ON THE CHARACTERIZATION OF SCALING FUNCTIONS ON NON-ARCHEMEDEAN FIELDS
Abstract
In real life application all signals are not obtained from uniform shifts; so there is a natural question regarding analysis and decompositions of these types of signals by a stable mathematical tool. This gap was filled by Gabardo and Nashed [11] by establishing a constructive algorithm based on the theory of spectral pairs for constructing non-uniform wavelet basis in \(L^2(\mathbb R)\). In this setting, the associated translation set \(\Lambda =\left\{ 0,r/N\right\}+2\,\mathbb Z\) is no longer a discrete subgroup of \(\mathbb R\) but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair. In this paper, we characterize the scaling function for non-uniform multiresolution analysis on local fields of positive characteristic (LFPC). Some properties of wavelet scaling function associated with non-uniform multiresolution analysis (NUMRA) on LFPC are also established.
Keywords
Full Text:
PDFReferences
- Ahmad I., Sheikh N.A. \(a\)-inner product on local fields of positive characteristic. J. Nonlinear Anal. Appl., 2018. Vol. 2018, No. 2. P. 64–75.
- Ahmad I., Sheikh N.A. Dual wavelet frames in Sobolev spaces on local fields of positive characteristic. Filomat, 2020. Vol. 34, No. 6. P. 2091–2099. DOI: 10.2298/FIL2006091A
- Ahmad O., Sheikh N.A. Explicit construction of tight nonuniform framelet packets on local fields. Oper. Matrices, 2021. Vol. 15, No. 1. P. 131–149. DOI: 10.7153/oam-2021-15-10
- Ahmad O., Sheikh N.A. On characterization of nonuniform tight wavelet frames on local fields. Anal. Theory Appl., 2018. Vol. 34. P. 135–146. DOI: 10.4208/ata.2018.v34.n2.4
- Albeverio S., Evdokimov S., Skopina M. \(p\)-adic multiresolution analysis and wavelet frames. J. Fourier Anal. Appl., 2010. Vol. 16. P. 693–714. DOI: 10.1007/s00041-009-9118-5
- Albeverio S., Kozyrev S. Multidimensional basis of p-adic wavelets and representation theory. \(p\)-Adic Num. Ultrametric Anal. Appl., 2009. Vol. 1. No. 3. P. 181–189. DOI: 10.1134/S2070046609030017
- Behera B., Jahan Q. Multiresolution analysis on local fields and characterization of scaling functions. Adv. Pure Appl. Math., 2012. Vol. 3, No. 2. P. 181–202. DOI: 10.1515/apam-2011-0016
- Behera B., Jahan Q. Characterization of wavelets and MRA wavelets on local fields of positive characteristic. Collect. Math., 2015. Vol. 66, No. 1. P. 33–53. DOI: 10.1007/s13348-014-0116-9
- Benedetto J.J., Benedetto R.L. A wavelet theory for local fields and related groups. J. Geom. Anal., 2004. Vol. 14, No. 3. P. 423–456.
- Cifuentes P., Kazarian K.S., Antolín A.S. Characterization of scaling functions in multiresolution analysis. Proc. Am. Math. Soc., 2005. Vol. 133, No. 4. P. 1013–1023.
- Gabardo J.-P., Nashed M.Z. Nonuniform multiresolution analyses and spectral pairs. J. Funct. Anal., 1998. Vol. 158, No. 1. P. 209–241. DOI: 10.1006/jfan.1998.3253
- Gabardo J.-P., Yu X. Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs. J. Math. Anal. Appl., 2006. Vol. 323, No. 2. P. 798–817. DOI: 10.1016/j.jmaa.2005.10.077
- Jiang H., Li D., Jin N. Multiresolution analysis on local fields. J. Math. Anal. Appl., 2004. Vol. 294, No. 2. P. 523–532. DOI: 10.1016/j.jmaa.2004.02.026
- Khrennikov A.Yu., Kozyrev S.V. Wavelets on ultrametric spaces. Appl. Comput. Harmon. Anal., 2005. Vol. 19. P. 61–76. DOI: 10.1016/j.acha.2005.02.001
- Khrennikov A.Yu., Shelkovich V.M. An infinite family of \(p\)-adic non-Haar wavelet bases and pseudo-differential operators. \(p\)-Adic Num. Ultrametric Anal. Appl., 2009. Vol. 1. P. 204–216. DOI: 10.1134/S2070046609030030
- Khrennikov A.Yu., Shelkovich V.M. Skopina M. \(p\)-adic orthogonal wavelet bases. \(p\)-Adic Num. Ultrametric Anal. Appl., 2009. Vol. 1, No. 2. P. 145–156. DOI: 10.1134/S207004660902006X
- Khrennikov A.Yu., Shelkovich V.M. Skopina M. \(p\)-adic refinable functions and MRA-based wavelets. J. Approx. Theory, 2009. Vol. 161, No. 1. P. 226–238. DOI: 10.1016/j.jat.2008.08.008
- Kozyrev S.V. Wavelet theory as \(p\)-adic spectral analysis. Izv. Math., 2002. Vol. 66, No. 2. P. 149–158.
- Li D., Jiang H. The necessary condition and sufficient conditions for wavelet frame on local fields. J. Math. Anal. Appl., 2008. Vol. 345, No. 1. P. 500–510. DOI: 10.1016/j.jmaa.2008.04.031
- Madych W.R. Some elementary properties of multiresolution analysis of \(L^2(\mathbb R^n)\). In: Wavelets: A Tutorial in Theory and Applications. Vol. 2: Wavelet Analysis and Its Applications. Chui C.K. (ed.), 1992. P. 259–294. DOI: 10.1016/B978-0-12-174590-5.50015-0
- Mallat S.G. Multiresolution approximations and wavelet orthonormal bases of \(L^2(\mathbb R)\). Trans. Amer. Math. Soc., 1989. Vol. 315, No. 1. P. 69–87.
- Shah F.A., Ahmad O. Wave packet systems on local fields. J. Geom. Phys., 2017. Vol. 120. P. 5–18. DOI: 10.1016/j.geomphys.2017.05.015
- Shah F.A., Abdullah. Nonuniform multiresolution analysis on local fields of positive characteristic. Complex Anal. Oper. Theory, 2015. Vol. 9. P. 1589–1608. DOI: 10.1007/s11785-014-0412-0
- Shukla N.K., Maury S.C. Super-wavelets on local fields of positive characteristic. Math. Nachr., 2018. Vol. 291, No. 4. P. 704–719. DOI: 10.1002/mana.201500344
- Taibleson M.H. Fourier Analysis on Local Fields. (MN-15). Princeton, NJ: Princeton University Press, 1975. 306 p.
- Zhang Z. Supports of Fourier transforms of scaling functions. Appl. Comput. Harmon. Anal., 2007. Vol. 22, No. 2. P. 141–156. DOI: 10.1016/j.acha.2006.05.007
Article Metrics
Refbacks
- There are currently no refbacks.