NONLOCAL PROBLEM FOR A MIXED TYPE FOURTH-ORDER DIFFERENTIAL EQUATION WITH HILFER FRACTIONAL OPERATOR
Abstract
Keywords
Full Text:
PDFReferences
Abdullaev O. Kh., Sadarangani K. Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative. Electron. J. Differential Equations, 2016. Vol. 2016. No. 164. P. 1–10. URL: https://ejde.math.txstate.edu 2. Application of Fractional Calculus in Physics. Hilfer R. (ed.) Singapore: World Scientific Publishing Company, 2000. 472 p. DOI: 10.1142/3779 3. Agarwal P., Berdyshev A., Karimov E. Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math., 2017. Vol. 71, P. 1235–1257. DOI: 10.1007/s00025-016-0620-1 4. Aziz S., Malik S.A. Identification of an unknown source term for a time fractional fourth-order parabolic equation. Electron. J. Differential Equations, 2016. Vol. 2016. No. 293. P. 1–20. URL: https://ejde.math.txstate.edu 5. Berdyshev A.S., Cabada A., Kadirkulov B.J. The Samarskii–Ionkin type problem for the fourth order parabolic equation with fractional differential operator. Comput. Math. Appl., 2011. Vol. 62. P. 3884–3893. DOI: 10.1016/j.camwa.2011.09.038 6. Berdyshev A.S., Kadirkulov J.B. On a nonlocal problem for a fourth-order parabolic equation with the fractional Dzhrbashyan–Nersesyan operator. Differ. Equ., 2016. Vol. 52. No. 1. P. 122–127. DOI: 10.1134/S0012266116010109 7. Beshtokov M.Kh. Boundary value problems for the generalized modified moisture transfer equation and difference methods for their numerical implementation. Appl. Math. Phys., 2020. Vol. 52. No. 2. P. 128–138. DOI: 10.18413/2687-0959-2020-52-2-128-138 (in Russian) 8. Gel’fand I. M. Some questions of analysis and differential equations. Uspekhi Matem. Nauk., 1959. Vol. 14. No. 3. P. 3–19 (in Russian). 9. Handbook of Fractional Calculus with Applications. Vols. 1–8. Tenreiro Machado J.A. (ed.). Berlin, Boston: Walter de Gruyter GmbH, 2019. 10. Hilfer R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys., 2002. Vol. 284, No. 1–2. P. 399–408. DOI: 10.1016/S0301-0104(02)00670-5 11. Hilfer R. On fractional relaxation. Fractals, 2003. Vol. 11. No. Supp. 01. Part III: Scaling. P. 251–257. DOI: 10.1142/S0218348X03001914 12. Hilfer R., Luchko Y., Tomovski Ž. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. , 2009. Vol. 12, No. 3. P. 299–318. http://www.math.bas.bg/~fcaa/volume12/fcaa123 13. Kal’menov T.S., Sadybekov M.A. On a Frankl-type problem for a mixed parabolic-hyperbolic equation. Sib. Math. J., 2017. Vol. 58. No 2. P. 227–231. DOI: 10.1134/S0037446617020057 14. Kerbal S., Kadirkulov B. J., Kirane M. Direct and inverse problems for a Samarskii–Ionkin type problem for a two dimensional fractional parabolic equation. Progr. Fract. Differ. Appl., 2018. Vol. 4. No. 3. P. 147–160. DOI: 10.18576/pfda/040301 15. Kim M.-Ha, Ri G.-Chol, O. H.-Chol. Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives. Fract. Calc. Appl. Anal., 2014. Vol. 17. No. 1. P. 79–95. DOI: 10.2478/s13540-014-0156-6 16. Kumar D., Baleanu D. Editorial: fractional calculus and its applications in physics. Front. Phys., 2019. Vol. 7. No. 6. P. 1–2. DOI: 10.3389/fphy.2019.00081 17. Malik S.A., Aziz S. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Comput. Math. Appl., 2017. Vol. 73. No. 12. P. 2548–2560. DOI: 10.1016/j.camwa.2017.03.019 18. Nakhushev A. M. Zadachi so smeshcheniem dlya uravnenij v chastnyh proizvodnyh [Problems with Displacement for Partial Differential Equations]. Moscow: Nauka, 2006. 287 p. (in Russian). 19. Patnaik S., Hollkamp J.P., Semperlotti F. Applications of variable-order fractional operators: a review. Proc. A., 2020. Vol. 476, No. 2234. P. 1–32. DOI: 10.1098/rspa.2019.0498 20. Sabitov K.B. Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain. Math. Notes, 2011. Vol. 89, No. 4. P. 562–567. DOI: 10.1134/S0001434611030278 21. Sabitov K.B. K teorii uravnenij smeshannogo tipa [On the Theory of Mixed Type Equations]. Moscow: Fizmatlit, 2014. 304 p. (in Russian). 22. Sabitov K.B., Sidorov S.N. On a nonlocal problem for a degenerating parabolic-hyperbolic equation. Differ. Equ., 2014. Vol. 50. No. 3. P. 352–361. DOI: 10.1134/S0012266114030094 23. Sandev T., Metzler R., Tomovski Ž. Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative. J. Phys. A. Math. Theor., 2011. Vol. 44, No. 25. Art. no. 255203. 24. Sandev T., Tomovski Ž. Fractional Equations and Models: Theory and Applications. Dev. Math., vol. 61. Cham, Switzerland: Springer Nature Switzerland AG, 2019. 345 p. DOI: 10.1007/978-3-030-29614-8 25. Saxena R.K., Garra R., Orsingher E. Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives. Integral Transforms Spec. Funct., 2015. Vol. 27, No. 1. P. 30–42. DOI: 10.1080/10652469.2015.1092142 26. Sun H., Chang A., Zhang Y., Chen W. A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal., 2019. Vol. 22, No. 1 P. 27–59. DOI: 10.1515/fca-2019-0003 27. Terlyga O., Bellout H., Bloom F. A hyperbolic-parabolic system arising in pulse combustion: existence of solutions for the linearized problem. Electron. J. Differential Equations, 2013. Vol. 2013. No. 46. P. 1–42. URL: https://ejde.math.txstate.edu 28. Uflyand Ya.S. K voprosu o rasprostranenii kolebanij v sostavnyh elektricheskih liniyah [On oscillation propagation in compound electric lines]. Inzhener.-Phis. Zhurn. [J. of Engineering Physics and Thermophysics], 1964. Vol. 7. No. 1. P. 89–92 (in Russian). 29. Yuldashev T.K. Nonlocal problem for a mixed type differential equation in rectangular domain. Proc. Yerevan State Univ. Phys. Math. Sci., 2016. No. 3. P. 70–78. URL: http://mi.mathnet.ru/uzeru278 30. Yuldashev T.K. Solvability of a boundary value problem for a differential equation of the Boussinesq type. Differ. equ., 2018. Vol. 54. No. 10. P. 1384–1393. DOI: 10.1134/S0012266118100099 31. Yuldashev T.K. A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel. Vladikavkaz. Mat. Zh., 2019. Vol. 21. No. 2. P. 67–84 (in Russian). DOI: 10.23671/VNC.2019.2.32118 32. Yuldashev T.K. On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument. Lobachevskii J. Math., 2020. Vol. 41. No. 1. P. 111–123. DOI: 10.1134/S1995080220010151 33. Yuldashev T.K. Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations. Axioms, 2020. Vol. 9. No. 2. Art. no. 45. P. 1–21. DOI: 10.3390/axioms9020045
Article Metrics
Refbacks
- There are currently no refbacks.