ON GENERALIZED EIGHTH ORDER MOCK THETA FUNCTIONS
Abstract
Keywords
Full Text:
PDFReferences
REFERENCES
Andrews G.E. On basic hypergeometric series, mock theta functions and partitions (I). Q. J. Math., 1966. Vol. 17, No. 2. P. 64–80. DOI: 10.1093/qmath/17.1.64
Andrews G.E., Berndt B.C. Ramanujan’s Lost Notebook. Part I. New York: Springer-Verlag, 2005. 437 p. DOI: 10.1007/0-387-28124-X
Andrews G.E., and Hickerson D. Ramanujan’s “lost” notebook VII: The sixth order mock theta functions. Adv. Math., 1991. Vol. 89, No. 1. P. 60–105. DOI: 10.1016/0001-8708(91)90083-J
Choi Y.-S. The basic bilateral hypergeometric series and the mock theta functions. Ramanujan J., 2011. Vol. 24. P. 345–386. DOI: 10.1007/s11139-010-9269-7
Collected Papers of Srinivasa Ramanujan. Hardy G.H., Seshu Aiyar P.V., Wilson B.M. (eds.) New York: Chelsea Pub. Co., 1962 (© 1927). 355 p.
Gasper G., Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990. 276 p.
Gordon B., MacIntosh R.J. Some eighth order mock theta functions. J. London Math. Soc., 2000. Vol. 62, No. 2. P. 321–335. DOI: 10.1112/S0024610700008735
Jackson F.H. Basic Integration. Q. J. Math., 1951. Vol. 2, No. 1. P. 1–16. DOI: 10.1093/qmath/2.1.1
Rainville E.D. Special Function. New York: Chelsea Pub. Co., 1960. 365 p.
Sills A.V. An Invitation to the Rogers-Ramanujan Identities. New York: Chapman and Hall/CRC, 2017. 256 p. DOI: 10.1201/9781315151922
Srivastava B. A generalization of the eighth order mock theta functions and their multibasic expansion. Saitama Math. J., 2006/2007. Vol. 24. P. 1–13.
Watson G.N. The final problem: An account of the mock theta functions. J. London Math. Soc., 1936. Vol. 11. P. 55–80. DOI: 10.1112/jlms/s1-11.1.55
Article Metrics
Refbacks
- There are currently no refbacks.