ORDER OF THE RUNGE-KUTTA METHOD AND EVOLUTION OF THE STABILITY REGION
Abstract
In this article, we demonstrate through specific examples that the evolution of the size of the absolute stability regions of Runge–Kutta methods for ordinary differential equation does not depend on the order of methods.
Keywords
Full Text:
PDFReferences
Butcher J-C. Numerical Methods for Ordinary Differential Equations. 2nd ed. John Wiley & Sons Ltd., 2008. 175 p. DOI: 10.1002/9780470753767
Calvo M., Montijano J.I., Randez L. A new embedded pair of Runge–Kutta formulas of orders 5 and 6. Comput. Math. Appl., 1990. Vol. 20, No. 1. P. 15–24. DOI: 10.1016/0898-1221(90)90064-Q
Cassity C.R. The complete solution of the fifth order Runge–Kutta equations. SIAM J. Numer. Anal., 1969. Vol. 6, No. 3. P. 432–436. DOI: 10.1137/0706038
Feagin T. A tenth-order Runge–Kutta method with error estimate. In: Proc. of the IAENG Conf. on Scientific Computing. Hong Kong, 2007. Accessible at https://sce.uhcl.edu/feagin/courses/rk10.pdf
Feagin T. High-Order Explicit Runge-Kutta Methods. 2013. Accessible at http://sce.uhcl.edu/rungekutta
Hairer E., Nørsett S.P., Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Ser. Comput. Math., vol. 8. Berlin, Heidelberg: Springer–Verlag, 1993. 528 p. DOI: 10.1007/978-3-540-78862-1
Houben S. Stability Regions of Runge–Kutta Methods. Eindhoven University of Technology, 2002. Accessible at URL: https://www.win.tue.nl/casa/meetings/seminar/previous/_abstract020220_files/talk.pd
Jackiewicz Z. General Linear Methods for Ordinary Differential Equations. John Wiley & Sons, Inc., 2009. 482 p. DOI: 10.1002/9780470522165
Khashin SI. List of Some Known Runge–Kutta Methods Family. Preliminary version. 2013. Accessible at URL: http://math.ivanovo.ac.ru/dalgebra/Khashin/rk/sh_rk.html
Kashin S.I. Estimating the error in classical Runge–Kutta methods. Comput. Math. Math. Phys., 2014. Vol. 54, No. 5. P. 767–774. DOI: 10.1134/S0965542514050145
Liu M.Z., Song M.H., Yang Z.W. Stability of Runge–Kutta methods in the numerical solution of equation \(u'(t)=au(t)+a_{0}u([t])\). J. Comput. Appl. Math., 2004. Vol. 166, No. 2. P. 361–370. DOI: 10.1016/j.cam.2003.04.002
Seka H., Assui K.R. A New Eighth Order Runge-Kutta Family Method. J. Math. Res., 2019. Vol. 11, No. 2. P. 190–199. DOI: 10.5539/jmr.v11n2p190
Velagala S.R. Stability Analysis of the 4th order Runge–Kutta Method in Application to Colloidal Particle Interactions. Master’s thesis. University of Illinois, Urbana-Champaign, USA, 2014. Accessible at http://hdl.handle.net/2142/72750
Article Metrics
Refbacks
- There are currently no refbacks.