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Abstract: We discuss some results on the convergence of minimizers and minimum values of integral and
more general functionals on sets of functions defined by bilateral constraints in variable domains. We consider
the case of regular constraints, i.e., constraints lying in the corresponding Sobolev space, and the case where the
lower constraint is zero and the upper constraint is an arbitrary nonnegative function. The first case concerns
a larger class of integrands and requires the positivity almost everywhere of the difference between the upper and
lower constraints. In the second case, this requirement is absent. Moreover, in the latter case, the exhaustion
condition of an n-dimensional domain by a sequence of n-dimensional domains plays an important role. We
give a series of results involving this condition. In particular, using the exhaustion condition, we prove a certain
convergence of sets of functions defined by bilateral (generally irregular) constraints in variable domains.
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Introduction

This paper is mainly based on the talk given by the author at the International S.B. Stechkin
Summer Workshop-Conference on Function Theory, Miass, Russia, August 1–10, 2017.

The problems considered in the paper are related to the following general problem. Let {Ws} be
a sequence of Banach spaces, and let, for every s ∈ N, Is :Ws → R and Vs ⊂Ws, Vs 6= ∅. Let, for
every s ∈ N, us be a minimizer of Is on Vs. The questions are, what are general conditions under
which the sequence {us} converges in a certain sense to an element and this limit element minimizes
a functional I on a set V , and how are the functional I and the set V related to the sequences
{Is} and {Vs} ? Problems of this kind are studied in the framework of homogenization theory.
There is a special kind of convergence of functionals that helps to solve the mentioned problems.
This is the Γ-convergence. There are many works devoted to the study of this convergence. The
Γ-convergence of functionals with the same domain of definition was studied, for instance, in [1–3].
In the simplest case, the definition of Γ-convergence is as follows.

Definition 1. Let, for every s ∈ N, fs : R → R, and let f : R → R. We say that the
sequence {fs} Γ-converges to the function f if the following conditions are satisfied:

(a) for every x ∈ R, there exists a sequence {ys} ⊂ R such that ys → x and fs(ys) → f(x);

(b) for every x ∈ R and every sequence {xs} ⊂ R such that xs → x, we have the inequality
lim inf
s→∞

fs(xs) > f(x).

The Γ-convergence of ordinary real functions and functionals defined on Banach spaces has
some interesting properties that distinguish it from other kinds of convergence of the corresponding
mappings. Among various properties of the Γ-convergence, we only mention its variational property
that describes the relation of this convergence of functionals to the convergence of their minimizers
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and minimum values. A simple version of the variational property of the Γ-convergence is the
following proposition.

Proposition 1. Let, for every s ∈ N, fs : R → R, and let f : R → R. Assume that the

sequence {fs} Γ-converges to the function f . Let, for every s ∈ N, xs be a minimizer of fs on R.

Assume that xs → x. Then x minimizes f on R and fs(xs) → f(x).

P r o o f. Since xs → x, by condition (b) in Definition 1, we have

lim inf
s→∞

fs(xs) > f(x). (1)

Now, let y ∈ R. By virtue of condition (a) in Definition 1, there exists a sequence {ys} ⊂ R such
that

fs(ys) → f(y). (2)

Since, for every s ∈ N, xs minimizes fs on R, we have

∀s ∈ N, fs(xs) 6 fs(ys). (3)

Relations (2) and (3) imply that
lim sup
s→∞

fs(xs) 6 f(y). (4)

From (1) and (4), we derive that x minimizes f on R and fs(xs) → f(x). We note that the latter
limit relation follows from inequality (1) and from inequality (4) with y = x. �

Here, we have restricted ourselves only to a simplest version of the variational property of the
Γ-convergence, having shown how both conditions (a) and (b) in Definition 1 work. The considered
case is very simple not only due the fact that we dealt with functions defined on R but also because
of the assumption that the minimizers of these functions are global. In the case of minimizers on
sets defined by certain constraints, the situation is more complicated, and not always the ”global”
Γ-convergence (i.e., the convergence of the kind described in Definition 1 with a Γ-realizing sequence
{ys} taken in the whole corresponding space) can be used for the study of the convergence of such
minimizers.

There are analogues of the above definition of Γ-convergence for functionals defined on a Banach
space (in particular, on a Lebesgue or Sobolev space). In this connection, see, for instance, [2, 4].
The notion of Γ-convergence of functionals with varying domain of definition (in particular, of func-
tionals Is : W

m,p(Ωs) → R with taking into account the structure of domains Ωs) was introduced
and studied, for instance, in [5–7].

Next, note that, in the study of the convergence of minimizers us of functionals Is : Ws → R,
a connection of the spaces Ws with a space W plays an important role. Often, this connection
is expressed as the requirement that there exists a sequence of operators ls : Ws → W with cer-
tain properties. In particular, these properties should provide the following property: for every
sequence vs ∈Ws such that sup

s∈N
‖vs‖Ws < +∞, the sequence {lsvs} is bounded in W . Under appro-

priate and in some sense natural conditions on the functionals Is, for the sequence of minimizers
us ∈ Ws of the functionals Is, the inequality sup

s∈N
‖us‖Ws < +∞ holds. Therefore, if there exists

a sequence ls :Ws →W with the above mentioned property, then the sequence {lsus} is bounded.
Consequently, if the space W is reflexive, there exist an increasing sequence {sj} ⊂ N and an
element u ∈W such that lsjusj → u weakly in W . Actually, this is the first step in the study of the
convergence of the sequence of minimizers us ∈ Ws of the functionals Is. The described idea with
the operators ls is realized in the justification of the results stated below for functionals defined
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on the Sobolev spaces W 1,p(Ωs), where {Ωs} is a sequence of domains contained in a bounded
domain Ω of Rn. Essentially, the mentioned idea goes back to [8]. In this connection, see also [5–7].

The main content of this paper is organized as follows. In Section 1, we state the initial
assumptions and the necessary definitions. In Section 2, we present our results on the convergence
of minimizers and minimum values of integral and more general functionals on sets of functions
defined by bilateral constraints in variable domains. We consider the case of regular constraints,
i.e., constraints lying in the corresponding Sobolev space (see [9]), and the case where the lower
constraint is zero and the upper constraint is an arbitrary nonnegative function (in this connection,
see [10]). In both cases, a certain connection of the spacesW 1,p(Ωs) with the spaceW 1,p(Ω) and the
Γ-convergence of functionals defined on the spaces W 1,p(Ωs) to a functional defined on W 1,p(Ω) are
essentially used. At the same time, some other conditions on the involved domains, integrands, and
constraints are also important for our convergence results. On the whole, the conditions providing
these results are discussed in Section 3, where a special attention is paid to the so-called exhaustion
condition of the domain Ω by the domains Ωs. This condition is the requirement that, for every
increasing sequence {mj} ⊂ N, the measure of the union of all the domains Ωmj is equal to the
measure of the domain Ω. We also consider the notion of H-convergence of sequences of sets
Us ⊂W 1,p(Ωs) to a set U ⊂W 1,p(Ω) and show the importance of the exhaustion condition for the
H-convergence of sets of functions defined by irregular bilateral constraints.

1. Assumptions and definitions

Let n ∈ N, n > 2, let Ω be a bounded domain of Rn, and let p > 1. Let {Ωs} be a sequence of
domains of Rn contained in Ω.

It is easy to see that if v ∈W 1,p(Ω) and s ∈ N, then v|Ωs ∈W 1,p(Ωs).

Definition 2. If s ∈ N, then qs : W 1,p(Ω) → W 1,p(Ωs) is the mapping such that, for every
function v ∈W 1,p(Ω), we have qsv = v|Ωs .

Definition 3. We say that the sequence of spaces W 1,p(Ωs) is strongly connected with the
space W 1,p(Ω) if there exists a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω)
such that:

(a) the sequence of norms ‖ls‖ is bounded;

(b) for every s ∈ N and for every v ∈W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs.

The prototype of the notion in Definition 3 is the condition of strong connectedness of
n-dimensional domains introduced in [8].

Definition 4. Let, for every s ∈ N, Is : W
1,p(Ωs) → R, and let I : W 1,p(Ω) → R. We say that

the sequence {Is} Γ-converges to the functional I if the following conditions are satisfied:

(a) for every function v ∈ W 1,p(Ω), there exists a sequence ws ∈ W 1,p(Ωs) such that
‖ws − qsv‖Lp(Ωs) → 0 and Is(ws) → I(v);

(b) for every function v ∈ W 1,p(Ω) and for every sequence vs ∈ W 1,p(Ωs) such that
‖vs − qsv‖Lp(Ωs) → 0, we have lim inf

s→∞
Is(vs) > I(v).

Next, let c1, c2 > 0, and let, for every s ∈ N, µs ∈ L1(Ωs) and µs > 0 in Ωs. We assume that
the sequence of norms ‖µs‖L1(Ωs) is bounded.

Let, for every s ∈ N, fs : Ωs × R
n → R be a function satisfying the following conditions: for

every ξ ∈ R
n, the function fs(·, ξ) is measurable on Ωs; for almost every x ∈ Ωs, the function

fs(x, ·) is convex on R
n; for almost every x ∈ Ωs and for every ξ ∈ R

n, we have

c1|ξ|
p − µs(x) 6 fs(x, ξ) 6 c2|ξ|

p + µs(x). (5)
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In view of the assumptions on the functions fs and µs, for every s ∈ N and for every
v ∈W 1,p(Ωs), the function fs(x,∇v) is summable on Ωs.

Definition 5. If s ∈ N, then Fs :W
1,p(Ωs) → R is the functional such that, for every function

v ∈W 1,p(Ωs), we have

Fs(v) =

∫

Ωs

fs(x,∇v)dx.

By virtue of the conditions on the functions fs, for every s ∈ N, the functional Fs is convex and
locally bounded. Therefore, for every s ∈ N, the functional Fs is weakly lower semicontinuous.

Let c3, c4 > 0, and let, for every s ∈ N, Gs : W
1,p(Ωs) → R be a weakly continuous functional.

We assume that, for every s ∈ N and for every v ∈W 1,p(Ωs),

Gs(v) > c3‖v‖
p
Lp(Ωs)

− c4. (6)

Obviously, for every s ∈ N, the functional Fs+Gs is weakly lower semicontinuous. Moreover, in
view of (5) and (6) and the boundedness of the sequence of norms ‖µs‖L1(Ωs), there exist positive
constants c5 and c6 such that, for every s ∈ N and for every v ∈W 1,p(Ωs), we have

(Fs +Gs)(v) > c5‖v‖
p
W 1,p(Ωs)

− c6. (7)

Thus, in view of the known results on the existence of minimizers of functionals (see, for
instance, [11]), if s ∈ N and Us is a sequentially weakly closed set in W 1,p(Ωs), then there exists
a minimizer of the functional Fs +Gs on the set Us.

2. Variational problems with bilateral constraints

First, we consider the case of regular bilateral constraints.
Let ϕ,ψ ∈W 1,p(Ω), and let ϕ 6 ψ a.e. in Ω. We define

V (ϕ,ψ) = {v ∈W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω},

and let, for every s ∈ N,

Vs(ϕ,ψ) = {v ∈W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs}.

It is easy to see that the set V (ϕ,ψ) is nonempty, closed, and convex. Similarly, for every s ∈ N,
the set Vs(ϕ,ψ) is nonempty, closed, and convex.

Clearly, for every s ∈ N, there exists a function belonging to the set Vs(ϕ,ψ) and minimizing
the functional Fs +Gs on this set.

Theorem 1. Assume that the following conditions are satisfied:

(∗1) the embedding of W 1,p(Ω) into Lp(Ω) is compact;

(∗2) the sequence of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω);

(∗3) for every sequence of measurable sets Hs ⊂ Ωs such that measHs → 0, we have
∫

Hs

µs dx→ 0;

(∗4) the sequence {Fs} Γ-converges to a functional F :W 1,p(Ω) → R;

(∗5) there exists a functional G : W 1,p(Ω) → R such that, for every function v ∈ W 1,p(Ω) and

for every sequence vs ∈W 1,p(Ωs) with the property ‖vs − qsv‖Lp(Ωs) → 0, we have Gs(vs) → G(v);
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(∗6) ψ − ϕ > 0 a.e. in Ω.

Let, for every s ∈ N, us be a function in Vs(φ,ψ) minimizing the functional Fs + Gs on

the set Vs(ϕ,ψ). Then there exist an increasing sequence {sj} ⊂ N and a function u ∈ V (ϕ,ψ)
such that u minimizes the functional F + G on the set V (ϕ,ψ), ‖usj − qsju‖Lp(Ωsj

) → 0, and

(Fsj +Gsj )(usj ) → (F +G)(u).

Essentially, a similar result was obtained in [12] but under stronger assumptions on the func-
tionals Fs and Gs and under the condition ψ − ϕ > α a.e. in Ω, where α > 0. In this connection,
see also [13, Theorem 2.9].

Concerning the proof of Theorem 1, we note the following. First, using operators ls :W
1,p(Ωs) →

W 1,p(Ω) described in Definition 3 and defining the functions ũs = min{max{lsus, ϕ}, ψ}, we find
that there exist an increasing sequence {sj} ⊂ N and a function u ∈ W 1,p(Ω) such that ũsj → u
strongly in Lp(Ω) and almost everywhere in Ω. Then we obtain the inclusion u ∈ V (ϕ,ψ), the
limit relation ‖usj − qsju‖Lp(Ωsj )

→ 0, and, by virtue of conditions (∗4) and (∗5) of Theorem 1, the

inequality lim inf
s→∞

(Fsj + Gsj )(usj ) > (F + G)(u). The next and most important step is to estab-

lish, for every function v ∈ V (ϕ,ψ), the existence of a sequence ws ∈ Vs(ϕ,ψ) with the following
properties: ‖ws − qsv‖Lp(Ωs) → 0 and

lim sup
s→∞

Fs(ws) 6 F (v). (8)

The construction of such a sequence involves the function v and a Γ-realizing sequence {vs} for v,
i.e., a sequence vs ∈ W 1,p(Ωs) such that ‖vs − qsv‖Lp(Ωs) → 0 and Fs(vs) → F (v), which exists
in view of condition (∗4) of Theorem 1. Moreover, it involves the difference ψ − ϕ. Using the
limit relation ‖vs − qsv‖Lp(Ωs) → 0 and condition (∗6) of Theorem 1, we find that, for a sequence
{σs} ⊂ (0, 1] converging to 0, meas{|vs − qsv| > σsqs(ψ − ϕ)} → 0. This is a key moment in the
proof of inequality (8). For further details leading to the required properties of the function u,
see [9, Section 2].

We now proceed to the case of irregular bilateral constraints. More precisely, we consider
the case where the lower constraint is zero and the upper constraint is an arbitrary nonnegative
function. Thus, in contrast to the previous case, the upper constraint can be irregular and both
constraints can coincide on a set of positive measure. This is due to an additional condition on
the domains Ωs and a stronger condition on the functions µs as compared to condition (∗3) of
Theorem 1.

Let ψ : Ω → R and ψ > 0 a.e. in Ω. We define

V (ψ) = {v ∈W 1,p(Ω) : 0 6 v 6 ψ a.e. in Ω},

and let, for every s ∈ N,

Vs(ψ) = {v ∈W 1,p(Ωs) : 0 6 v 6 ψ a.e. in Ωs}.

It is easy to see that the set V (ψ) is nonempty, closed, and convex. Moreover, for every s ∈ N,
the set Vs(ψ) is nonempty, closed, and convex.

Obviously, for every s ∈ N, there exists a function belonging to the set Vs(ψ) and minimizing
the functional Fs +Gs on this set.

Theorem 2. Assume that conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 are satisfied. In

addition, suppose that the following conditions are satisfied:

(∗′) for every increasing sequence {mj} ⊂ N, we have meas
(

Ω \
∞
⋃

j=1
Ωmj

)

= 0;
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(∗′′) ‖µs‖L1(Ωs) → 0;

Let, for every s ∈ N, us be a function in Vs(ψ) minimizing the functional Fs + Gs on the

set Vs(ψ). Then there exist an increasing sequence {sj} ⊂ N and a function u ∈ V (ψ) such that u
minimizes the functional F +G on the set V (ψ), ‖usj − qsju‖Lp(Ωsj )

→ 0, and (Fsj +Gsj )(usj ) →

(F +G)(u).

As for the proof of Theorem 2, we give the following remarks. Since, in general, the function ψ is
irregular, we cannot use functions like the above functions ũs in the proof of Theorem 1. Therefore,
using operators ls : W

1,p(Ωs) → W 1,p(Ω) described in Definition 3, first, we find that there exist an
increasing sequence {sj} ⊂ N and a function u ∈ W 1,p(Ω) such that lsjusj → u strongly in Lp(Ω)
and almost everywhere in Ω. Then, to prove that u ∈ V (ψ), along with the inclusions us ∈ Vs(ψ),
we use condition (∗′) of Theorem 2 which effectively works in this situation. Similarly to the proof
of Theorem 1, the most important step in the proof of Theorem 2 is to establish, for every function
v ∈ V (ψ), the existence of a sequence ws ∈ Vs(ψ) such that ‖ws−qsv‖Lp(Ωs) → 0 and inequality (8)
holds. The construction of such a sequence involves the function v and a Γ-realizing sequence {vs}
for v but does not involve the constraint ψ. To prove inequality (8), we essentially use condition (∗′′)
of Theorem 2 and the fact that meas({|vs− qsv| > σsqsv}∩{v > 0}) → 0, where {σs} is a sequence
in [0, 1) such that σs → 0. For details, see the proof of Theorem 3.1 in [10].

The next result describes a situation where we have the convergence of the whole sequence of
minimizers and of the whole sequence of minimum values.

Theorem 3. Assume that conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 are satisfied,

and the functional G is strictly convex on the set V (ψ). In addition, suppose that conditions (∗′)
and (∗′′) of Theorem 2 are satisfied. Let, for every s ∈ N, us be a function in Vs(ψ) minimizing

the functional Fs +Gs on the set Vs(ψ). Then there exists a unique function u ∈ V (ψ) minimizing

the functional F +G on the set V (ψ) and the following relations hold : ‖us − qsu‖Lp(Ωs) → 0 and

(Fs +Gs)(us) → (F +G)(u).

3. Comments to the conditions of Theorems 1–3

As is known (see, for instance, [14, Chapter 6]), condition (∗1) of Theorem 1 is satisfied if Ω is
a Lipschitz domain. In particular, bounded convex domains are Lipschitz domains. A more general
requirement guaranteeing the fulfillment of condition (∗1) is that Ω is an extension domain (see,
for instance, [15, Chapter 1]).

Condition (∗2) of Theorem 1 is satisfied, in particular, if the domains Ωs have a certain perfo-
rated structure. In this regard, see, for instance, [16, Section 2].

As far as conditions (∗3) and (∗4) of Theorem 1 are concerned, we note the following. In the
case where the functions µs take a constant value independent of s, theorems on conditions for the
Γ-convergence of the integral functionals Fs with the integrands fs satisfying condition (5) follow
from the results of [17, 18], where the Γ-convergence of integral functionals defined on the spaces
Wm,p(Ωs) with an arbitrary m ∈ N was studied. In this case, the sequence {Fs} Γ-converges to an
integral functional defined on the space W 1,p(Ω), in particular, if the domains Ωs have a periodic
perforated structure and all the integrands fs coincide with the same integrand having a certain
regularity (see [17]). Obviously, in the specified case for the functions µs, the sequence of norms
‖µs‖L1(Ωs) is bounded and condition (∗3) of Theorem 1 is satisfied. In the more general case where
µs ∈ L1(Ωs) and µs > 0 in Ωs for every s ∈ N and, in addition, the inequality

lim sup
s→∞

∫

Q∩Ωs

µs dx 6

∫

Q∩Ω

µdx (9)
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holds for a function µ ∈ L1(Ω), µ > 0 in Ω, and for every open cube Q of Rn, a theorem on the
Γ-compactness of the sequence {Fs} can be proved similarly to the corresponding results in [19,
20]. Obviously, in this case, the sequence of norms ‖µs‖L1(Ωs) is bounded. We also note that
there are examples of sequences of nonnegative functions µs ∈ L1(Ωs) for which condition (9) and
condition (∗3) of Theorem 1 are satisfied but there is no function µ∗ : Ω → R such that, for every
s ∈ N, µs 6 µ∗ a.e. in Ωs. Such examples can be given with the use of the functions constructed
in [21].

In connection with condition (∗5) of Theorem 1, we give the following example.

Example 1. Let a ∈ Lp/(p−1)(Ω). Let β1 ∈ (0, 1), let β2 > 0, and let Φ : [0,+∞) → R be a
continuous function such that

∀ η ∈ [0,+∞), |Φ(η)| 6 β1|η|
p + β2. (10)

For every s ∈ N, we define the functional Gs :W
1,p(Ωs) → R by

Gs(v) =

∫

Ωs

{|v|p + av}dx+Φ(‖v‖Lp(Ωs)), v ∈W 1,p(Ωs).

In view of (10), for every s ∈ N and for every v ∈W 1,p(Ωs), inequality (6) holds with constants c3
and c4 depending only on p, β1, β2, and ‖a‖Lp/(p−1)(Ω). We also note that if conditions (∗1) and (∗2)
of Theorem 1 are satisfied, then, for every s ∈ N, the functional Gs is weakly continuous. Next,
assume that the following condition is satisfied:

(∗) there exists a nonnegative bounded measurable function b : Ω → R such that, for every

open cube Q ⊂ Ω, we have meas(Q ∩ Ωs) →

∫

Q
b dx.

Now, let G : W 1,p(Ω) → R be the functional such that, for every function v ∈W 1,p(Ω), we have

G(v) =

∫

Ω

b{|v|p + av}dx+Φ(‖b1/pv‖Lp(Ω)). (11)

Using condition (∗) and the continuity of the function Φ, we find that, for the sequence of func-
tionals Gs, condition (∗5) of Theorem 1 is satisfied.

We remark that if the domain Ω is Lipschitz and the domains Ωs have a certain periodically
perforated structure, then conditions (∗1) and (∗2) of Theorem 1 are satisfied along with condi-
tion (∗) in which the function b takes a constant positive value. Obviously, for such a function b,
the functional G defined by (11) is strictly convex if the function Φ is nondecreasing and convex.

We emphasize the importance of condition (∗6) of Theorem 1 for its conclusion. In [9], we
gave an example where all the conditions of Theorem 1 are satisfied except for condition (∗6) but
the conclusion of this theorem does not hold on the whole. We note that, in this example, for
an arbitrary pre-assigned positive ε, the measure of the set where the lower and upper constraints
coincide does not exceed ε. Here is a simple example where condition (∗6) of Theorem 1 is satisfied.

Example 2. Let Ω = {x ∈ R
n : |x| < 1}, and let, for every x ∈ Ω, we have ϕ(x) = 0 and

ψ(x) = |x|2(1 − |x|2). In view of these assumptions, we have ϕ,ψ ∈
◦

W 1,p(Ω) and ϕ 6 ψ in Ω. In
addition, for every x ∈ Ω \ {0}, (ψ−ϕ)(x) > 0. Thus, condition (∗6) of Theorem 1 is satisfied. We

observe that, in the case considered here, we have V (ϕ,ψ) = {v ∈
◦

W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}.
Hence, for p = 2, the set V (ϕ,ψ) has the same form as the set defined by bilateral constraints
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in [22]. We also note that if ω is a domain of Rn such that ω ⊂ Ω and the origin is contained in ω,
then there is no number δω > 0 such that ψ−ϕ > δω a.e. in ω. We remark in this connection that
it was shown in [22] that the G-convergence of a sequence of linear continuous divergence operators

As :
◦

W 1,2(Ω) → W−1,2(Ω) to an operator A :
◦

W 1,2(Ω) → W−1,2(Ω) of the same form implies
the weak convergence of solutions of variational inequalities with the operators As and the set of

constraints K(ψ1, ψ2) = {v ∈
◦

W 1,2(Ω) : ψ1 6 v 6 ψ2 a.e. in Ω} to the solution of the corresponding
variational inequality with the operator A and the same set of constraints. At the same time, it
was assumed in [22] that ψ1, ψ2 ∈ L2(Ω) and, for every subdomain ω ⊂⊂ Ω, there exist a number

δω > 0 and functions ψω
1 , ψ

ω
2 ∈

◦

W 1,2(Ω) such that ψ1 6 ψω
1 6 ψω

2 6 ψ2 in Ω and ψω
2 − ψω

1 > δω

in ω. Obviously, the functions ϕ and ψ defined at the beginning of this example do not satisfy the
assumption given in [22].

We now discuss condition (∗′) of Theorem 2. This condition is essential for the conclusion of
Theorem 2. In [10], we construct an example where all the conditions of Theorem 2 are satisfied
except for condition (∗′) but the conclusion of this theorem does not hold. We call condition (∗′) of
Theorem 2 the exhaustion condition of the domain Ω by the domains Ωs. This condition plays an
important role in the study of the convergence of solutions of variational problems with irregular
unilateral and bilateral constraints in variable domains. In this regard, in addition to the present
paper, see [23, 24]. We used the same exhaustion condition earlier in [6] for the investigation of
both a convergence of sets in variable Sobolev spaces and the coercivity of the Γ-limit of functionals
defined on these spaces. Below, we show how such questions are solved for sequences of sets
Us ⊂W 1,p(Ωs) and the functionals Fs +Gs. Before we do this, let us give some useful results.

Proposition 2. Condition (∗′) of Theorem 2 is equivalent to the following condition:

if v ∈ L1(Ω) and lim inf
s→∞

∫

Ωs

|v|dx = 0, then v = 0 a.e. in Ω. (12)

P r o o f. Assume that condition (∗′) of Theorem 2 is satisfied. Let v ∈ L1(Ω), and let

lim inf
s→∞

∫

Ωs

|v|dx = 0.

Fixing an arbitrary ε > 0, we find that there exists an increasing sequence {sj} ⊂ N such that

∀j ∈ N,

∫

Ωsj

|v|dx 6
ε

2j
. (13)

Setting Ω′ =
∞
⋃

j=1
Ωsj , by condition (∗′) of Theorem 2, we have meas(Ω \ Ω′) = 0. Then

∫

Ω

|v|dx =

∫

Ω′

|v|dx 6

∞
∑

j=1

∫

Ωsj

|v|dx.

This and (13) imply that
∫

Ω

|v|dx 6 ε.
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Hence, in view of the arbitrariness of ε, we conclude that v = 0 a.e. in Ω. Thus, condition (12) is
satisfied.

Conversely, assume that condition (12) is satisfied. Let {mj} be an increasing sequence in N.

Setting E0 = Ω \
∞
⋃

j=1
Ωmj , we suppose that measE0 > 0. Let χ : Ω → R be the characteristic

function of the set E0. Obviously, χ ∈ L1(Ω) and

∫

Ωmj

χdx = 0 for every j ∈ N. Therefore,

lim inf
s→∞

∫

Ωs

χdx = 0.

Then, by condition (12), we have χ = 0 a.e. in Ω. Hence, there exists a set E ⊂ Ω of measure zero
such that, for every x ∈ Ω \E, we have χ(x) = 0. Then, fixing x ∈ E0 \E, we obtain χ(x) = 0. On
the other hand, by the definition of the function χ, we have χ(x) = 1. The obtained contradiction
proves that measE0 = 0. Thus, condition (∗′) of Theorem 2 is satisfied. �

Proposition 3. Let condition (∗′) of Theorem 2 be satisfied. Then the following condition is

satisfied:

if v ∈W 1,p(Ω) and lim inf
s→∞

‖qsv‖Lp(Ωs) = 0, then v = 0 a.e. in Ω. (14)

P r o o f. Let v ∈W 1,p(Ω) and lim inf
s→∞

‖qsv‖Lp(Ωs) = 0. Setting w = |v|p, we have

w ∈ L1(Ω), lim inf
s→∞

∫

Ωs

w dx = 0. (15)

Since, by assumption, condition (∗′) of Theorem 2 is satisfied, we deduce from Proposition 2 that
condition (12) is satisfied. The latter condition along with (15) implies that w = 0 a.e. in Ω.
Hence, v = 0 a.e. in Ω. Thus, condition (14) is satisfied. �

Proposition 4. Let condition (∗1) of Theorem 1 be satisfied, and assume that there exists

a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of

norms ‖ls‖ is bounded and, for every s ∈ N and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e.

in Ωs. Let, for every s ∈ N, ws ∈ W 1,p(Ωs). Assume that the sequence of norms ‖ws‖W 1,p(Ωs) is

bounded. Then there exist an increasing sequence {sj} ⊂ N and a function w ∈ W 1,p(Ω) such that

lsjwsj → w weakly in W 1,p(Ω), lsjwsj → w a.e. in Ω, and ‖wsj − qsjw‖Lp(Ωsj )
→ 0.

P r o o f. The properties of the operators ls along with the boundedness of the sequence of
norms ‖ws‖W 1,p(Ωs) imply that the sequence {lsws} is bounded in W 1,p(Ω) and

∀s ∈ N, qs(lsws) = ws a.e. in Ωs. (16)

Since the space W 1,p(Ω) is reflexive and the sequence {lsws} is bounded in W 1,p(Ω), there exist
an increasing sequence {s̄k} ⊂ N and a function w ∈ W 1,p(Ω) such that ls̄kws̄k → w weakly
in W 1,p(Ω). Hence, by condition (∗1) of Theorem 1, we have ls̄kws̄k → w strongly in Lp(Ω).
Therefore, there exists an increasing sequence {sj} ⊂ {s̄k} such that lsjwsj → w a.e. in Ω. It is
clear that lsjwsj → w weakly inW 1,p(Ω) and lsjwsj → w strongly in Lp(Ω). The latter convergence
along with (16) implies that ‖wsj − qsjw‖Lp(Ωsj

) → 0. �
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Proposition 5. Let condition (∗1) of Theorem 1 be satisfied, and assume that there exists

a sequence of linear continuous operators ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of

norms ‖ls‖ is bounded and, for every s ∈ N and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e.

in Ωs. In addition, assume that condition (∗′) of Theorem 2 is satisfied. Let, for every s ∈ N,

ws ∈W 1,p(Ωs), and let w ∈W 1,p(Ω). Assume that the sequence of norms ‖ws‖W 1,p(Ωs) is bounded

and ‖ws − qsw‖Lp(Ωs) → 0. Then lsws → w weakly in W 1,p(Ω).

P r o o f. The properties of the operators ls imply that the sequence {lsws} is bounded
in W 1,p(Ω) and

∀s ∈ N, qs(lsws) = ws a.e. in Ωs. (17)

Assume that the sequence {lsws} does not converge weakly to w in W 1,p(Ω). Then there exist a
functional g ∈ (W 1,p(Ω))∗, a number ε > 0, and an increasing sequence {s̄k} ⊂ N such that

∀k ∈ N, |〈g, ls̄kws̄k〉 − 〈g,w〉| > ε. (18)

Since the space W 1,p(Ω) is reflexive and the sequence {lsws} is bounded in W 1,p(Ω), there exist an
increasing sequence {sj} ⊂ {s̄k} and a function w0 ∈W 1,p(Ω) such that

lsjwsj → w0 weakly in W 1,p(Ω). (19)

Hence, by condition (∗1) of Theorem 1, we have lsjwsj → w0 strongly in Lp(Ω). Then, in view
of (17), we have ‖wsj − qsjw0‖Lp(Ωsj )

→ 0. This and the assumption that ‖ws − qsw‖Lp(Ωs) → 0

imply that ‖qsj(w − w0)‖Lp(Ωsj )
→ 0. Consequently, lim inf

s→∞
‖qs(w − w0)‖Lp(Ωs) = 0. From this

equality, condition (∗′) of Theorem 2, and Proposition 3, we derive that w = w0 a.e. in Ω. Then, in
view of (19), we have lsjwsj → w weakly in W 1,p(Ω). However, this contradicts (18). The obtained
contradiction proves that lsws → w weakly in W 1,p(Ω). �

The following definition essentially is a particular case of Definition 5 in [6].

Definition 6. Let, for every s ∈ N, Us be a nonempty set inW 1,p(Ωs), and let U be a nonempty
set inW 1,p(Ω). We say that the sequence {Us} H-converges to the set U if the following conditions
are satisfied:

(a) for every function v ∈ U , there exists a sequence ws ∈ Us such that sup
s∈N

‖ws‖W 1,p(Ωs) < +∞

and ‖ws − qsv‖Lp(Ωs) → 0;

(b) for every sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, there exist an increasing

sequence {sj} ⊂ N and a function v ∈ U such that ‖vsj − qsjv‖Lp(Ωsj )
→ 0.

Proposition 6. Let condition (∗′) of Theorem 2 be satisfied. Then a sequence of nonempty

sets Us ⊂W 1,p(Ωs) may H-converge to only one nonempty set U ⊂W 1,p(Ω).

P r o o f. Assume that a sequence of nonempty sets Us ⊂W 1,p(Ωs) H-converges to nonempty
sets U ⊂ W 1,p(Ω) and V ⊂ W 1,p(Ω). Let w ∈ U . Since the sequence {Us} H-converges to the
set U , there exists a sequence ws ∈ Us such that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws−qsw‖Lp(Ωs) → 0.

Since the sequence {Us} H-converges to the set V , for the sequence {ws}, there exist an increasing
sequence {sj} ⊂ N and a function v ∈ V such that ‖wsj −qsjv‖Lp(Ωsj )

→ 0. This convergence along

with the convergence ‖ws−qsw‖Lp(Ωs) → 0 implies that ‖qsj(v−w)‖Lp(Ωsj
) → 0. Then, taking into

account condition (∗′) of Theorem 2 and Proposition 3, we find that w = v a.e. in Ω. Therefore,
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in view of the inclusion v ∈ V , we have w ∈ V . Consequently, U ⊂ V . In the same way, we prove
that V ⊂ U . Thus, U = V . �

Remark 1. In the proof of Proposition 6, concerning the considered sets inW 1,p(Ω), we implicitly
assumed that functions equivalent to elements of these sets belong to the same sets.

Proposition 7. Assume that the embedding ofW 1,p(Ω) into Lp(Ω) is compact and the sequence

of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω). Then the sequence {W 1,p(Ωs)}
H-converges to the set W 1,p(Ω).

P r o o f. Let v ∈ W 1,p(Ω). For every s ∈ N, we set ws = qsv. Obviously, for every s ∈ N, we
have ws ∈W 1,p(Ωs). It is also easy to see that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, taking a sequence vs ∈ W 1,p(Ωs) such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, in view of the assump-

tions of this proposition, we deduce from Proposition 4 that there exist an increasing sequence
{sj} ⊂ N and a functon v ∈ W 1,p(Ω) such that ‖vsj − qsjv‖Lp(Ωsj )

→ 0. Now, by Definition 6, we

conclude that the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω). �

We note that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 6. This
is justified by the following simple example.

Example 3. Assume that Ω is a Lipschitz domain. Then the embedding of W 1,p(Ω) into
Lp(Ω) is compact. Let B be a closed ball in R

n such that B ⊂ Ω, and assume that, for every
s ∈ N, Ωs = Ω \ B. In view of the known extension results for Sobolev spaces (see, for instance,
[25, Theorem 7.25]), there exists a linear continuous operator l : W 1,p(Ω\B) →W 1,p(Ω) such that,
for every function v ∈ W 1,p(Ω \ B), we have lv = v in Ω \ B. Setting, for every s ∈ N, ls = l, we
find that the sequence {ls} has all the properties described in Definition 3. Therefore, the sequence
of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω). Thus, Proposition 7 implies that
the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω). Now, let y and r be the center and the
radius of the ball B, respectively, and let B0 = {x ∈ R

n : |x− y| 6 r/2}. We define

U = {v ∈W 1,p(Ω) : v = 0 a.e. in B0}.

It is easy to see that, for every function v ∈ U , there exists a sequence ws ∈ W 1,p(Ωs) such that
sup
s∈N

‖ws‖W 1,p(Ωs) < +∞ and ‖ws−qsv‖Lp(Ωs) → 0. Next, we fix an arbitrary sequence vs ∈W
1,p(Ωs)

such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. Since the sequence {W 1,p(Ωs)} H-converges to the set W 1,p(Ω),

there exist an increasing sequence {sj} ⊂ N and a function v ∈W 1,p(Ω) such that

‖vsj − qsjv‖Lp(Ωsj )
→ 0. (20)

Let ϕ be a function in C∞
0 (Ω) such that 0 6 ϕ 6 1 in Ω, ϕ = 1 in B0, and ϕ = 0 in Ω \B. We have

vϕ ∈ W 1,p(Ω). Then, since ϕ = 1 in B0, we have v − vϕ ∈ U . Moreover, taking into account that
ϕ = 0 in Ω\B, we derive from (20) that ‖vsj − qsj(v− vϕ)‖Lp(Ωsj )

→ 0. Now, we conclude that the

sequence {W 1,p(Ωs)} H-converges to the set U . Obviously, U 6= W 1,p(Ω). It remains to observe

that Ω \
∞
⋃

s=1
Ωs = B. Hence, meas

(

Ω \
∞
⋃

s=1
Ωs

)

> 0. Consequently, condition (∗′) of Theorem 2 is

not satisfied.

We now proceed to a more delicate question on the H-convergence of sets defined by bilateral
constraints.
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Proposition 8. Assume that conditions (∗1) and (∗2) of Theorem 1 and condition (∗′) of

Theorem 2 are satisfied. Let ϕ,ψ : Ω → R, and let ϕ 6 ψ a.e. in Ω. Let, for every s ∈ N,

Us = {v ∈ W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs}, and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}.
Assume that the set U is nonempty. Then the sequence {Us} H-converges to the set U .

P r o o f. Let v ∈ U . For every s ∈ N, we set ws = qsv. Obviously, for every s ∈ N, we have
ws ∈ Us. It is also easy to see that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, we fix an arbitrary sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. Since con-

dition (∗2) of Theorem 1 is satisfied, there exists a sequence of linear continuous operators ls :
W 1,p(Ωs) → W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and, for every s ∈ N and for
every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs. Then, taking into account that condition (∗1)
of Theorem 1 is satisfied, we derive from Proposition 4 that there exist an increasing sequence
{sj} ⊂ N and a function w ∈W 1,p(Ω) such that lsjvsj → w a.e. in Ω and ‖vsj − qsjw‖Lp(Ωsj )

→ 0.

Let us show that ϕ 6 w 6 ψ a.e. in Ω. Since, for every s ∈ N, we have vs ∈ Us, there exists
a set E′ ⊂ Ω of measure zero such that, for every s ∈ N and for every x ∈ Ωs \ E

′, we have
ϕ(x) 6 vs(x) 6 ψ(x). In addition, by the properties of the operators ls, there exists a set E′′ ⊂ Ω
of measure zero such that, for every s ∈ N and for every x ∈ Ωs \E

′′, we have (lsvs)(x) = vs(x). It
is clear that

s ∈ N, x ∈ Ωs \ (E
′ ∪ E′′) =⇒ ϕ(x) 6 (lsvs)(x) 6 ψ(x). (21)

Since lsjvsj → w a.e. in Ω, there exists a set E′′′ ⊂ Ω of measure zero such that

∀x ∈ Ω \ E′′′, (lsjvsj)(x) → w(x). (22)

Next, for every k ∈ N, we set E(k) = Ω \
∞
⋃

j=k

Ωsj . In view of condition (∗′) of Theorem 2, for every

k ∈ N, we have measE(k) = 0. Therefore, setting E =
∞
⋃

k=1

E(k), we have measE = 0. Now, let

x ∈ Ω \ (E′ ∪ E′′ ∪ E′′′ ∪ E). We fix an arbitrary ε > 0. Since x ∈ Ω \ E′′′, by (22), we have
(lsjvsj)(x) → w(x). Consequently, there exists k ∈ N such that

j ∈ N, j > k =⇒ |(lsjvsj)(x) − w(x)| 6 ε. (23)

Since x ∈ Ω \ E, there exists j ∈ N, j > k, such that x ∈ Ωsj . Then we derive from (21) and (23)
that ϕ(x)− ε 6 w(x) 6 ψ(x) + ε. Hence, in view of the arbitrariness of ε, we obtain the inequality
ϕ(x) 6 w(x) 6 ψ(x). Therefore, ϕ 6 w 6 ψ a.e. in Ω. Then w ∈ U . Thus, we have established that,
for every sequence vs ∈ Us such that sup

s∈N
‖vs‖W 1,p(Ωs) < +∞, there exist an increasing sequence

{sj} ⊂ N and a function w ∈ U such that ‖vsj − qsjw‖Lp(Ωsj )
→ 0.

We now conclude that the sequence {Us} H-converges to the set U . �

We note that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 8. This
is justified by the following example.

Example 4. Assume that the domain Ω and the sequence of domains Ωs are the same as
in Example 3. Then conditions (∗1) and (∗2) of Theorem 1 are satisfied but condition (∗′) of
Theorem 2 is not satisfied. Let ϕ : Ω → R be the function such that, for every x ∈ Ω, ϕ(x) = 0.
Moreover, let ψ : Ω → R be the function such that

ψ(x) =

{

0 if x ∈ B,

1 if x ∈ Ω \B.
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Obviously, ϕ 6 ψ in Ω. Let, for every s ∈ N, Us = {v ∈ W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs},
and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}. Clearly, the set U is nonempty. Thus, all
the conditions of Proposition 8 are satisfied except for condition (∗′) of Theorem 2. At the same
time, the sequence {Us} does not H-converge to the set U . In fact, suppose that the sequence {Us}
H-converges to the set U . Then, taking the sequence vs ∈ W 1,p(Ωs) such that, for every s ∈ N,
vs = 1 in Ωs, we find that there exist an increasing sequence {sj} ⊂ N and a function v ∈ U such

that ‖vsj − qsjv‖Lp(Ωsj )
→ 0. Hence, v = 1 a.e. in Ω \ B. Therefore, v − 1 ∈

◦

W 1,p(Ω). Moreover,

since v ∈ U , we have v = 0 a.e. in B. Thus, |∇v| = 0 a.e. in Ω. Then, fixing a number r such

that 1 < r < min{p, n} and taking into account that v − 1 ∈
◦

W 1,r(Ω), we apply the corresponding
Sobolev inequality for the function v − 1 and find that v = 1 a.e. in Ω. However, this contradicts
the fact that v = 0 a.e. in B. The obtained contradiction proves that the sequence {Us} does not
H-converge to the set U .

Although, in the general case, condition (∗′) of Theorem 2 is essential for the H-convergence
of sets defined by bilateral constraints, in the case of regular constraints, this condition does not
play any role for the H-convergence of the corresponding sets. We demonstrate this by proving the
following result.

Proposition 9. Assume that conditions (∗1) and (∗2) of Theorem 1 are satisfied. Let ϕ,ψ ∈
W 1,p(Ω), and let ϕ 6 ψ a.e. in Ω. Let, for every s ∈ N, Us = {v ∈W 1,p(Ωs) : ϕ 6 v 6 ψ a.e. in Ωs},
and let U = {v ∈ W 1,p(Ω) : ϕ 6 v 6 ψ a.e. in Ω}. Then the sequence {Us} H-converges to the

set U .

P r o o f. As in the proof of Proposition 8, we establish that, for every function v ∈ U , there
exists a sequence ws ∈ Us such that sup

s∈N
‖ws‖W 1,p(Ωs) < +∞ and ‖ws − qsv‖Lp(Ωs) → 0.

Next, we fix an arbitrary sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞. In view of

condition (∗2) of Theorem 1, there exists a sequence of linear continuous operators ls :W
1,p(Ωs) →

W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and

∀s ∈ N, qs(lsvs) = vs a.e. in Ωs. (24)

It is easy to see that the sequence {lsvs} is bounded in W 1,p(Ω). For every s ∈ N, we set

zs = min{max{lsvs, ϕ}, ψ}.

We have {zs} ⊂ U and the sequence {zs} is bounded in W 1,p(Ω). Moreover, using (24) and the
inclusions vs ∈ Us, we establish that

∀s ∈ N, qszs = vs a.e. in Ωs. (25)

Using the reflexivity of the space W 1,p(Ω), the boundedness of the sequence {zs} in W 1,p(Ω), and
condition (∗1) of Theorem 1, we find that there exist an increasing sequence {sj} ⊂ N and a
function v ∈W 1,p(Ω) such that

zsj → v strongly in Lp(Ω) (26)

and zsj → v a.e. in Ω. The latter limit relation along with the inclusion {zsj} ⊂ U implies
that v ∈ U . Finally, we derive from (25) and (26) that ‖vsj − qsjv‖Lp(Ωsj )

→ 0. Thus, we have

established that, for every sequence vs ∈ Us such that sup
s∈N

‖vs‖W 1,p(Ωs) < +∞, there exist an

increasing sequence {sj} ⊂ N and a function v ∈ U such that ‖vsj − qsjv‖Lp(Ωsj
) → 0.
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We now conclude that the sequence {Us} H-converges to the set U . �

Remark 2. Concerning some notions of convergence of sets lying in the same space, see, for
instance, [26, 27]. Our notion of H-convergence of sets lying generally in variable spaces differs
from the notions of convergence of sets in the sense of Kuratowski [26, Section 29] and in the sense
of Mosco [27, Definition 1.1] even in the case of sets belonging to the same space.

We give one more result involving condition (∗′) of Theorem 2.

Proposition 10. Let conditions (∗1), (∗2), (∗4), and (∗5) of Theorem 1 be satisfied. In addi-

tion, let condition (∗′) of Theorem 2 be satisfied. Then there exist positive constants b1 and b2 such

that, for every function v ∈W 1,p(Ω), we have (F +G)(v) > b1‖v‖
p
W 1,p(Ω)

− b2.

P r o o f. By condition (∗2) of Theorem 1, there exists a sequence of linear continuous operators
ls : W 1,p(Ωs) → W 1,p(Ω) such that the sequence of norms ‖ls‖ is bounded and, for every s ∈ N

and for every v ∈ W 1,p(Ωs), we have qs(lsv) = v a.e. in Ωs. We set λ = sup
s∈N

‖ls‖. It is not

difficult to find that λ is a real number such that λ > 1. Next, let v ∈ W 1,p(Ω). By virtue of
condition (∗4) of Theorem 1, there exists a sequence ws ∈W 1,p(Ωs) such that ‖ws− qsv‖Lp(Ωs) → 0
and Fs(ws) → F (v). The first of these limit relations and condition (∗5) of Theorem 1 imply that
Gs(ws) → G(v). Thus,

(Fs +Gs)(ws) → (F +G)(v). (27)

In view of (7), we have

∀s ∈ N, (Fs +Gs)(ws) > c5‖ws‖
p
W 1,p(Ωs)

− c6. (28)

This along with (27) implies that the sequence of norms ‖ws‖W 1,p(Ωs) is bounded. Now, since condi-
tion (∗1) of Theorem 1 and condition (∗′) of Theorem 2 are satisfied, we deduce from Proposition 5
that lsws → v weakly in W 1,p(Ω). Therefore,

lim inf
s→∞

‖lsws‖W 1,p(Ω) > ‖v‖W 1,p(Ω). (29)

Moreover, we have
∀s ∈ N, ‖lsws‖W 1,p(Ω) 6 λ‖ws‖W 1,p(Ωs). (30)

From (27)–(30), we derive that (F +G)(v) > c5λ
−p‖v‖p

W 1,p(Ω)
− c6. �

We observe that condition (∗′) of Theorem 2 is essential for the conclusion of Proposition 10.
In this regard, see [10, Example 4.3].

We complete the exposition of the results related to condition (∗′) of Theorem 2 with the
following proposition.

Proposition 11. Assume that c > 0 and, for every open set H of Rn such that H ⊂ Ω, we
have lim inf

s→∞
meas(H ∩ Ωs) > cmeasH. Then condition (∗′) of Theorem 2 is satisfied.

Concerning the proof of this result, see, for instance, [10]. We also remark that the condition
of Proposition 11 is satisfied in the case where the domains Ωs have a perforated structure of the
same kind as the structure of the domains considered in [16, Section 2].

Finally, we note that condition (∗′′) of Theorem 2 is also important for the conclusion of this
theorem. In this regard, see [10, Example 4.4]. Obviously, condition (∗′′) of Theorem 2 is satisfied
if all the functions µs are zero in the corresponding domains or if, for instance, for every s ∈ N, we
have µs = αsµ|Ωs , where {αs} ⊂ [0,+∞), αs → 0, and µ is a nonnegative function in L1(Ω).
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4. Conclusion

In this paper, we have formulated and have discussed some results on the convergence of
sequences of minimizers and minimum values of functionals Fs + Gs : W 1,p(Ωs) → R on sets
of functions defined by bilateral constraints in domains Ωs. These domains are assumed to be
contained in a bounded domain Ω of Rn. The functionals Fs are integral and convex, and their
integrands satisfy the bilateral estimate c1|ξ|

p − µs(x) 6 fs(x, ξ) 6 c2|ξ|
p + µs(x) for almost every

x ∈ Ωs and for every ξ ∈ R
n, where c1 and c2 are positive constants and µs are nonnegative func-

tions such that the sequence of norms ‖µs‖L1(Ωs) is bounded. The functionals Gs are assumed to
be weakly continuous on the corresponding Sobolev spaces. They are generally not integral and
play a subordinate role.

We have considered two cases: the case of regular constraints, i.e., constraints lying in the
Sobolev space W 1,p(Ω), and the case where the lower constraint is zero and the upper constraint is
an arbitrary nonnegative function. In both cases, a certain connection of the spaces W 1,p(Ωs) with
the spaceW 1,p(Ω), the Γ-convergence of the functionals Fs, and a convergence of the functionals Gs

are essentially used. At the same time, each of these cases has a distinctive feature. In the first
case, it is required that the difference between the upper and lower constraints be positive almost
everywhere. In the second case, this requirement is absent. However, in the latter case, it is
assumed that ‖µs‖L1(Ωs) → 0 and it is required that the exhaustion condition of the domain Ω by
the domains Ωs be satisfied.

We have given a series of results involving the exhaustion condition. In particular, we have
obtained an equivalent statement of this condition and, using it, have proved the H-convergence of
sets of functions defined by bilateral (generally irregular) constraints in the domains Ωs.

Acknowledgements

This work was supported by the Program of the Ural Branch of the Russian Academy of Sciences
“Current Problems in Algebra, Analysis, and the Theory of Dynamic Systems with Applications
to the Control of Complex Objects” (project “Development of New Analytic, Numerical, and
Asymptotic Methods for Problems of Mathematical Physics and Applications to Signal Processing”)
and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27,
2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal
University).

REFERENCES

1. De Giorgi E., Franzoni T. Su un tipo di convergenza variazionale // Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. (8), 1975. Vol. 58, no. 6. P. 842–850.

2. Zhikov V.V. Questions of convergence, duality, and averaging for functionals of the calculus of varia-
tions // Math. USSR-Izv., 1984. Vol. 23, no. 2. P. 243–276. DOI: 10.1070/IM1984v023n02ABEH001466

3. Dal Maso G. An introduction to Γ-convergence. Boston: Birkhäuser, 1993. 352 p. DOI: 10.1007/978-
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