Reena Antal     (Department of Mathematics, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali, Punjab 140413, India)
Meenakshi Chawla     (Department of Mathematics, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali, Punjab 140413, India)
Vijay Kumar     (Department of Mathematics, Panipat Institute of Engineering and Technology, 70, Milestone GT Road, Samalkha, Panipat, 132102 Haryana, India)


The main purpose of this work is to define Rough Statistical \(\Lambda\)-Convergence of order \(\alpha\) \((0<\alpha\leq1)\) in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough statistical convergence. Further, we have shown the results related to statistically \(\Lambda\)-bounded sets of order \(\alpha\) and sets of rough statistically \(\Lambda\)-convergent sequences of order \(\alpha\).


Statistical convergence, Rough statistical convergence, Rough statistical limit points

Full Text:



  1. Alotaibi A., Mursaleen M. A-statistical summability of Fourier Series and Walsh–Fourier series. Appl. Math. Inf. Sci., 2012. Vol. 6, no. 3. P. 535–538.
  2. Aytar S. Rough statistical convergence. Numer. Funct. Anal. Optim., 2008. Vol. 29, No. 3–4. P. 291–303. DOI: 10.1080/01630560802001064
  3. Chawla M., Saroa M.S., Kumar V. On Λ-statistical convergence of order α in random 2-normed space. Miskolc Math. Notes, 2015. Vol. 16, No. 2. P. 1003–1015. DOI: 10.18514/MMN.2015.821
  4. Çolak R., Bektaş Ç.A. λ-statistical convergence of order α. Acta Math. Sci. Ser. B Engl. Ed., 2011. Vol. 31, No. 3. P. 953–959. DOI: 10.1016/S0252-9602(11)60288-9
  5. Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. URL:
  6. Fridy J.A. Statistical limit points. Proc. Amer. Math. Soc., 1993. Vol. 118, No. 4. P. 1187–1192.
  7. Gadjiev A.D., Orhan C. Some approximation theorems via statistical convergence. Rocky Mountain J. Math., 2002. Vol. 32, No. 1. P. 129–138. DOI: 10.1216/rmjm/1030539612
  8. Karakus S. Statistical convergence on probalistic normed spaces. Math. Commun., 2007. Vol. 12, No. 1. P. 11–23.
  9. Karakus S., Demirci K., Duman O. Statistical convergence on intuitionistic fuzzy normed spaces. Chaos Solitons Fractals, 2008. Vol. 35, No. 4. P. 763–769. DOI: 10.1016/j.chaos.2006.05.046
  10. Maddox I.J. Statistical convergence in locally convex space. Math. Proc. Cambridge Philos. Soc., 1988. Vol. 104, No. 1. P. 141–145. DOI: 10.1017/S0305004100065312
  11. Maity M. A Note on Rough Statistical Convergence. 2016. 5 p. arXiv:1603.00180v1 [math.FA]
  12. Maity M. A Note on Rough Statistical Convergence of Order α. 2016. 7 p. arXiv:1603.00183v1 [math.FA]
  13. Malik P., Maity M. On rough convergence of double sequence in normed linear spaces. Bull. Allahabad Math. Soc., 2013. Vol. 28, No. 1. P. 89–99.
  14. Malik P., Maity M. On rough statistical convergence of double sequences in normed linear spaces. Afr. Mat., 2016. Vol. 27, No. 1–2. P. 141–148. DOI: 10.1007/s13370-015-0332-9
  15. Malik P., Maity M., Ghosh A. Rough I-statistical Convergence of Sequences. 2016. 21 p. arXiv:1601.03978v3 [math.FA]
  16. Miller H.I. A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc., 1995. Vol. 347, No. 5. P. 1811–1819.
  17. Mursaleen M., Noman A.K. On the spaces of λ-convergent and bounded sequences. Thai J. Math., 2012. Vol. 8, No. 2. P. 311–329.
  18. Pal S.K., Chandra D., Dutta S. Rough ideal convergence. Hacet. J. Math. Stat., 2013. Vol. 42, No. 6. P. 633–640.
  19. Phu H.X. Rough convergence in normed linear spaces. Numer. Funct. Anal. Optim., 2001. Vol. 22, No. 1-2. P. 199–222. DOI: 10.1081/NFA-100103794
  20. Phu H.X. Rough convergence in infinite dimensional normed spaces. Numer. Func. Anal. Optim., 2003. Vol. 24, No. 3–4. P. 285–301. DOI: 10.1081/NFA-120022923


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.