ON NECESSARY OPTIMALITY CONDITIONS FOR RAMSEY-TYPE PROBLEMS
Abstract
We study an optimal control problem in infinite time, where the integrand does not depend explicitly on the state variable. A special case of such problem is the Ramsey optimal capital accumulation in centralized economy. To complete the optimality conditions of Pontryagin's maximum principle, so called transversality conditions of different types are used in the literature. Here, instead of a transversality condition, an additional maximum condition is considered.
Keywords
Full Text:
PDFReferences
Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. NY: Pergamon, Oxford, 1964. 338 p.
Cass D. Optimum growth in an aggregative model of capital accumulation. Rev. Econom. Stud. , 1965. Vol. 32, No. 3. P. 233–240. DOI: 10.2307/2295827
Ramsey F.P. A mathematical theory of saving. The Economic J. , 1928, Vol. 38, No. 152. P. 543–559.
Romer D. Advanced Macroeconomics. 4-th ed. NY: McGraw-Hill, 2012. 736 p.
Carlson D.A., Haurie A.B., Leizarowitz A. Infinite Horizon Optimal Control. Berlin-Heidelberg: Springer-Verlag, 1991. 332 p. DOI: 10.1007/978-3-642-76755-5
Halkin H. Necessary conditions for optimal control problems with infinite horizons. Econometrica, 1974. Vol. 42, No. 2. P. 267–272. DOI: 10.2307/1911976
Shell K. Applications of Pontryagin’s maximum principle to economics. In: Mathematical Systems Theory and Economics I/II. Lect. Notes Oper. Res. and Math. Econ., 1969. Vol. 11–12. P. 241–292.
Kamihigashi T. Necessity of transversality conditions for infinite horizon problems. Econometrica, 2001. Vol. 69, No. 4. P. 995–1012. DOI: 10.1111/1468-0262.00227
Michel P. On the transversality condition in infinite horizon optimal problems. Econometrica, 1982. Vol. 50, No. 4. P. 975–985. DOI: 10.2307/1912772
Aseev S., Veliov V. Maximum principle for infinite-horizon optimal control problems with dominating discount. Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms, 2012. Vol. 19, No. 1–2. P. 43–63. URL: http://pure.iiasa.ac.at/9874
Aseev S., Veliov V. Needle variations in infinite-horizon optimal control. Contemp. Math., 2014. Vol. 619. P. 1–17. DOI: 10.1090/conm/619/12381
Aseev S.M., Besov K.O., Kryazhimskii A.V. Infinite-horizon optimal control problems in economics. Russian Math. Surveys, 2012. Vol. 67, No. 2. P. 195–253.
Aseev S.M., Kryazhimskiy A.V. The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. , 2004. Vol. 43, No. 3. P. 1094–1119. DOI: 10.1137/S0363012903427518
Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions. Proc. Steklov Inst. Math. , 2015. Vol. 291, Suppl. 1. P. 22–39. DOI: DOI: 10.1134/S0081543815090023
Khlopin D. Necessity of vanishing shadow price in infinite horizon control problems. J. Dyn. Control Syst., 2013. Vol. 19. No. 4. P. 519–552. DOI: 10.1007/s10883-013-9192-5
Khlopin D. Necessity of limiting co-state arcs in Bolza-type infinite horizon problem. Optimization, 2015. Vol. 64, No. 11. P. 2417–2440. DOI: 10.1080/02331934.2014.971413
Belyakov A.O. Necessary Conditions for Infinite Horizon Optimal Control Problems Revisited. 2017. arXiv: 1512.01206v2 [math.OC]
Article Metrics
Refbacks
- There are currently no refbacks.