EVALUATION OF SOME NON-ELEMENTARY INTEGRALS INVOLVING SINE, COSINE, EXPONENTIAL AND LOGARITHMIC INTEGRALS: PART II

Victor Nijimbere     (School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada)

Abstract


The non-elementary integrals \(\mbox{Si}_{\beta,\alpha}=\int [\sin{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,\)  \(\beta\ge1,\) \(\alpha>\beta+1\) and \(\mbox{Ci}_{\beta,\alpha}=\int [\cos{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,\)  \(\beta\ge1,\)  \(\alpha>2\beta+1,\) where \(\{\beta,\alpha\}\in\mathbb{R},\) are evaluated in terms of the hypergeometric function  \(_{2}F_3\). On the other hand, the exponential integral \(\mbox{Ei}_{\beta,\alpha}=\int (e^{\lambda x^\beta}/x^\alpha) dx,\)  \(\beta\ge1,\)  \(\alpha>\beta+1\) is expressed in terms of \(_{2}F_2\). The method used to evaluate these integrals consists of expanding the integrand  as a Taylor series and integrating the series term by term.

Keywords


Non-elementary integrals; Sine integral; Cosine integral; Exponential integral; Logarithmic integral; Hyperbolic sine integral; Hyperbolic cosine integral; Hypergeometric functions

Full Text:

PDF

References


  1. Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, 1964. 1046 p.
  2. Chiccoli C., Lorenzutta S., Maino G. Concerning some integrals of the generalized exponential-integral function. Computers Math. Applic., 1992. Vol. 23, no. 11, P. 13–21. DOI: 10.1016/0898-1221(92)90065-P
  3. Chen X. Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab., 2004. Vol. 32, no. 4. P. 3248–3300. DOI: 10.1214/009117904000000513
  4. Marchisotto E.A., Zakeri G.-A. An invitation to integration in finite terms. College Math. J. , 1994. Vol. 25, no. 4. P. 295–308. DOI: 10.2307/2687614
  5. Nijimbere V. Evaluation of the non-elementary integral \(\int e^{\lambda x^\alpha} dx\), \(\alpha\ge2\), and other related integrals. Ural Math. J., 2017. Vol 3, no. 2. P. 130–142. DOI: 10.15826/umj.2017.2.014
  6. Nijimbere V. Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: Part I. Ural Math. J., 2018. Accepted for publication.
  7. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/
  8. Rahman M. Applications of Fourier transforms to generalized functions. Witt Press, 2011. 192 p.
  9. Rosenlicht M. Integration in finite terms. Amer. Math. Monthly , 1972. Vol 79, no. 9. P. 963–972. DOI: 10.2307/2318066
  10. Shore S.N. Blue sky and hot piles: the evolution of radiative transfer theory from atmospheres to nuclear reactors. Historia Mathematica, 2002. Vol. 29, no. 2. P. 463–489. DOI: 10.1006/hmat.2002.2360



DOI: http://dx.doi.org/10.15826/umj.2018.1.004

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.