GROWTH OF \(\varphi\)–ORDER SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS ON THE COMPLEX PLANE
Abstract
In this paper, we study the growth of solutions of higher order linear differential equations with meromorphic coefficients of \(\varphi\)-order on the complex plane. By considering the concepts of \(\varphi\)-order and \(\varphi \)-type, we will extend and improve many previous results due to Chyzhykov–Semochko, Belaïdi, Cao–Xu–Chen, Kinnunen.
Keywords
Full Text:
PDFReferences
Belaïdi B. Fast growing solutions to linear differential equations with entire coefficients having the same \(\rho_{\varphi }\)-order. J. Math. Appl., 2019. Vol. 42. P. 63–77. DOI: 10.7862/rf.2019.4
Belaïdi B. Growth of \(\rho_{\varphi }\)-order solutions of linear differential equations with entire coefficients. Pan-American Math. J., 2017. Vol. 27, No. 4. P. 26–42. URL: http://www.internationalpubls.com
Belaïdi B. Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order. Electron. J. Differential Equations, 2009. No. 70. P. 1–10. URL: https://ejde.math.txstate.edu
Bernal L.G. On growth k-order of solutions of a complex homogeneous linear differential equation. Proc. Amer. Math. Soc., 1987. Vol. 101, No. 2. P. 317–322. DOI: 10.1090/S0002-9939-1987-0902549-5
Cao T.-B., Xu J.F., Chen Z.X. On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl., 2010. Vol. 364, No. 1. P. 130–142. DOI: 10.1016/j.jmaa.2009.11.018
Chiang Y.-M., Hayman W.K. Estimates on the growth of meromorphic solutions of linear differential equations. Comment. Math. Helv., 2004. Vol. 79, No. 3. P. 451–470. DOI: 10.1007/s00014-003-0792-7
Chyzhykov I., Semochko N. Fast growing entire solutions of linear differential equations. Math. Bull. Shevchenko Sci. Soc., 2016. Vol. 13. P. 68–83.
Frank G., Hellerstein S. On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients. Proc. London Math. Soc., 1986. Vol. s3–53, No. 3. P. 407–428. DOI: 10.1112/plms/s3-53.3.407
Gundersen G.G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc., 1988. Vol. s2–37, No. 1. P. 88–104. DOI: 10.1112/jlms/s2-37.121.88
Hayman W.K. Meromorphic Functions. Oxford: Oxford Mathematical Monographs Clarendon Press, 1964. 191 p.
Juneja O.P., Kapoor G.P., Bajpai S. K. On the \((p,q)\)-order and lower \((p,q)\)-order of an entire function. J. Reine Angew. Math., 1976. Vol. 282. P. 53–67. DOI: 10.1515/crll.1976.282.53
Kara M.A., Belaïdi B. Some estimates of the \(\varphi \)-order and the \(\varphi \)-type of entire and meromorphic functions. Int. J. Open Problems Complex Analysis, 2019. Vol. 10, No. 3. P. 42–58. URL: http://www.i-csrs.org
Kinnunen L. Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math. 1998. Vol. 22, No. 4. P. 385–405.
Laine I. Nevanlinna Theory and Complex Differential Equations. De Gruyter Studies in Mathematics, Vol. 15. Berlin: Walter de Gruyter & Co., 1993. 341 p. DOI: 10.1515/9783110863147
Li L.M., Cao T.B. Solutions for linear differential equations with meromorphic coefficients of \([p,q]\)-order in the plane. Electron. J. Differential Equations, 2012. No. 195. P. 1–15. URL: https://ejde.math.txstate.edu
Liu J., Tu J., Shi L.Z. Linear differential equations with entire coefficients of \([p,q]\)-order in the complex plane. J. Math. Anal. Appl., 2010. Vol. 372. P. 55–67. DOI: 10.1016/j.jmaa.2010.05.014
Mulyava O.M., Sheremeta M.M., Trukhan Yu.S. Properties of solutions of a heterogeneous differential equation of the second order. Carpathian Math. Publ., 2019. Vol. 11, No. 2. P. 379–398. DOI: 10.15330/cmp.11.2.379-398
Nevanlinna R. Zur theorie der meromorphen funktionen. Acta Math., 1925. Vol. 46, No. 1–2. P. 1–99. (in German). DOI: 10.1007/BF02543858
Seneta E. Regularly Varying Functions. Lecture Notes in Math., Vol. 508. Berlin, Heidelberg: Springer-Verlag, 1976. 116 p. DOI: 10.1007/BFb0079658
Sheremeta M. N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion. Izv. Vyssh. Uchebn. Zaved. Mat., 1967. Vol. 2, P. 100–108. (in Russian)
Tu J., Chen Z.-X. Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order. Southeast Asian Bull. Math., 2009. Vol. 33, No. 1. P. 153–164.
Yang L., Value Distribution Theory. Berlin, Heidelberg: Springer-Verlag, 1993. 269 p. DOI: 10.1007/978-3-662-02915-2
Article Metrics
Refbacks
- There are currently no refbacks.