JACOBI TRANSFORM OF \((\nu, \gamma, p)\)-JACOBI–LIPSCHITZ FUNCTIONS IN THE SPACE \(\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)\)
Abstract
Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M.S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the \((\nu, \gamma, p)\)-Jacobi–Lipschitz class in the space \(\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t)dt)\).
Full Text:
PDFReferences
Anker J.-P., Damek E. and Yacoub C. Spherical analysis on harmonic \(AN\) groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 1996. Vol. 23, No. 4. P. 643–679. URL: http://www.numdam.org/item/ASNSP_1996_4_23_4_643_0/
Bray W.O., Pinsky M.A. Growth properties of Fourier transforms via moduli of continuity. J. Funct. Anal., 2008. Vol. 255, No. 9. P. 2265–2285. DOI: 10.1016/j.jfa.2008.06.017
Chokri A., Jemai A. Integrability theorems for Fourier–Jacobi transform. J. Math. Inequal., 2012. Vol. 6, No. 3. P. 343–353. DOI: 10.7153/jmi-06-34
Daher R., El Hamma M. Some estimates for the Jacobi transform in the space \(\mathrm{L}^{2} (\mathbb{R}^{+}, \Delta_{(\alpha,\beta)}(t)dt)\). Int. J. Appl. Math., 2012. Vol. 25, No. 1. P. 13–24.
Flensted-Jensen M., Koornwinder T.H. The convolution structure for Jacobi expansions. Ark. Mat., 1973. Vol. 11, No. 1–2. P. 245–262. DOI: 10.1007/BF02388521
Koornwinder T.H. Jacobi functions and analysis on noncompact semisimple Lie groups. In: Special Functions: Group Theoretical Aspect and Applications. R.A. Askey et al. (eds.) Mathematics and its Applications, vol. 18. Dordrecht: Springer, 1984. P. 1–85. DOI: 10.1007/978-94-010-9787-1_1
Platonov S.S. Approximation of functions in \(\mathrm{L}_{2}\)-metric on noncompact symmetric spaces of rank 1. Algebra i Analiz, 1999. Vol. 11, No. 1. P. 244–270.
Younis M.S. Fourier transforms of Dini–Lipschitz functions. Int. J. Math. Math. Sci., 1986. Vol. 9, No. 2. P. 301–312. DOI: 10.1155/S0161171286000376
Article Metrics
Refbacks
- There are currently no refbacks.