FORMATION OF VERSIONS OF SOME DYNAMIC INEQUALITIES UNIFIED ON TIME SCALE CALCULUS

Muhammad Jibril Shahab Sahir     (Department of Mathematics, University of Sargodha, Sub-Campus Bhakkar, Pakistan & GHSS, 67/ML, Bhakkar, Pakistan)

Abstract


The aim of this paper is to present some comprehensive and extended versions of classical inequalities such as Radon's Inequality, Bergström's Inequality, the weighted power mean inequality, Schlömilch's Inequality and Nesbitt's Inequality on time scale calculus.


Keywords


Radon's Inequality, Bergström's Inequality, Schlömilch's Inequality, the weighted power mean inequality, Nesbitt's Inequality

Full Text:

PDF

References


  1. Agarwal R.P., O'Regan D., Saker S.H. Dynamic Inequalities on Time Scales. Springer International Publishing, Cham, Switzerland, 2014. DOI: 10.1007/978-3-319-11002-8
  2. Anastassiou G.A. Integral operator inequalities on time scales. Intern. J. Difference Equ., 2012. Vol. 7, No. 2. P. 111–137.
  3. Anderson D., Bullock J., Erbe L., Peterson A., Tran H. Nabla dynamic equations on time scales. Pan-American Math. J., 2003. Vol. 13, No. 1. P. 1–48.
  4. Beckenbach E.F., Bellman R. Inequalities. Springer, Berlin, Göttingen and Heidelberg, 1961. DOI: 10.1007/978-3-642-64971-4
  5. Bellman R. Notes on matrix theory-IV (An inequality due to Bergström). Amer. Math. Monthly, 1955. Vol. 62. P. 172–173.
  6. Bergström H. A triangle inequality for matrices. Den Elfte Skandinaviske Matematikerkongress, 1949, Trondheim, Johan Grundt Tanums Forlag, Oslo, 1952. P. 264–267.
  7. Bohner M., Peterson A. Dynamic Equations on Time Scales. Birkhäuser Boston, Inc., Boston, MA, 2001. DOI: 10.1007/978-1-4612-0201-1
  8. Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, Boston, MA, 2003. DOI: 10.1007/978-0-8176-8230-9
  9. Dinu C. Convex functions on time scales. Annals Univ. of Craiova, Math. Comp. Sci. Ser., 2008. Vol. 35. P. 87–96.
  10. Bătineţu-Giurgiu D.M., Mărghidanu D., Pop O.T. A new generalization of Radon's Inequality and applications. Creative Math. & Inf., 2011. Vol. 20, No. 2. P. 111–116.
  11. Hilger S. Ein Ma\(\beta\)kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, 1988.
  12. Hong C.H., Yeh C.C. Rogers-Hölder's Inequality on time scales. Intern. J. Pure Appl. Math., 2006. Vol. 29, No. 3. P. 289–309.
  13. Mitrinović D.S. Analytic Inequalities. Springer-Verlag, Berlin, 1970. DOI: 10.1007/978-3-642-99970-3
  14. Nesbitt A.M. Problem 15114. Educational Times, 1903. Vol. 3. P. 37–38.
  15. Radon J. Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien, 1913. Vol. 122. P. 1295–1438.
  16. Sahir M.J.S. Dynamic inequalities for convex functions harmonized on time scales. J. Appl. Math. Phys., 2017. Vol. 5. P. 2360–2370. DOI: 10.4236/jamp.2017.512193
  17. Sahir M.J.S. Fractional dynamic inequalities harmonized on time scales. Cogent Math. Stat., 2018. Vol. 5. P. 1– 7. DOI: 10.1080/23311835.2018.1438030
  18. Sahir M.J.S. Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus. The Teaching of Mathematics, 2018. Vol. 21, No. 1. P. 38–52.
  19. Sheng Q., Fadag M., Henderson J., Davis J.M. An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl., 2006. Vol. 7, No. 3. P. 395–413. DOI: 10.1016/j.nonrwa.2005.03.008
  20. Tian J.F. Ha M.H. Extensions of Hölder-type inequalities on time scales and their applications. J. Nonlinear Sci. Appl., 2017. Vol. 10, No. 3. P. 937–953. DOI: 10.22436/jnsa.010.03.07



DOI: http://dx.doi.org/10.15826/umj.2018.2.010

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.