### AUTOMORPHISMS OF DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {39; 36; 4; 1; 1; 36}

#### Abstract

Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than \(4096\) vertices, in which \(\lambda=2\) and \(\mu=1\). They proposed the program of investigation of distance-regular graphs with \(\lambda=2\) and \(\mu=1\). In this paper the automorphisms of a distance-regular graph with intersection array \(\{39,36,4;1,1,36\}\) are studied.

#### Keywords

#### Full Text:

PDF#### References

Brouwer A.E., Cohen A.M., Neumaier A. *Distance-Regular Graphs.* New York: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2

Makhnev A.A., Nirova M.S. On distance-regular graphs with \(\lambda=2\). * J. Sib. Fed. Univ. Math. Phys.*, 2014. Vol. 7, No. 2. P. 204–210.

Behbahani M., Lam C. Strongly regular graphs with nontrivial automorphisms. *Discrete Math.*, 2011. Vol. 311, No. 2–3. P. 132–144. DOI: 10.1016/j.disc.2010.10.005

Cameron P.J. * Permutation Groups.* London Math. Soc. Student Texts, No. 45. Cambridge: Cambridge Univ. Press, 1999.

Gavrilyuk A.L., Makhnev A.A.} On automorphisms of distance-regular graph with the intersection array \(\{56,45,1;1,9,56\}\). *Doklady Mathematics*, 2010. Vol. 81, No. 3. P. 439–442. DOI: 10.1134/S1064562410030282

Zavarnitsine A.V. Finite simple groups with narrow prime spectrum. * Sib. Electron. Math. Izv.*, 2009. Vol. 6. P. S1–S12.

#### Article Metrics

### Refbacks

- There are currently no refbacks.