DOMINATION AND EDGE DOMINATION IN TREES
Abstract
Keywords
Full Text:
PDFReferences
Arumugam S., Velammal S. Edge domination in graphs. Taiwanese J. Math., 1998. Vol. 2, No. 2. P. 173–179. URL: https://www.jstor.org/stable/43834391
Haynes T.W., Hedetniemi S.T., Slater P.J. Fundamentals of Domination in Graphs. New York: Marcel Dekker, 1998. 455 p.
Haynes T.W., Hedetniemi S.T., Slater P.J. Domination in Graphs: Advanced Topics. New York: Marcel Dekker, 1998. 497 p.
Krishnakumari B., Venkatakrishnan Y.B. and Krzywkowski M. On trees with total domination number equal to edge-vertex domination number plus one. Proc. Math. Sci., 2016. Vol. 126. P. 153–157. DOI: 10.1007/s12044-016-0267-6
Liu C.L. Introduction to Combinatorial Mathematics. New York: McGraw Hill, 1968. 393 p.
Dorfling M., Goddard W., Henning M.A., Mynhardt C.M. Construction of trees and graphs with equal dominating parameters. Discrete Math., 2006. Vol. 306, No. 21. P. 2647–2654. DOI: 10.1016/j.disc.2006.04.031
Meddah N., Chellali M. Edges contained in all or in no minimum edge dominating set of a tree. Discrete Math. Algorithms Appl., 2019. Vol. 11, No. 4. Art. no. 1950040. DOI: 10.1142/S179383091950040X
Venkatakrishnan Y.B., Krishnakumari B. An improved upper bound of edge-vertex domination number of a tree. Inform. Process. Lett., 2018. Vol. 134. P. 14–17. DOI: 10.1016/j.ipl.2018.01.012
Article Metrics
Refbacks
- There are currently no refbacks.