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Abstract: In the class of functions analytic in the annulus Cr := {z ∈ C : r < |z| < 1} with bounded Lp-

norms on the unit circle, we study the problem of the best approximation of the operator taking the nontangential

limit boundary values of a function on the circle Γr of radius r to values of the derivative of the function on the

circle Γρ of radius ρ, r < ρ < 1, by bounded linear operators from Lp(Γr) to Lp(Γρ) with norms not exceeding a

number N . A solution of the problem has been obtained in the case when N belongs to the union of a sequence

of intervals. The related problem of optimal recovery of the derivative of a function from boundary values of

the function on Γρ given with an error has been solved.
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Introduction

The paper is devoted to studying a number of related extremal problems for the differentiation
operator on the class of functions analytic in an annulus. Similar problems for the analytic
continuation operator and for the differentiation operator on the class of functions analytic in a
strip were solved earlier in [1] and [2], respectively. In the present paper, we follow the notation and
use some auxiliary statements from [1, 2].

Let Cr := {z ∈ C : r < |z| < 1} be the annulus centered at the origin of internal radius r and
external radius 1. We denote by A(Cr) the set of functions analytic in the annulus Cr. For a
function f ∈ A(Cr) and a number ρ, r < ρ < 1, we define the p-average of the function f on the
circle Γρ := {z ∈ C : |z| = ρ} by the equality

Mp(f, ρ) := ‖f‖Lp(Γρ) =











(

1

2π

∫ 2π

0
|f(ρeit)|p dt

)1/p

, 1 ≤ p < ∞,

max
{

|f(ρeit)| : t ∈ [0, 2π]
}

, p = ∞.

Let Hp = Hp(Cr) be the Hardy space of functions f ∈ A(Cr) such that

sup {Mp(f, ρ) : r < ρ < 1} < +∞.

As is well known, for an arbitrary function f ∈ Hp, nontangential limit boundary values exist almost
everywhere on the boundary Γr

⋃

Γ1. We denote these values by f(reit) and f(eit). These functions
belong to Lp(Γr) and Lp(Γ1), respectively.
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2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
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In the Hardy space Hp, we consider the class Q = Qp
r of functions f whose boundary values on

the circle Γ1 satisfy the inequality Mp(f, 1) ≤ 1.
The problem of the best approximation of an unbounded linear operator by linear bounded

operators on a class of elements of a Banach space appeared in 1965 in investigations of Stechkin [4].
In his 1967 paper [4], he gave a statement of the problem, presented the first principal results, and
solved the problem for differentiation operators of small orders. Detailed information about studies of
Stechkin’s problem and related extremal problems can be found in Arestov’s review paper [3]. In the
present paper, we consider the problem of the best approximation of the (first-order) differentiation
operator for a function on the circle Γρ by linear bounded operators on the class Q of functions
analytic in the annulus Cr. The precise statement of the problem is as follows.

Problem 1. Let L(N) be the set of linear bounded operators from Lp(Γr) to Lp(Γρ) with norm
‖T‖ = ‖T‖Lp(Γr)7→Lp(Γρ) not exceeding a number N > 0. The quantity

U(T ) := sup
{

Mp(f ′ − Tf, ρ) : f ∈ Q
}

is the deviation of an operator T ∈ L(N) from the differentiation operator on the class Q. The
quantity

E(N) := inf {U(T ) : T ∈ L(N)} (0.1)

is the best approximation of the differentiation operator by the set of bounded operators L(N) on
the class Q. The problem is to calculate the quantity E(N) and to find an extremal operator at
which the infimum in (0.1) is attained.

Problem 1 is closely interconnected with a number of extremal problems. One of them is the
following problem of calculating the modulus of continuity of the differentiation operator on a class.

Problem 2. The function

ω(δ) = sup
{

Mp(f ′, ρ) : f ∈ Q, Mp(f, r) ≤ δ
}

(0.2)

of real variable δ ∈ [0,+∞) is called the modulus of continuity of the differentiation operator on the
class Q. The problem is to calculate the quantity ω(δ) and to find an extremal function (a sequence
of functions) at which the supremum in (0.2) is attained.

Define
∆(N) := sup {ω(δ)−Nδ : δ ≥ 0} , N > 0;

l(δ) := inf {E(N) +Nδ : N > 0} , δ ≥ 0.

The following statement, which connects (0.1) and (0.2), is a special case of Stechkin’s theorem [5].

Theorem A. The following inequalities hold:

E(N) ≥ ∆(N), N > 0; (0.3)

ω(δ) ≤ l(δ), δ ≥ 0. (0.4)

Definition (0.2) also implies that the sharp inequality

Mp(f ′, ρ) ≤ Mp(f, 1)ω

(

Mp(f, r)

Mp(f, 1)

)

is valid for functions from the space Hp(Cr).
Problems of recovering values of an operator on elements of a class lying in the domain of an

operator from some information about the elements of the class given with a known error arise in
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different areas of mathematics and have been well studied. The recovery is implemented by using
some set R of operators. As a rule, one of the following sets of mappings is taken for R: either
the set O of all single-valued mappings or the set B of bounded operators or the set L of linear
operators. Monograph [6] is devoted to various problems of optimal recovery, in particular, optimal
recovery of derivatives on classes of analytic functions.

Problems 1 and 2 are related to the following optimal recovery problem for the derivative of a
function analytic in an annulus from boundary values (on one of the boundary circles) given with
an error.

Problem 3. For a number δ ≥ 0 and an operator T ∈ R, define

U(T, δ) = sup
{

Mp(f ′ − Tg, ρ) : f ∈ Q, g ∈ Lp(Γr), M
p(f − g, r) ≤ δ

}

.

Then,

ER(δ) = inf {U(T, δ) : T ∈ R} (0.5)

is the value of the best (optimal) recovery of the differentiation operator (the derivative of an
analytic function) by recovery methods R on functions of the class Q from their boundary values
on Γr given with an error δ. The problem is to calculate the quantity E(δ) and to find an optimal
recovery method, i.e., an operator at which the infimum in (0.5) is attained.

The following theorem contains a refinement of inequality (0.4); this theorem is a special case
of a more general statement connecting the problem on the modulus of continuity of an operator
and Stechkin’s problem with optimal recovery problems (see [3]).

Theorem B. The following inequalities hold:

ω(δ) ≤ EO(δ) ≤ EL(δ) = EB(δ) ≤ l(δ), δ ≥ 0. (0.6)

1. Main results

We define a (convolution) operator T 1
n = T 1

n [ρ, r], n ∈ Z, from Lp(Γr) to Lp(Γρ) by the formula

(T 1
nf)(ρe

ix) = e−ix 1

2π

∫ 2π

0
Λ1
n(x− t)f(reit) dt (1.1)

with the kernel

Λ1
n(t) = r−neint λ1

n(t), λ1
n(t) = λ1

n,0 + 2
∞
∑

k=1

λ1
n,k cos kt, (1.2)

λ1
n,0 =

ρn−1

ln r
(n ln ρ+ 1), λ1

n,k = ρn−1 (n+ k)ρk − (n− k)ρ−k

rk − r−k
, k ∈ N.

The following two theorems are the main results of the present paper.

Theorem 1. Assume that the parameter N has the representation

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|
,

in which n ∈ Z is such that

|n| ≥
π

ln2 r
sin−1

(

ln ρ

ln r
π

)

. (1.3)
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Then, quantity (0.1) satisfies the equality

E(N) =
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

In this case, the operator T 1
n defined by (1.1) and (1.2) is extremal in problem (0.1).

Theorem 2. Let δn = rn, where n ∈ Z satisfies condition (1.3). Then, quantities (0.2) and

(0.5) satisfy the relations

ω(δn) = EO(δn) = EL(δn) = EB(δn) = nρn−1. (1.4)

In this case, the linear bounded operator T 1
n defined by (1.1) and (1.2) is an optimal recovery method

in problem (0.5). The functions fn(z) = czn, |c| = 1, are extremal in problem (0.2).

2. Auxiliary statements

In addition, we introduce a (convolution) operator V 1
n = V 1

n [ρ, r], n ∈ Z, from Lp(Γ1) to Lp(Γρ)
by the formula

(V 1
n f)(ρe

ix) = e−ix 1

2π

∫ 2π

0
V1
n(x− t)f(reit) dt (2.1)

with the kernel

V1
n(t) = eint µ1

n(t), µ1
n(t) = µ1

n,0 + 2
∞
∑

k=1

µ1
n,k cos kt, (2.2)

µ1
n,0 =

ρn−1

ln r

(

n ln
r

ρ
− 1

)

, µ1
n,k = ρn−1 (n+ k)(ρ/r)k − (n− k)(ρ/r)−k

r−k − rk
, k ∈ N.

Lemma 1. For an arbitrary function f from the class Q and n ∈ Z, we have the equality

f ′(ρeix) = (T 1
nf)(ρe

ix) + (V 1
n f)(ρe

ix), x ∈ [0, 2π]. (2.3)

P r o o f. The function f in the annulus Cr is representable as the sum of the Laurent series

f(z) =
+∞
∑

k=−∞

ϕk z
k, z ∈ Cr.

Then, from the definitions of operators (1.1)–(1.2) and (2.1)–(2.2), we obtain the relations

(T 1
nf)(ρe

ix) + (V 1
n f)(ρe

ix) =

+∞
∑

k=−∞

(λ1
n,kr

k + µ1
n,k)ϕn+k e

i(n+k−1)x.

Now, from the equality
λ1
n,kr

k + µ1
n,k = (n + k)ρn+k−1,

the assertion of Lemma 1 follows. �

Lemma 2. Let a number n ∈ Z satisfy condition (1.3). Then the functions λ1
n and µ1

n defined by

(1.2) and (2.2) are of the same sign, which remains unchanged on the period, i.e., λ1
n(x)µ

1
n(x) > 0,

x ∈ [0, 2π].
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P r o o f. We introduce the notation

g±(x, y) :=

eny sin

(

ln ρ

ln r
π

)

cosh
xπ

ln r
± cos

(

ln ρ

ln r
π

) , y = ln ρ/r.

For the functions g±, the following assertion is true [2, Lemma 3]. Condition (1.3) is necessary and

sufficient for the functions
∂g±
∂y

to maintain sign for arbitrary x ∈ R and 0 < y < ln 1/r. Moreover,

for the functions

Λ±(x) := −π ln−1 re−ny
+∞
∑

k=−∞

g±(x+ 2πk, y), y = ln ρ/r,

the following equalities hold [1, Lemma 1]:

Λ±(x) = λ±
0 + 2

∞
∑

k=1

λ±
k cos kx,

λ+
0 =

ln ρ

ln r
, λ+

k =
ρk − ρ−k

rk − r−k
, λ−

0 =
ln r/ρ

ln r
, λ−

k =
(ρ/r)k − (ρ/r)−k

r−k − rk
.

Hence, for the functions λ1
n и µ1

n defined by equalities (1.2) и (2.2), we have

λ1
n(x) =

∂

∂ρ
(ρnΛ+(x)) = −

πrn

ρ ln r

+∞
∑

k=−∞

∂

∂y
g+(x+ 2πk, y),

µ1
n(x) =

∂

∂ρ
(ρnΛ−(x)) = −

πrn

ρ ln r

+∞
∑

k=−∞

∂

∂y
g−(x+ 2πk, y).

If n ∈ Z satisfies condition (1.3), then the right-hand sides of these equalities have the same sign,
which remains unchanged on the period. Lemma 2 is proved. �

Corollary 1. Let n ∈ Z satisfy condition (1.3). Then the equality |λ1
n,0|+ |µ1

n,0| = nρn−1 holds.

P r o o f. The proof follows from Lemma 2 and the chain of relations

|λ1
n,0|+ |µ1

n,0| =

∣

∣

∣

∣

1

2π

∫ 2π

0
λ1
n(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2π

∫ 2π

0
µ1
n(t) dt

∣

∣

∣

∣

=

=

∣

∣

∣

∣

1

2π

∫ 2π

0
λ1
n(t) dt+

1

2π

∫ 2π

0
µ1
n(t) dt

∣

∣

∣

∣

= |λ1
n,0 + µ1

n,0| = nρn−1.

�

Lemma 3. Let n ∈ Z satisfy condition (1.3). Then, for the norm and the deviations of the

operator T 1
n given by relations (1.1), the following equalities hold:

‖T 1
n‖ =

ρn−1 |n ln ρ+ 1|

rn| ln r|
, (2.4)

U(T 1
n) =

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

, (2.5)

U(T 1
n , r

n) = nρn−1. (2.6)
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P r o o f. Using the definition of the operator T 1
n and Lemma 2, we obtain the following upper

bound for the norm:

‖T 1
n‖ ≤ ‖Λ1

n‖L1(0,2π) =

∣

∣

∣

∣

1

2πrn

∫ 2π

0
λ1
n(t) dt

∣

∣

∣

∣

= r−n|λ1
n,0| =

ρn−1 |n ln ρ+ 1|

rn| ln r|
.

Now equality (2.4) follows from the lower bound due to the functions r−nfn(z) = cr−nzn, |c| = 1.

From equality (2.3) of Lemma 1, we obtain the representation

f ′(ρeix)− (T 1
nf)(ρe

ix) = (V 1
n f)(ρe

ix), x ∈ [0, 2π].

Then, from the definition of the deviation and taking into account that the inequality ‖f‖Lp(Γ1) ≤ 1
holds for functions f from the class Q , we obtain the estimate U(T 1

n) ≤ ‖V 1
n ‖. Arguing as in the first

part of the proof, we can obtain the equality ‖V 1
n ‖ = |µ1

n,0|. To complete the proof of equality(2.5),

we note that the deviation U(T 1
n) and the norm of the operator V 1

n are attained at the functions
fn(z) = czn, |c| = 1.

Finally, using the following standard reasoning, we show that equality (2.6) is true. For arbitrary
functions f ∈ Q and g ∈ Lp(Γr), we have

Mp(f ′ − T 1
ng, ρ) ≤ Mp(f ′ − T 1

nf, ρ) +Mp(T 1
n(f − g), ρ) ≤ U(T 1

n) + ‖T 1
n‖M

p(f − g, r).

Then the equalities (2.4) and (2.5) and Corollary 1 imply the upper estimate

U(T 1
n , r

n) ≤ U(T 1
n) + ‖T 1

n‖ r
n = |µ1

n,0|+ |λ1
n,0| = nρn−1.

To obtain a lower bound, it is sufficient to consider f(z) = fn(z) = czn and g ≡ 0. The lemma is
proved. �

Lemma 4. For an arbitrary n ∈ Z, the following inequalities hold:

ω(rn) ≥ nρn−1, (2.7)

∆

(

ρn−1 |n ln ρ+ 1|

rn| ln r|

)

≥
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

. (2.8)

P r o o f. The function fn(z) = zn belongs to the class Q. Then the following inequality holds:

ω(rn) ≥ Mp(f ′
n, ρ) = nρn−1.

We have

∆(N) = sup {ω(δ) −Nδ : δ ≥ 0} ≥ ω(rn)−Nrn ≥ nρn−1 −Nrn.

Substituting

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|

into the latter inequality and using Corollary 1, we obtain inequality (2.8). Lemma 4 is proved. �
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3. Proof of the main results

P r o o f of Theorem 1. Assume that the parameter N has the representation

N =
ρn−1 |n ln ρ+ 1|

rn| ln r|
,

in which n ∈ Z satisfies (1.3). Combining inequalities (0.3) from Theorem A, (2.8) from Lemma 4,
and equality (2.5) from Lemma 3, we obtain the chain of relations

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

≤ ∆(N) ≤ E(N) ≤ U(T 1
n) =

ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

Hence,

E(N) =
ρn−1

| ln r|

∣

∣

∣

∣

n ln
r

ρ
− 1

∣

∣

∣

∣

.

This means that the operator T 1
n is extremal in Problem 1. Theorem 1 is proved. �

P r o o f of Theorem 2. Let δn = rn, where n ∈ Z satisfies condition (1.3). Combining
inequalities (0.6) from Theorem B, (2.7) from Lemma 4, and equality (2.6) from Lemma 3, we
obtain the chain of relations

nρn−1 ≤ ω(δn) ≤ EO(δn) ≤ EL(δn) = EB(δn) ≤ U(T 1
n , δn) = nρn−1.

Hence,
ω(δn) = EO(δn) ≤ EL(δn) = EB(δn) = nρn−1.

This means that the (bounded linear) operator T 1
n is extremal in Problem 3. Theorem 2 is proved. �

4. Generalization of the extremal operator and Theorem 1

It is proved in Lemma 2 that, if n ∈ Z satisfies condition (1.3), then the continuous 2π-periodic
functions λ1

n and µ1
n do not vanish on [0, 2π], more precisely, λ1

n(t)µ
1
n(t) > 0, t ∈ [0, 2π]. This means

that there exists an interval In (of positive length) defined by the equality

In =
{

γ ∈ R : (λ1
n(t) + γ)(µ1

n(t)− γ) > 0, t ∈ [0, 2π]
}

.

The interval In = (γ−n , γ
+
n ) has the boundary points

γ−n = max
t∈[0,2π]

min{−λ1
n(t), µ

1
n(t)}, γ+n = min

t∈[0,2π]
max{−λ1

n(t), µ
1
n(t)}

related by the inequality γ−n < 0 < γ+n . Let Sn be the interval [γ−n , γ
+
n ].

We define a (convolution) operator T 1
n,γ = T 1

n,γ [ρ, r], n ∈ Z, from Lp(Γr) to Lp(Γρ) by the
formula

(T 1
n,γf)(ρe

ix) = e−ix 1

2π

∫ 2π

0
Λ1
n,γ(x− t)f(reit) dt (4.1)

with the kernel
Λ1
n,γ(t) = r−neint

(

λ1
n(t) + γ

)

. (4.2)

The following statement is a generalization of Theorem 1.
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Theorem 3. Assume that the parameter N has the representation

N =
1

rn

∣

∣

∣

∣

ρn−1(n ln ρ+ 1)

ln r
+ γ

∣

∣

∣

∣

,

in which n ∈ Z satisfies (1.3) and γ ∈ Sn. Then, quantity (0.1) satisfies the equality

E(N) =

∣

∣

∣

∣

ρn−1(n ln(r/ρ)− 1)

ln r
− γ

∣

∣

∣

∣

.

In this case, the operator T 1
n,γ defined by (4.1) and (4.2) is extremal in problem (0.1).

P r o o f. The theorem can be proved by the scheme of the proof of Theorem 1. �

Remark 1. In the case when n ∈ Z satisfies (1.3) and γ ∈ Sn, the operators T 1
n,γ defined by

(4.1) and (4.2) are also extremal in Problem 3. However, these operators do not give solutions of
this problem in new cases. More precisely, the equality U(T 1

n,γ , r
n) = nρn−1 holds.
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