ON GENERALIZED EIGHTH ORDER MOCK THETA FUNCTIONS

Pramod Kumar Rawat     (University of Lucknow, Lucknow 226007, India)

Abstract


In this paper we have  generalized eighth order mock theta functions, recently introduced by Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra parameters, which on specializing give known functions and thus these results hold for those known functions. We have represented these generalized functions as \(q\)-integral. Thus on specializing we have the classical mock theta functions represented as \(q\)-integral. The same is true for the multibasic expansion given.

Keywords


\(q\)-Hypergeometric Series, Mock Theta functions, Continued Fractions, \(q\)-Integrals

Full Text:

PDF

References


REFERENCES

Andrews G.E. On basic hypergeometric series, mock theta functions and partitions (I). Q. J. Math., 1966. Vol. 17, No. 2. P. 64–80. DOI: 10.1093/qmath/17.1.64

Andrews G.E., Berndt B.C. Ramanujan’s Lost Notebook. Part I. New York: Springer-Verlag, 2005. 437 p. DOI: 10.1007/0-387-28124-X

Andrews G.E., and Hickerson D. Ramanujan’s “lost” notebook VII: The sixth order mock theta functions. Adv. Math., 1991. Vol. 89, No. 1. P. 60–105. DOI: 10.1016/0001-8708(91)90083-J

Choi Y.-S. The basic bilateral hypergeometric series and the mock theta functions. Ramanujan J., 2011. Vol. 24. P. 345–386. DOI: 10.1007/s11139-010-9269-7

Collected Papers of Srinivasa Ramanujan. Hardy G.H., Seshu Aiyar P.V., Wilson B.M. (eds.) New York: Chelsea Pub. Co., 1962 (© 1927). 355 p.

Gasper G., Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990. 276 p.

Gordon B., MacIntosh R.J. Some eighth order mock theta functions. J. London Math. Soc., 2000. Vol. 62, No. 2. P. 321–335. DOI: 10.1112/S0024610700008735

Jackson F.H. Basic Integration. Q. J. Math., 1951. Vol. 2, No. 1. P. 1–16. DOI: 10.1093/qmath/2.1.1

Rainville E.D. Special Function. New York: Chelsea Pub. Co., 1960. 365 p.

Sills A.V. An Invitation to the Rogers-Ramanujan Identities. New York: Chapman and Hall/CRC, 2017. 256 p. DOI: 10.1201/9781315151922

Srivastava B. A generalization of the eighth order mock theta functions and their multibasic expansion. Saitama Math. J., 2006/2007. Vol. 24. P. 1–13.

Watson G.N. The final problem: An account of the mock theta functions. J. London Math. Soc., 1936. Vol. 11. P. 55–80. DOI: 10.1112/jlms/s1-11.1.55




DOI: http://dx.doi.org/10.15826/umj.2020.1.011

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.