### ASYMPTOTIC EXPANSION OF A SOLUTION FOR THE SINGULARLY PERTURBED OPTIMAL CONTROL PROBLEM WITH A CONVEX INTEGRAL QUALITY INDEX AND SMOOTH CONTROL CONSTRAINTS

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. *The Mathematical Theory of Optimal Processes * NY–London–Sydney: John Wiley & Sons Inc., 1962. VIII+360 p.

Krasovskii N.N. *Teoriya upravleniya dvizheniem. Lineinye sistemy * [Theory of Control of Motion. Linear Systems]. Moscow: Nauka, 1968. 476 p. (in Russian)

Lee E.B., Markus L. *Foundations of Optimal Control Theory. * NY–London–Sydney: John Wiley & Sons Inc., 1967. 576 p.

Vasil'eva A.B., Dmitriev M.G. Singular perturbations in optimal control problems. *J. of Soviet Mathematics, * 1986. Vol. 34, no. 3. P. 1579–1629. DOI: 10.1007/BF01262406

Kokotović P.V., Haddad A.H. Controllability and time-optimal control of systems with slow and fast models. *IEEE Trans. Automat. Control.* 1975. Vol. 20, no. 1. P. 111–113. DOI: 10.1109/TAC.1975.1100852

Dontchev A.L. *Perturbations, approximations and sensitivity analisis of optimal control systems. * Berlin–Heidelberg–New York–Tokio: Springer-Verlag, 1983. IV+161 p. DOI: 10.1007/BFb0043612

Kalinin A.I., Semenov K.V. The asymptotic optimization method for linear singularly perturbed systems with the multidimensional control. *Computational Mathematics and Mathematical Physics. * 2004. Vol. 44, no. 3. P. 407–417.

Danilin A.R., Parysheva Y.V. Asymptotics of the optimal cost functional in a linear optimal control problem. * Doklady Mathematics. * 2009. Vol. 80, no. 1. P. 478–481. DOI: 10.1134/S1064562409040073

Danilin A.R., Kovrizhnykh O.O. Time-optimal control of a small mass point without environmental resistance. * Doklady Mathematics. * 2013. Vol. 88, no. 1. P. 465–467. DOI: 10.1134/S1064562413040364

Shaburov A.A. Asymptotic expansion of a solution of a singularly perturbed optimal control problem in the space \(\mathbb{R}^n\) with an integral convex performance index. *Ural. Math. J.*, 2017. Vol. 3, no. 1. P. 68–75. DOI: 10.15826/umj.2017.1.005

#### Article Metrics

### Refbacks

- There are currently no refbacks.