ON NECESSARY OPTIMALITY CONDITIONS FOR RAMSEY-TYPE PROBLEMS

Anton O. Belyakov     (Moscow School of Economics, Lomonosov Moscow State University, Moscow, 119992; National Research Nuclear University “MEPhI”, Moscow, 115409; Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, 620990, Russian Federation)

Abstract


We study an optimal control problem in infinite time, where the integrand does not depend explicitly on the state variable. A special case of such problem is the Ramsey optimal capital accumulation in centralized economy. To complete the optimality conditions of Pontryagin's maximum principle, so called transversality conditions of different types are used in the literature. Here, instead of a transversality condition, an additional maximum condition is considered.


Keywords


Pontryagin maximum principle, Transversality condition; Optimal control; Ramsey problem

Full Text:

PDF

References


  1. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. NY: Pergamon, Oxford, 1964. 338 p.
  2. Cass D. Optimum growth in an aggregative model of capital accumulation. Rev. Econom. Stud. , 1965. Vol. 32, No. 3. P. 233–240. DOI: 10.2307/2295827
  3. Ramsey F.P. A mathematical theory of saving. The Economic J. , 1928, Vol. 38, No. 152. P. 543–559.
  4. Romer D. Advanced Macroeconomics. 4-th ed. NY: McGraw-Hill, 2012. 736 p.
  5. Carlson D.A., Haurie A.B., Leizarowitz A. Infinite Horizon Optimal Control. Berlin-Heidelberg: Springer-Verlag, 1991. 332 p. DOI: 10.1007/978-3-642-76755-5
  6. Halkin H. Necessary conditions for optimal control problems with infinite horizons. Econometrica, 1974. Vol. 42, No. 2. P. 267–272. DOI: 10.2307/1911976
  7. Shell K. Applications of Pontryagin’s maximum principle to economics. In: Mathematical Systems Theory and Economics I/II. Lect. Notes Oper. Res. and Math. Econ., 1969. Vol. 11–12. P. 241–292.
  8. Kamihigashi T. Necessity of transversality conditions for infinite horizon problems. Econometrica, 2001. Vol. 69, No. 4. P. 995–1012. DOI: 10.1111/1468-0262.00227
  9. Michel P. On the transversality condition in infinite horizon optimal problems. Econometrica, 1982. Vol. 50, No. 4. P. 975–985. DOI: 10.2307/1912772
  10. Aseev S., Veliov V. Maximum principle for infinite-horizon optimal control problems with dominating discount. Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms, 2012. Vol. 19, No. 1–2. P. 43–63. URL: http://pure.iiasa.ac.at/9874
  11. Aseev S., Veliov V. Needle variations in infinite-horizon optimal control. Contemp. Math., 2014. Vol. 619. P. 1–17. DOI: 10.1090/conm/619/12381
  12. Aseev S.M., Besov K.O., Kryazhimskii A.V. Infinite-horizon optimal control problems in economics. Russian Math. Surveys, 2012. Vol. 67, No. 2. P. 195–253.
  13. Aseev S.M., Kryazhimskiy A.V. The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. , 2004. Vol. 43, No. 3. P. 1094–1119. DOI: 10.1137/S0363012903427518
  14. Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions. Proc. Steklov Inst. Math. , 2015. Vol. 291, Suppl. 1. P. 22–39. DOI: DOI: 10.1134/S0081543815090023
  15. Khlopin D. Necessity of vanishing shadow price in infinite horizon control problems. J. Dyn. Control Syst., 2013. Vol. 19. No. 4. P. 519–552. DOI: 10.1007/s10883-013-9192-5
  16. Khlopin D. Necessity of limiting co-state arcs in Bolza-type infinite horizon problem. Optimization, 2015. Vol. 64, No. 11. P. 2417–2440. DOI: 10.1080/02331934.2014.971413
  17. Belyakov A.O. Necessary Conditions for Infinite Horizon Optimal Control Problems Revisited. 2017. arXiv: 1512.01206v2 [math.OC]



DOI: http://dx.doi.org/10.15826/umj.2019.1.003

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.