Hippolyte Séka     (Institut National Polytechnique Houphouet-Boigny, Côte d'Ivoire)
Kouassi Richard Assui     (Institut National Polytechnique Houphouët–Boigny, BP 1093 Yamoussoukro, Côte d'Ivoire)


In this article, we demonstrate through specific examples that the evolution of the size of the absolute stability regions of Runge–Kutta methods for ordinary differential equation does not depend on the order of methods.


Stability region, Runge–Kutta methods, Ordinary differential equations, Order of methods.

Full Text:



Butcher J-C. Numerical Methods for Ordinary Differential Equations. 2nd ed. John Wiley & Sons Ltd., 2008. 175 p. DOI: 10.1002/9780470753767

Calvo M., Montijano J.I., Randez L. A new embedded pair of Runge–Kutta formulas of orders 5 and 6. Comput. Math. Appl., 1990. Vol. 20, No. 1. P. 15–24. DOI: 10.1016/0898-1221(90)90064-Q

Cassity C.R. The complete solution of the fifth order Runge–Kutta equations. SIAM J. Numer. Anal., 1969. Vol. 6, No. 3. P. 432–436. DOI: 10.1137/0706038

Feagin T. A tenth-order Runge–Kutta method with error estimate. In: Proc. of the IAENG Conf. on Scientific Computing. Hong Kong, 2007. Accessible at https://sce.uhcl.edu/feagin/courses/rk10.pdf

Feagin T. High-Order Explicit Runge-Kutta Methods. 2013. Accessible at http://sce.uhcl.edu/rungekutta

Hairer E., Nørsett S.P., Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Ser. Comput. Math., vol. 8. Berlin, Heidelberg: Springer–Verlag, 1993. 528 p. DOI: 10.1007/978-3-540-78862-1

Houben S. Stability Regions of Runge–Kutta Methods. Eindhoven University of Technology, 2002. Accessible at URL: https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract020220_files/talk.pd

Jackiewicz Z. General Linear Methods for Ordinary Differential Equations. John Wiley & Sons, Inc., 2009. 482 p. DOI: 10.1002/9780470522165

Khashin SI. List of Some Known Runge–Kutta Methods Family. Preliminary version. 2013. Accessible at URL: http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh_rk.html

Kashin S.I. Estimating the error in classical Runge–Kutta methods. Comput. Math. Math. Phys., 2014. Vol. 54, No. 5. P. 767–774. DOI: 10.1134/S0965542514050145

Liu M.Z., Song M.H., Yang Z.W. Stability of Runge–Kutta methods in the numerical solution of equation \(u'(t)=au(t)+a_{0}u([t])\). J. Comput. Appl. Math., 2004. Vol. 166, No. 2. P. 361–370. DOI: 10.1016/j.cam.2003.04.002

Seka H., Assui K.R. A New Eighth Order Runge-Kutta Family Method. J. Math. Res., 2019. Vol. 11, No. 2. P. 190–199. DOI: 10.5539/jmr.v11n2p190

Velagala S.R. Stability Analysis of the 4th order Runge–Kutta Method in Application to Colloidal Particle Interactions. Master’s thesis. University of Illinois, Urbana-Champaign, USA, 2014. Accessible at http://hdl.handle.net/2142/72750

DOI: http://dx.doi.org/10.15826/umj.2019.2.006

Article Metrics

Metrics Loading ...


  • There are currently no refbacks.