### ORDER EQUALITIES IN DIFFERENT METRICS FOR MODULI OF SMOOTHNESS OF VARIOUS ORDERS

#### Abstract

In this paper, we obtain order equalities for the \(k\)th order \(L_{q}(T)\)-moduli of smoothness \(\omega_{k}(f;\delta)_{q}\) in terms of expressions that contain the \(l\)th order \(L_{p}(T)\)-moduli of smoothness \(\omega_{ l }(f;\delta)_{p}\) on the class of periodic functions \(f\in L_{p}(T)\) with monotonically decreasing Fourier coefficients, where \(1<p<q<\infty,\) \(k,l \in \mathbb{N},\) and \(T=(-\pi,\pi].\)

#### Keywords

#### Full Text:

PDF#### References

Bary N.K. * A Treatise on Trigonometric Series.* Vols. I, II. Oxford, New York: Pergamon Press, 1964, Vol. I, 533 p; Vol. II, 508 p. Original Russian text published in * Trigonometricheskie ryady* , Moscow: Fiz.-Mat. Giz. Publ., 1961, 936 p.

Gol’dman M.L. An imbedding criterion for different metrics for isotropic Besov spaces with arbitrary moduli of continuity. * Proc. Steklov Inst. Math.*, 1994. No. 2. P. 155–181.

Il’yasov N.A. On the inequality between modulus of smoothness of various orders in different metrics. * Math. Notes* , 1991. Vol. 50, No. 2. P. 877–879. DOI: 10.1007/BF01157580

Il’yasov N.A. On the direct theorem of approximation theory of periodic functions in different metrics. * Proc. Steklov Inst. Math.*, 1997. Vol. 219. P. 215–230.

Il’yasov N.A. The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients. *Trudy Inst. Mat. i Mekh. UrO RAN* [Proc. of Krasovskii Institute of Mathematics and Mechanics of the UB RAS], 2016. Vol. 22, No. 4. P. 153–162. (in Russian) DOI: 10.21538/0134-4889-2016-22-4-153-162

Il’yasov N.A. The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics. *Proc. Steklov Inst. Math.*, 2018. Vol. 303, Suppl. 1. P. S92–S106. DOI: 10.1134/S0081543818090109

Kolyada V.I. On relations between moduli of continuity in different metrics. *Proc. Steklov Inst. Math.*, 1989. Vol. 181. P. 127–148.

Timan M.F. Best approximation and modulus of smoothness of functions defined on the entire real axis. *Izv. Vyssh. Ucheb. Zaved. Mat.*, 1961. No. 6. P. 108–120. (in Russian)

Timan M.F. Some embedding theorems for \(L_p\) -classes of functions. *Dokl. Akad. Nauk SSSR*, 1970. Vol. 193, No. 6, P. 1251–1254. (in Russian)

Timan M.F. The imbedding of the \(L_{p}^{(k)}\) -classes of functions. *Izv. Vyssh. Ucheb. Zaved. Mat.*, 1974. No. 10(149). P. 61–74. (in Russian)

Ul’yanov P.L. The imbedding of certain function classes \(H_{p}^{\omega}\). *Math. USSR–Izv.*, 1968. Vol. 2, No. 3. P. 601–637.

Ul’yanov P.L. Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics. *Math. USSR–Sb.*, 1970. Vol. 10, No. 1. P. 103–126.

#### Article Metrics

### Refbacks

- There are currently no refbacks.