ON THE BEST APPROXIMATION OF THE INFINITESIMAL GENERATOR OF A CONTRACTION SEMIGROUP IN A HILBERT SPACE

Elena E. Berdysheva     (Department of Mathematics, Justus Liebig University Giessen, Germany)
Maria A. Filatova     (Ural Federal University; Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Ekaterinburg,, Russian Federation)

Abstract


Let \(A\) be the infinitesimal generator  of a strongly continuous contraction semigroup in a  Hilbert space \(H\).   We give an upper estimate for the best approximation of the operator \(A\) by bounded linear operators with a prescribed norm  in the space \(H\) on the class \(Q_2 = \{x\in \mathcal{D}(A^2) : \|A^2 x\| \leq 1\}\),  where \(\mathcal D(A^2)\) denotes the domain of \(A^2\).


Keywords


Contraction semigroup, Infinitesimal generator, Stechkin’s problem

Full Text:

PDF

References


Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems // Russian Math. Surveys, 1996. Vol. 51, no. 6. P. 1093–1126. DOI: 10.4213/rm1019

Arestov V.V., Gabushin V.N. Best approximation of unbounded operators by bounded operators // Russian Math. (Iz. VUZ), 1995. Vol. 39, no. 11. P. 38–63.

Arestov V.V., Filatova M.A. Best approximation of the differentiation operator in the space \(L_2\) on the semiaxis // J. Approx. Theory, 2014. Vol. 187. P. 65–81. DOI: 10.1016/j.jat.2014.08.001

Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A. Inequalities for derivatives and their applications. Kiev: Naukova Dumka, 2003. [in Russian]

Berdysheva E.E. On the best approximation of the differentiation operator in \(L_2(0,\infty)\) // East J. Approx. 1996. Vol. 2, no. 3. P. 281–287.

Grubb G. Distributions and Operators. NY: Springer Science and Business Media, 2008. 464 p. DOI: 10.1007/978-0-387-84895-2

Hardy G.H., Littlewood J.E., Pólya G. Inequalities. Cambridge University Press, 1934. 314 p.

Hille E., Phillips R.S. Functional Analysis and Semigroups. American Mathematical Society, 1957. 808 p.

Kato T. On an inequality of Hardy, Littlewood and Pólya // Adv. Math., 1971. Vol. 7. P. 217–218. DOI: 10.1016/S0001-8708(71)80002-6

Kato T. Perturbation Theory for Linear Operators. Verlag–Berlin–Heidelberg: Springer, 1995. 623 p. DOI: 10.1007/978-3-642-66282-9

Stechkin S.B. Best approximation of linear operators // Math. Notes. 1967. Vol. 1. P. 91–99. DOI: 10.1007/BF01268056




DOI: http://dx.doi.org/10.15826/umj.2017.2.006

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.