FOUR–DIMENSIONAL BRUSSELATOR MODEL WITH PERIODICAL SOLUTION
Abstract
In the paper, a four-dimensional model of cyclic reactions of the type Prigogine's Brusselator is considered. It is shown that the corresponding dynamical system does not have a closed trajectory in the positive orthant that will make it inadequate with the main property of chemical reactions of Brusselator type. Therefore, a new modified Brusselator model is proposed in the form of a four-dimensional dynamic system. Also, the existence of a closed trajectory is proved by the DN-tracking method for a certain value of the parameter which expresses the rate of addition one of the reagents to the reaction from an external source.
Keywords
Full Text:
PDFReferences
Adomian G. The diffusion Brusselator equation. Comput. Math. Appl., 1995. Vol. 29, No. 5. P. 1–3. DOI: 10.1016/0898-1221(94)00244-F
Alqahtani A.M. Numerical simulation to study the pattern formation of reaction–diffusion Brusselator model arising in triple collision and enzymatic. J. Math. Chem., 2018. Vol. 56. P. 1543–1566. DOI: 10.1007/s10910-018-0859-8
Azamov A.A. DN-tracking method for proving the existence of limit cycles. In: Abstr. of the Int. Conf. Differential Equations and Topology dedicated to the Centennial Anniversary of L.S. Pontryagin, June 17–22, 2008, Moscow, Russia. Moscow: MSU, 2008. P. 87–88. (in Russian)
Azamov A.A., Ibragimov G, Akhmedov O.S., Ismail F. On the proof of existence of a limit cycle for the Prigogine brusselator model. J. Math. Res., 2011. Vol. 3, No. 4. P. 983–989. DOI: 10.5539/jmr.v3n4p93
Azamov A.A., Akhmedov O.S. Existence of a complex closed trajectory in a three–dimensional dynamical system. Comput. Math. Math. Phys., 2011. Vol. 51, No. 8. P. 1353–1359. DOI: 10.1134/S0965542511080033
Azamov A.A., Akhmedov O.S. On existence of a closed trajectory in a three-dimensional model of a Brusselator. Mech. Solids, 2019. Vol. 54, No. 2. P. 251–265. DOI: 10.3103/S0025654419030038
Bakhvalov N. S. CHislennye metody [Numerical methods]. Moscow: Mir, 1977. (in Russian)
Boldo S., Faissole F., Chapoutot A. Round-off error analysis of explicit one-step numerical integration methods. In: IEEE 24th Symposium on Computer Arithmetic (ARITH), July 24–26, 2017, London, UK. IEEE Xplore, 2017. P. 82–89. DOI: 10.1109/ARITH.2017.22
Butcher J.C. Numerical Methods for Ordinary Differential Equations, 3rd ed. New York: John Wiley & Sons Ltd., 2016. 538 p.
Cartan H. Calcul Différentiel. Formes Differentielles. Paris: Hermann, 1967.
Elyukhina I. Nonlinear stability analysis of the full Brusselator reaction–diffusion model. Theor. Found. Chem. Eng., 2014. Vol. 48, No. 6. P. 806–812. DOI: 10.1134/S0040579514060025
Glansdorff P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. New York: John Wiley & Sons Ltd., 1971.
Guckenheimer J. Dynamical systems theory for ecologists: a brief overview. In: Ecological Time Series. Boston, MA: Springer, 1995. P. 54–69. DOI: 10.1007/978-1-4615-1769-6_6
Hairer E., Nõrsett S., Wanner G. Solving Ordinary Differential Equations I. Non-stiff Problems. Springer Ser. Comput. Math., vol. 8. Berlin, Heidelberg: Springer-Verlag, 1993. 528 p.
Holmes M.H. Introduction to Numerical Methods in Differential Equations. Texts Appl. Math., vol. 52. New York: Springer–Verlag, 2007. 239 p. DOI: 10.1007/978-0-387-68121-4
Kehlet B., Logg A. A posteriori error analysis of round-off errors in the numerical solution of ordinary differential equation. Numer. Algorithms, 2017. Vol. 76. P. 191–210. DOI: 10.1007/s11075-016-0250-4
Li Y. Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal. Real World Appl., 2016. Vol. 28. P. 32–47. DOI: 10.1016/j.nonrwa.2015.09.004
Ma M., Hu J. Bifurcation and stability analysis of steady states to a Brusselator model. Appl. Math. Comput., 2014. Vol. 236. P. 580–592. DOI: 10.1016/j.amc.2014.02.075
Ma S.J. The stochastic Hopf bifurcation analysis in Brusselator system with random parameter. Appl. Math. Comput., 2012. Vol. 219. P. 306–319. DOI: 10.1016/j.amc.2012.06.021
Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems. New York: John Wiley & Sons Ltd., 1977. 491 p.
Nikol’skii M.S. Pervyj pryamoj metod L.S. Pontryagina v differencial’nyh igrah [Pontryagin’s First Direct Method for Differential Games]. Moscow: Moscow State Univ., 1984. 65 p. (in Russian)
Peña B., Pérez-García C. Stability of Turing patterns in the Brusselator model. Phys. Rev. E, 2001. Vol. 64. P. 156–213. DOI: 10.1103/PhysRevE.64.056213
Pontryagin L. S. Foundations of Combinatorial Topology. Rochester, New York: Graylock press, 1952. 99 p.
Prigogine I., Lefever R. Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys., 1968. Vol. 48, No. 4. P. 1695–1700. DOI: 10.1063/1.1668896
Prigogine I. From Being to Becoming: Time and Complexity in the Physical Sciences. New York, San Francisco: W.H. Freeman & Co. Ltd, 1980. 272 p.
Rubido N. Stochastic dynamics and the noisy Brusselator behaviour. 2014. P. 1–7. arXiv: 1405.0390 [cond-mat.stat-mech]
Tucker W. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math., 2002. Vol. 2. P. 53–117. DOI: 10.1007/s002080010018
Twizell E.H., Gumel A.B., Cao Q. A second-order scheme for the “Brusselator” reaction–diffusion system. J. Math. Chem., 1999. Vol. 26. P. 297–316. DOI: 10.1023/A:1019158500612
Tyson J. Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys., 1973. Vol. 58. P. 3919–3930. DOI: 10.1063/1.1679748
Tzou J.C., Ward M.J. The stability and slow dynamics of spot patterns in the 2D Brusselator model: The effect of open systems and heterogeneities. Phys. D: Nonlinear Phenomena, 2018. Vol. 373. P. 13–37. DOI: 10.1016/j.physd.2018.02.002
You Y. Global dynamics of the Brusselator equations. Dyn. Partial Differ. Equ., 2007. Vol. 4, No. 2. P. 167–196. DOI: 10.4310/DPDE.2007.v4.n2.a4
You Y., Zhou Sh. Global dissipative dynamics of the extended Brusselator system. Nonlinear Anal. Real World Appl., 2012. Vol. 13, No. 6. P. 2767–2789. DOI: 10.1016/j.nonrwa.2012.04.005
Yu P., Gumel A.B. Bifurcation and stability analysis for a coupled Brusselator model. J. Sound and Vibration, 2001. Vol. 244, No. 5. P. 795–820. DOI: 10.1006/jsvi.2000.3535
Zhao Z., Ma R. Local and global bifurcation of steady states to a general Brusselator model. Adv. Differ. Equ., 2019. Art. No. 491. P. 1–14. DOI: 10.1186/s13662-019-2426-4
Article Metrics
Refbacks
- There are currently no refbacks.