THE ASYMPTOTICS OF A SOLUTION OF THE MULTIDIMENSIONAL HEAT EQUATION WITH UNBOUNDED INITIAL DATA

Sergey V. Zakharov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya str., Ekaterinburg, 620108, Russian Federation)

Abstract


For the multidimensional heat equation, the long-time asymptotic approximation of the solution of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains logarithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion, the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for the asymptotic analysis
of equations of parabolic type. The auxiliary parameter method plays a decisive role in the investigation.


Keywords


Multidimensional heat equation, Cauchy problem, Asymptotics, Auxiliary parameter method

Full Text:

PDF

References


  1. Danilin A.R. Asymptotic behaviour of bounded controls for a singular elliptic problem in a domain with a small cavity. Sb. Math., 1998. Vol. 189, No. 11. P. 1611–1642. DOI: 10.1070/SM1998v189n11ABEH000364
  2. Denisov V.N. On the behavior of solutions of parabolic equations for large values of time. Russian Math. Surveys, 2005. Vol. 60, No. 4. P. 721–790. DOI: 10.1070/RM2005v060n04ABEH003675
  3. Erdélyi A., Wyman M. The asymptotic evaluation of certain integrals. Arch. Rational Mech. Anal., 1963. Vol. 14, P. 217–260. DOI: 10.1007/BF00250704
  4. Fourier J. Théorie Analytique de la Chaleur. Paris: Firmin Didot Père et Fils, 1822. 639 p. (in French)
  5. Friedman A. Asymptotic Behavior of solutions of parabolic equations of any order. Acta Math., 1961. Vol. 106, No. 1–2. P. 1–43. DOI: 10.1007/BF02545812
  6. Friedman A. Partial Differential Equations of Parabolic Type. New Jersey: Prentice-Hall, Englewood Cliffs, 1964. 347 p.
  7. Gilkey P.B. Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem. Math. Lect. Ser., vol. 11. Delaware: Publish or Perish, Inc., Wilmington, 1984. 512 p.
  8. Il’in A.M., Khas’minskii R.Z. Asymptotic behavior of solutions of parabolic equations and an ergodic property of non-homogeneous diffusion processes. Math. Sb. (N. S.), 1963. Vol. 60, No. 3. P. 366–392. (in Russian)
  9. Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Transl. Math. Monogr., Vol. 102. Am. Math. Soc., 1992. 281 p.
  10. Narasimhan T.N. Fourier’s heat conduction equation: History, influence, and connections. Rev. Geophys., 1999. Vol. 37, No. 1. P. 151–172. DOI: 10.1029/1998RG900006
  11.  Kamin S., Peletier L.A., Vazquez J.L. A nonlinear diffusion-absorption equation with unbounded initial data. In: Nonlin. Diff. Eq. Equilib. Stat. Progr. Nonlinear Differential Equations Appl., vol. 7. Lloyd N.G., Ni W.M., Peletier L.A., Serrin J. (eds.) Boston, MA: Birkhäuser, 1992. Vol. 3, P. 243–263. DOI: 10.1007/978-1-4612-0393-3 18
  12. Krzyżzański M. Sur l’allure asymptotique des solutions d’équations du type parabolique. Bull. Acad. Polon. Sci., 1956. Vol. 4, No. 5. P. 247–251.
  13. Lacey A.A., Tzanetis D.E. Global, unbounded solutions to a parabolic equation. J. Differential Equations, 1993. Vol. 101, No. 1. P. 80–102. DOI: 10.1006/jdeq.1993.1006
  14. Li J. Heat equation in a model matrix geometry. C. R. Math. Acad. Sci. Paris, 2015. Vol. 353, No. 4. P. 351–355. DOI: 10.1016/j.crma.2014.10.024
  15. Lieberman G.M. Second Order Parabolic Differential Equations. River Edge: World Scientific, 1996. 452 p. DOI: 10.1142/3302
  16. Poincaré H. Sur les intégrales irrégulières des équations linéaires. Acta Math., 1886. Vol. 8, No. 1. P. 295–344. DOI: 10.1007/BF02417092 (in French)
  17. Reynolds A. Asymptotic behavior of solutions of nonlinear parabolic equations. J. Differential Equations, 1972. Vol. 12, No. 2. P. 256–261. DOI: 10.1016/0022-0396(72)90032-0
  18. Tychonoff A. Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 1935. Vol. 42, No. 2. P. 199–216. (in French)
  19. Widder D.V. The Heat Equation. New York: Academic Press, 1976. 267 p.
  20. Zakharov S.V. Heat distribution in an infinite rod. Math. Notes, 2006. Vol. 80, No. 3. P. 366–371. DOI: 10.1007/s11006-006-0148-x
  21. Zakharov S.V. Two-parameter asymptotics in the Cauchy problem for a quasi-linear parabolic equation. Asympt. Anal., 2009. Vol. 63, No. 1–2. P. 49–54. DOI: 10.3233/ASY-2008-0927




DOI: http://dx.doi.org/10.15826/umj.2021.1.013

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.