u2) and U(u1, u2):

U1(u1) = −γ
(

log u1 − log
γ

δ

)

+ δ
(

u1 −
γ

δ

)

, (3.5)

U2(u2) = −α
(

log u2 − log
α

β

)

+ β
(

u2 −
α

β

)

, (3.6)

U(u1, u2) = U1(u1) + U2(u2). (3.7)

Since

min
u1>0

(−γ log u1 + δu1) = −γ log
(γ

δ

)

+ γ, (3.8)

min
u2>0

(−α log u2 + βu2) = −α log
(α

β

)

+ α, (3.9)

it follows that U1(u1) ≥ 0, U2(u2) ≥ 0 and U(u1, u2) ≥ 0 for any u1 > 0 and u2 > 0. Thus

min
u1>0

U1(u1) = min
u2>0

U2(u2) = min
u1>0, u2>0

U(u1, u2) = 0, (3.10)

U(u1, u2) = 0 ⇐⇒ u1 =
γ

δ
and u2 =

α

β
. (3.11)

Let us set

Ũ(t) =
1

2π

∫ 2π

0
U(u1(t, x), u2(t, x))dx. (3.12)

Let us first note the following fact, which can be proved in a manner similar to the raisoning
presented in [14] and [15].

Proposition 1. Assume that

sup
0≤x≤2π

U(u1,0(x), u2,0(x)) < ∞

and that the problem (3.1)–(3.3) with (3.4) admits the unique solution (u1(t, x), u2(t, x)) in the time

interval [0, τ [ (0 < τ ≤ ∞). Then, the function Ũ(t) is decreasing on the interval [0, τ [.

P r o o f. In a manner similar to deriving (2.8), but adding the terms that result from the
diffusion termes, we obtain

∂tU = κ∂2
xU − κσ − v1∂xU1 − v2∂xU2, (3.13)
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where

σ = σ(t, x) = γ

(

∂xu1(t, x)

u1(t, x)

)2

+ α

(

∂xu2(t, x)

u2(t, x)

)2

.

By integrating both sides of the equality (3.13) with respect to x from 0 to 2π, we obtain

∫ 2π

0
∂tUdx =

∫ 2π

0

(

κ∂2
xU − κσ − v1∂xU1 − v2∂xU2

)

dx.

Since the functions U(u1(t, x), u2(t, x)), U1(u1(t, x)) and U2(u2(t, x)) are 2π-periodic in x, we have

d

dt

∫ 2π

0
U(u1(t, x), u2(t, x))dx = −κ

∫ 2π

0
σ(t, x)dx.

This, together with the relation σ ≥ 0, implies that the function Ũ(t) is decreasing. �

Corollary 1. If the solution (u1(t, x), u2(t, x)) of the problem (3.1)–(3.3) (with (3.4)) exists

for all t > 0, then the function Ũ(t) converges to a value Ũ∞ for t → ∞.

P r o o f. It immediately follows from Proposition 1 and the relation (3.10). �

4. Main result

Our main result is the following.

Theorem 1. Assume that

sup
t≥0

|v1(t)− v2(t)| ≡ Cv < ∞, (4.1)

sup
0≤x≤2π

U(u1,0(x), u2,0(x)) < ∞. (4.2)

Then, the problem (3.1)–(3.3) with (3.4) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0
and we have

sup
t≥0, 0≤x≤2π

U(u1(t, x), u2(t, x)) < ∞. (4.3)

More precisely,

i) there exists a continuous and increasing function Λ1 : R+ → R+ such that

lim sup
t→∞

sup
0≤x≤2π

U(u1(t, x), u2(t, x)) ≤ Λ1(Ũ∞),

ii) if Ũ∞ = 0, then we have

lim
t→∞

sup
0≤x≤2π

U(u1(t, x), u2(t, x)) = 0,

where Ũ∞ = limt→∞ Ũ(t) with Ũ(t) defined in (3.12).

For the proof of Theorem 1 we use the proposition.
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Proposition 2. Assume that the conditions (4.1)–(4.2) and (3.4) are satisfied and that the

problem (3.1)–(3.3) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0. Then, there exists an

increasing and continuous function Λ2 : R+ → R+ such that

lim sup
t→∞

‖U(u1(t, ·), u2(t, ·))‖2L2(0,2π) ≤ Λ2(Ũ∞), (4.4)

Λ2(0) = 0.

The function Λ2(·) can be given for example by the formula (5.13).
In the following section, we will prove Proposition 2. Theorem 1 will be proved in the successive

section.

5. Proof of Proposition 2

In order to prove Proposition 2, we begin with the following lemma.

Lemma 1. Let U = U(x) be a positive and 2π-periodic function such that

∥

∥

∥

d

dx
U
∥

∥

∥

L2(0,2π)
< ∞.

If

‖U‖L2(0,2π) >
√
8π U, (5.1)

then we have
∥

∥

∥

d

dx
U
∥

∥

∥

2

L2(0,2π)
≥ 1

256π3U
2

(

1− 4
√
2π U

3‖U‖L2(0,2π)

)

‖U‖4L2(0,2π), (5.2)

where

U =
1

2π

∫ 2π

0
U(x)dx.

P r o o f. Set

µ =
‖U‖L2(0,2π)

2
√
2π

, Dµ =
{

x ∈ [0, 2π]|U(x) > µ
}

, (5.3)

and denote by |Dµ| the measure of the set Dµ. Since U(x) > µ on Dµ, it follows from the definition
of U and µ that

µ|Dµ| ≤ 2πU. (5.4)

Since
U(x)2 = (U(x)− µ)2 + 2µ(U(x) − µ) + µ2,

it follows that
∫

Dµ

|U(x)|2dx =

∫

Dµ

(U(x) − µ)2dx+ 2

∫

Dµ

µ(U(x)− µ)dx+

∫

Dµ

µ2dx.

Hence
∫

Dµ

(U(x)− µ)2dx =

∫

Dµ

|U(x)|2dx− 2

∫

Dµ

µ(U(x)− µ)dx− |Dµ|µ2

≥
∫

Dµ

|U(x)|2dx− 3|Dµ|µ2 − 1

2

∫

Dµ

(U(x)− µ)2dx.
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Thus, taking into account (5.3), we have

∫

Dµ

(U(x)− µ)2dx ≥ 2

3

∫

Dµ

|U(x)|2dx− 2|Dµ|µ2 =
2

3

∫

Dµ

|U(x)|2dx−
|Dµ|‖U‖2L2(0,2π)

4π
. (5.5)

On the other hand, we have
∫

Dc
µ

|U(x)|2dx ≤ (2π − |Dµ|)µ2.

Hence, taking into account (5.3), we have

∫

Dµ

|U(x)|2dx ≥ ‖U‖2L2(0,2π) − (2π − |Dµ|)µ2 =
(3

4
+

|Dµ|
8π

)

‖U‖2L2(0,2π). (5.6)

From (5.5) and (5.6) we obtain

∫

Dµ

(U(x)− µ)2dx ≥
(

1

2
− |Dµ|

6π

)

‖U‖2L2(0,2π). (5.7)

Recall that under the condition (5.1) the relation (5.4) implies that |Dµ| < 2π, and thus there
exists at least one x̄ ∈ R such that U(x̄) ≤ µ. Since U(x) is 2π-periodic, it is not restrictive to
assume that x̄ = 0 (and thus U(x̄+ 2π) ≤ µ).

We first consider the case
Dµ = ]x0, x0 + |Dµ|[ .

In this case, since we have

∫

Dµ

(U(x)− µ)2dx =

∫

Dµ

2

∫ x

x0

(U(x′)− µ)
d

dx′
U(x′)dx′dx,

and thus

∫

Dµ

(U(x)− µ)2dx ≤ 2|Dµ|
(
∫

Dµ

(U(x)− µ)2dx

)1/2(∫

Dµ

(

d

dx
U(x)

)2

dx

)1/2

,

we obtain
∫

Dµ

(U(x)− µ)2dx ≤ 4|Dµ|2
∫

Dµ

(

d

dx
U(x)

)2

dx. (5.8)

Even in the general case with

Dµ =

N
⋃

k=0

]xk, x
′
k[, |Dµ| =

N
∑

k=1

(x′k − xk), N ∈ N, N ≥ 2 or N = +∞,

on every interval ]xk, x
′
k[ we have

∫ x′

k

xk

(U(x)− µ)2dx ≤ 4|Dµ|2
∫ x′

k

xk

(

d

dx
U(x)

)2

dx.

By summing these inequalities, we obtain (5.8).
From (5.7) and (5.8) we have

∫

Dµ

(

d

dx
U(x)

)2

dx ≥ 1

4|Dµ|2
(

1

2
− |Dµ|

6π

)

‖U‖2L2(0,2π). (5.9)
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Since, according to (5.4), we have

|Dµ| ≤
4π

√
2π U

‖U‖L2(0,2π)
,

from (5.9) we obtain

∫

Dµ

(

d

dx
U(x)

)2

dx ≥ 1

256π3U
2

(

1− 4
√
2π U

3‖U‖L2(0,2π)

)

‖U‖4L2(0,2π).

Since
∫ 2π

0

(

d

dx
U(x)

)2

dx ≥
∫

Dµ

(

d

dx
U(x)

)2

dx,

we deduce the inequality (5.2). This completes the proof of the lemma. �

Lemma 1 leads to the following property.

Lemma 2. Assume that the conditions (4.1)–(4.2) and (3.4) are satisfied and that the prob-

lem (3.1)–(3.3) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0. Let U(·, ·) and Ũ(t) be the

functions defined in (3.7) and (3.12), respectively. If

‖U(u1(t, ·), u2(t, ·))‖L2(0,2π) >
√
8πŨ(t),

then we have
d

dt
‖U‖2L2 ≤

(

C2
v

κ
− κ

256π3Ũ2

(

1− 4
√
2π

3‖U‖L2

Ũ

)

‖U‖2L2

)

‖U‖2L2 , (5.10)

where Ũ = Ũ(t) and

‖U‖L2 = ‖U(u1(t, ·), u2(t, ·))‖L2(0,2π).

P r o o f. By writing v1(t)− v2(t) + v2(t) instead of v1(t) in (3.13), we have

∂tU = κ∂2
xU − κσ(t, x)− v2(t)∂xU − (v1(t)− v2(t))∂xU1. (5.11)

If we multiply both sides of (5.11) by U and integrate them on [0, 2π], then, using integration by
parts, we have

1

2

d

dt

∫ 2π

0
|U |2dx = −κ

∫ 2π

0
|∂xU |2dx− κ

∫ 2π

0
σUdx+ (v1(t)− v2(t))

∫ 2π

0
U1∂xUdx.

Note that due to relations U = U1 + U2, U1 ≥ 0, U2 ≥ 0 (see (3.5)–(3.9)), we have

∫ 2π

0
U1∂xUdx ≤ 1

2κ

∫ 2π

0
|U1|2dx+

κ

2

∫ 2π

0
|∂xU |2dx ≤ 1

2κ

∫ 2π

0
|U |2dx+

κ

2

∫ 2π

0
|∂xU |2dx.

Thus, taking into account the relation σU ≥ 0, we obtain

1

2

d

dt

∫ 2π

0
|U |2dx ≤ −κ

2

∫ 2π

0
|∂xU |2dx+

|v1(t)− v2(t)|2
2κ

∫ 2π

0
|U |2dx. (5.12)

Applying the inequality (5.2) to the first term on the right-hand side of the inequality (5.12) and
taking into account the condition (4.1), we obtain (5.10). This completes the proof of the lemma. �
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P r o o f (of Proposition 2). Note that if ‖U‖L2 >
√
8πŨ , then we have

1− 4
√
2π

3‖U‖L2

Ũ ≥ 1

3
.

Thus, in this case, the right-hand side of the inequality (5.10) is bounded from above by
(

C2
v

κ
− κ

256π3Ũ2

‖U‖2L2

3

)

‖U‖2L2 .

Therefore, from Lemma 2 it follows that

lim sup
t→∞

∫ 2π

0
|U(u1(t, x), u2(t, x))|2dx ≤ Λ2(Ũ∞),

where Λ2(·) is defined by

Λ2(a) = max
(

8π,
768π3C2

v

κ2

)

a2, (5.13)

which completes the proof of Proposition 2. �

6. Proof of Theorem 1

In order to prove Theorem 1, we begin with an estimate of the ‖∂xU(u1(t, ·), u2(t, ·))‖L2(0,2π).
We have the following lemma (in Lemmas 3–9, we assume that the hypothesis of Proposition 2 is
satisfied).

Lemma 3. For all t2 > t1 ≥ 0, we have
∫ t2

t1

‖∂xU(u1(t, ·), u2(t, ·))‖2L2(0,2π)dt

≤ Cv

κ2

∫ t2

t1

‖U(u1(t, ·), u2(t, ·))‖2L2
(0,2π)

dt+
1

κ
‖U(u1(t1, ·), u2(t1, ·))‖2L2(0,2π).

(6.1)

P r o o f. From (5.12) we deduce that
∫ 2π

0
|∂xU(t, x)|2dx ≤ |v1(t)− v2(t)|2

κ2

∫ 2π

0
|U(t, x)|2dx− 1

κ

d

dt

∫ 2π

0
|U(t, x)|2dx,

where U(t, x) = U(u1(t, x), u2(t, x)). Integrating both sides of this inequality with respect to t from
t1 to t2, we obtain
∫ t2

t1

‖∂xU(t, ·)‖2L2(0,2π)dt≤
Cv

κ2

∫ t2

t1

‖U(t, ·)‖2L2(0,2π)dt−
1

κ

(

‖U(t2, ·)‖2L2(0,2π)−‖U(t1, ·)‖2L2(0,2π)

)

. (6.2)

Eliminating the negative terme of the right-hand side of the inequality (6.2), we obtain (6.1). �

We deduce from Lemma 3 the following relation.

Lemma 4. We have
∫ t+1

t
sup

0≤x≤2π
U(u1(t

′, x), u2(t
′, x))dt′

≤Ũ(t) +
√
2π

(Cv

κ2

∫ t+1

t
‖U(u1(t

′, ·), u2(t′, ·))‖2L(0,2π)2dt
′+

1

κ
‖U(u1(t, ·), u2(t, ·))‖2L2(0,2π)

)1/2
,

(6.3)

where Ũ(t) is the notation introduced in (3.12).
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P r o o f. We use the notation U(t, x) = U(u1(t, x), u2(t, x)) as in the proof of Lemma 3. Since

‖ϕ‖L1(0,2π) ≤
√
2π‖ϕ‖L2(0,2π)

for all ϕ ∈ L2(0, 2π), from the relation

sup
0≤x≤2π

U(t, x) ≤ Ũ(t) + ‖∂xU(t, ·)‖L1(0,2π),

we obtain
sup

0≤x≤2π
U(t, x) ≤ Ũ(t) +

√
2π‖∂xU(t, ·)‖L2(0,2π). (6.4)

Taking into account the decreasing of Ũ(t), the inequality (6.3) follows immediatly from (6.1)
and (6.4). �

We will now estimate the growth of

sup
0≤x≤2π

u1(t, x), sup
0≤x≤2π

u2(t, x), sup
0≤x≤2π

(− log u1(t, x)), sup
0≤x≤2π

(− log u2(t, x)).

To this end, we return to the equations (3.1) and (3.2). Note that, if we introduce the function

ξ1(t, x) = x+

∫ t

0
v1(t

′)dt′,

and if we consider the variables (t, ξ1) instead of (t, x), then the equation (3.1) is rewritten as

∂tu1(t, ξ1) = κ∂2
ξ1u1(t, ξ1) + αu1(t, ξ1)− βu1(t, ξ1)u2(t, ξ1). (6.5)

Analogously, if we introduce the function

ξ2(t, x) = x+

∫ t

0
v2(t

′)dt′,

and if we consider the variables (t, ξ2) instead of (t, x), then the equation (3.2) is rewritten as

∂tu2(t, ξ2) = κ∂2
ξ2u2(t, ξ2)− γu2(t, ξ2) + δu1(t, ξ2)u2(t, ξ2). (6.6)

Using (6.5) and (6.6), we will prove the four following lemmas.

Lemma 5. Set

u+1 (t) = sup
0≤x≤2π

u1(t, x) = sup
ξ1∈R

u1(t, ξ1). (6.7)

Then, for 0 ≤ t0 ≤ t, we have

u+1 (t) ≤ u+1 (t0)e
α(t−t0) ≡ Φ1(u

+
1 (t0), t− t0). (6.8)

P r o o f. By formally applying the fundamental solution of the heat equation to (6.5), we have

u1(t, ξ1) =

∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ1)u1(t0, ξ

′)dξ′

+

∫ t

t0

∫ +∞

−∞

Θ(t− t′, ξ′ − ξ1)
(

αu1(t
′, ξ′)− βu1(t

′, ξ′)u2(t
′, ξ′)

)

dξ′dt′,
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where

Θ(τ, η) =
1

√

(4πτκ)
exp(− |η|2

4τκ
).

Since
∫ +∞

−∞

Θ(τ, η)dη = 1

for all τ > 0, we have

u+1 (t) ≤ u+1 (t0) + α

∫ t

t0

u+1 (t
′)dt′,

so that we obtain (6.8). �

Lemma 6. Set

w+
2 (t) = sup

0≤x≤2π
(− log u2(t, x)) = sup

ξ2∈R
(− log u2(t, ξ2)).

Then, for 0 ≤ t0 ≤ t, we have

w+
2 (t) ≤ w+

2 (t0) + γ(t− t0) ≡ Ψ2(w
+
2 (t0), t− t0). (6.9)

P r o o f. If we divide both sides of (6.6) by −u2(t, ξ2), we have

∂t(− log(u2(t, ξ2))) = κ∂2
ξ2(− log(u2(t, ξ2)))− (∂ξ2 log(u2(t, ξ2)))

2 + γ − δu1(t, ξ2). (6.10)

By formally applying the fundamental solution of the heat equation to (6.10), we have

− log(u2(t, ξ2)) ≤
∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ2)(− log(u2(t0, ξ

′)))dξ′ + γ(t− t0),

and this inequality implies (6.9). �

Lemma 7. Set

u+2 (t) = sup
0≤x≤2π

u2(t, x) = sup
ξ2∈R

u2(t, ξ2).

Then, for 0 ≤ t0 ≤ t, we have

u+2 (t) ≤ u+2 (t0)

(

1 + δu+1 (t0)

∫ t

t0

eα(t
′−t0)eδ/α·u

+
1 (t0)(eα(t−t0)−eα(t′−t0))dt′

)

≡ Φ2(u
+
1 (t0), u

+
2 (t0), t− t0).

(6.11)

P r o o f. We formally apply the fundamental solution of the heat equation to (6.6), so that
we have

u2(t, ξ2) ≤
∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ2)u2(t0, ξ

′)dξ′ + δ

∫ t

t0

∫ +∞

−∞

Θ(t− t′, ξ′ − ξ2)u1(t
′, ξ′)u2(t

′, ξ′)dξ′dt′.

Hence, using the inequality (6.8), we have

u+2 (t) ≤ u+2 (t0) + δu+1 (t0)

∫ t

t0

eα(t
′−t0)u+2 (t

′)dt′,
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or

Y ′(t) ≤ eα(t−t0)u+2 (t0) + δu+1 (t0)e
α(t−t0)Y (t), Y (t) =

∫ t

t0

eα(t
′−t0)u+2 (t

′)dt′.

From this inequality follows (6.11). �

Lemma 8. Set

w+
1 (t) = sup

0≤x≤2π
(− log u1(t, x)) = sup

ξ1∈R
(− log u1(t, ξ1)).

Then, for 0 ≤ t0 ≤ t, we have

w+
1 (t) ≤ w+

1 (t0) + β

∫ t

t0

Φ2(t0, u
+
2 (t0), t

′)dt′ ≡ Ψ1(u
+
1 (t0), u

+
2 (t0), w

+
1 (t0), t− t0). (6.12)

P r o o f. From the equation

∂t(− log(u1(t, ξ1))) = κ∂2
ξ1(− log(u1(t, ξ1)))− κ(∂ξ1 log(u1(t, ξ1)))

2 − α+ βu2(t, ξ1),

we deduce (in a similar way to the previous case)

− log(u1(t, ξ1)) ≤ w+
1 (t0) + β

∫ t

t0

u+2 (t
′)dt′.

Hence, using (6.11) we obtain (6.12). �

Let us define w+
1 (U), u+1 (U), w+

2 (U) and u+2 (U), for all U ≥ 0, as follows:

w+
1 (U) = − log(ū1), U1(ū1) = U, 0 < ū1 ≤

γ

δ
,

u+1 (U) = ¯̄u1, U1(¯̄u1) = U, ¯̄u1 ≥
γ

δ
,

w+
2 (U) = − log(ū2), U2(ū2) = U, 0 < ū2 ≤

α

β
,

u+2 (U) = ¯̄u2, U2(¯̄u2) = U, ¯̄u2 ≥
α

β
.

It is clear that

U = U1(e
−w+

1 (U)) = U1(u
+
1 (U)) = U2(e

−w+
2 (U)) = U2(u

+
2 (U)).

These definitions are justified due to the definition (3.5)–(3.6) of U1(u1) and U2(u2).

Lemma 9. If we set

U+(t) = sup
0≤x≤2π

U(u1(t, x), u2(t, x)),

we have

U+(t) ≤ M̃(U+(t0), t− t0), t ≥ t0,

where

M̃(U+(t0), t− t0) = Umax
1 (U+(t0), t− t0) + Umax

2 (U+(t0), t− t0), (6.13)

Umax
1 (U+(t0), t− t0)

= max(U1(Φ1(u
+
1 (U

+(t0)), t− t0)), U1(e
−Ψ1(u

+
1 (U+(t0)),u

+
2 (U+(t0)),w

+
1 (U+(t0)),t−t0))),

Umax
2 (U+(t0), t− t0) = max(U2(Φ2(u

+
1 (U

+(t0)), u
+
2 (U

+(t0)), t− t0)), U2(e
−Ψ2(w

+
2 (U+(t0)),t−t0))).
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P r o o f. The lemma follows immediatly from the definition of M̃(U+(t0), t−t0) and Lemmas 5–
8. �

Remark 3. The function M̃ (a, b) can be defined for any values a ≥ 0 and b ≥ 0 (independently
of the solution (u1(t, x), u2(t, x)) of the problem (3.1)–(3.3)). Furthermore, the function M̃(a, b) is
continuous and increasing with respect to either a ≥ 0 or b ≥ 0.

Indeed, this remark follows immediately from the definition (6.13).

We are now able to prove the main result.

P r o o f (of Theorem 1). In this proof we use the notations Ũ(t) introduced in (3.12) and
U(t, x) = U(u1(t, x), u1(t, x)). Lemma 2 (see also (5.13)) implies that, if

‖U(t, ·)‖2L2(0,2π) > Λ2(Ũ (t)),

then ‖U(t, ·)‖2L2(0,2π) decreases. Taking into account that Ũ(t) is decreasing, we have

‖U(t, ·)‖2L2(0,2π) ≤ max
(

‖U(0, ·)‖2L2(0,2π) , Λ2(Ũ(0))
)

≡ BU , ∀t ≥ 0.

This inequality, together with (6.3) and Proposition 1, allows us to conclude the existence of τ in
each interval [t, t+ 1] such that

sup
0≤x≤2π

U(τ, x) ≤ Ũ(0) +
√
2π

(Cv

κ2
+

1

κ

)1/2√

BU ≡ AU .

On the other hand, it follows from Lemma 9 (see also Remark 3) that

sup
0≤x≤2π

U(t, x) ≤ M̃(AU , t− τ),

for t ≥ τ . Thus, from these relations it follows that, for all t ≥ 0, we have

sup
0≤x≤2π

U(t′, x) ≤ M̃ (AU , 1), ∀t′ ∈ [t, t+ 1],

in other words, we have
sup

0≤x≤2π
U(t, x) ≤ M̃(AU , 1), ∀t ≥ 0,

with M̃(AU , 1) < ∞ (see (6.13)), which completes the proof of (4.3).
We now set

Λ1(Ũ∞) = M̃(A∗
U (Ũ∞), 1),

where

A∗
U (Ũ∞) = Ũ∞ +

√
2π

(Cv

κ2
+

1

κ

)1/2
√

Λ2(Ũ∞). (6.14)

We note that the right-hand side of (6.14) does not depend on t and we can deduce from the
definition of M̃ that the function Λ1(Ũ∞) is continuous and increasing. From the reasoning of the
proof of (4.3), taking into account (4.4), we deduce that

lim sup
t→∞

sup
0≤x≤2π

U(t, x) ≤ Λ1(Ũ∞),

which completes the proof of the statement i) of Theorem 1.
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We now assume that Ũ∞ = 0. Then, according to Lemma 4, we have

∫ t

t−1
sup

0≤x≤2π
U(τ, x)dτ ≤ Ũ(t− 1) +

√
2π

(Cv

κ2

∫ t

t−1
‖U(τ, ·)‖2

L(0,2π)2
dτ +

1

κ
‖U(t− 1, ·)‖2L2(0,2π)

)1/2
.

According to Proposition 2 the upper limit of the right-hand side of this inequality is A∗
U (Ũ∞), as

given in (6.14). Thus, we have

lim
t→∞

∫ t

t−1
sup

0≤x≤2π
U(τ, x)dτ = 0. (6.15)

In order to prove the statement ii) of Theorem 1, we argue by contradiction by assuming that

lim
t→∞

sup
0≤x≤2π

U(t, x) 6= 0,

in other words, suppose that there exists ε > 0 such that, for each t > 0, there exists t′ ≥ t such
that

sup
0≤x≤2π

U(t′, x) ≥ ε. (6.16)

Let us define the function U (ε)(s), for each s > 0, as

M̃(U (ε)(s), s) = ε. (6.17)

Then, from the definition of M̃ it follows that, for t′ satisfaying (6.16), we have for τ < t′

U (ε)(t′ − τ) ≤ sup
0≤x≤2π

U(τ, x).

Thus
∫ t′

t′−1
U (ε)(t′ − τ)dτ ≤

∫ t′

t′−1
sup

0≤x≤2π
U(τ, x)dτ. (6.18)

Recall that the definition of M̃ (and also of Umax
1 and Umax

2 ; see (6.13)) implies that for any
t0 > 0, we have

lim
t→t+0

Umax
1 (U+(t0), t− t0) = max(U1(u

+
1 (U

+(t0))), U1(e
−w+

1 (U+(t0)))) = U+(t0),

lim
t→t+0

Umax
2 (U+(t0), t− t0) = max(U2(u

+
2 (U

+(t0))), U2(e
−w+

2 (U+(t0)))) = U+(t0),

and thus

lim
t→t+0

M̃(U+(t0), t− t0) = 2U+(t0).

This relation also implies that

lim
τ→t′−

U (ε)(t′ − τ) =
1

2
ε > 0. (6.19)

From the continuity of M̃(a, b) we can deduce that U (ε)(s) is continuous (see (6.17)). Thus,
from (6.19) it follows that there exists some sε > 0 such that U (ε)(s) > 0 for 0 < s < sε, and
we have

∫ t′

t′−sε

U (ε)(t′ − τ)dτ =

∫ sε

0
U (ε)(s)ds ≡ cε > 0.
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Thus, it follows from (6.18) that

∫ t′

t′−1
sup

0≤x≤2π
U(τ, x)dτ ≥ cε > 0,

where cε is independant of t′. This result contradicts (6.15). Therefore we have

lim
t→∞

sup
0≤x≤2π

U(t, x) = 0.

This completes the proof of the theorem. �

7. Conclusion

In this article, we have analyzed the asymptotic behavior of the solution to the Lotka–Volterra
equation with diffusion and population displacements in a periodic domain of R. From this analysis
we have obtained the global boundedness of the solution and its logarithm and also its uniform
convergence to the stationary solution in the case in which the solution converges in mean-value to
the stationary solution. This result guarantees that, even if there can be the growth of oscillation
of the solution in certain points as we have seen in the example of numerical calculation in the
Section 2, these phenomena cannot develop infinitely, and the growth of oscillation is limited.

Moreover we have developed some particular techniques of estimate of the solution. Even if the
conditions we have set for the equation are relatively simple, the techniques we have developed here
can, with possible adaptation, be used also for analogous problem with more complex conditions.
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