A FRACTIONAL ANALOG OF CRANK–NICHOLSON METHOD FOR THE TWO SIDED SPACE FRACTIONAL PARTIAL EQUATION WITH FUNCTIONAL DELAY
Abstract
For two sided space fractional diffusion equation with time functional after-effect, an implicit numerical method is constructed and the order of its convergence is obtained. The method is a fractional analogue of the Crank–Nicholson method, and also uses interpolation and extrapolation of the prehistory of model with respect to time.
Keywords
Fractional partial differential equation, Grunwald-Letnikov approximations, Grid schemes, Functional delay, Interpolation, Extrapolation, Convergence order
Full Text:
PDFReferences
- Wu J. Theory and applications of partial functional differential equations. New York: Springer–Verlag, 1996. 438p.
- Zhang B., Zhou Y. Qualitative Analysis of Delay Partial Difference Equations. New York: Hindawi Publishing Corporation, 2007. 375 p.
- Tavernini L. Finite difference approximations for a class of semilinear Volterra evolution problems // SIAM J. Numer. Anal., 1977. Vol. 14, no. 5. P. 931–949.
- Van Der Houwen P.J., Sommeijer B.P., Baker C.T.H. On the stability of predictor-corrector methods for parabolic equations with delay // IMA J. Numer. Anal., 1986. Vol. 6. P. 1–23.
- Zubik-Kowal B. The method of lines for parabolic differential-functional equations // IMA J. Numer. Anal., 1997. Vol 17. P. 103–123.
- Kropielnicka K. Convergence of Implicit Difference Methods for Parabolic Functional Differential Equations // Int. Journal of Mat. Analysis, 2007. Vol. 1, no. 6. P. 257–277.
- Garcia P., Castro M.A., Martin J.A., Sirvent A. Convergence of two implicit numerical schemes for diffusion mathematical models with delay // Mathematical and Computer Modelling, 2010. Vol. 52. P. 1279–1287.
- Pimenov V.G., Lozhnikov A.B. Difference schemes for the numerical solution of the heat conduction equation with aftereffect // Proc. Steklov Inst. Math., 2011. Vol. 275. Suppl. 1. P. 137–148.
- Samarskii A.A. Theory of difference schemes. Moscow: Nauka, 1989. 656 p. [In Russian]
- Pimenov V.G. General linear methods for the numerical solution of functional-differential equations // Differential Equations. 2001, Vol. 37, no. 1. P. 116–127.
- Kim A.V., Pimenov V.G. i-smooth calculus and numerical methods for functional differential equations. Moscow–Izhevsk: Regular and Chaotic Dynamics, 2004. 256 p. [In Russian]
- Pimenov V.G., Tashirova E.E. Numerical methods for solving a hereditary equation of hyperbolic type // Proc. Steklov Inst. Math., 2013. Vol. 281. Suppl. 1. P. 126–136.
- Lekomtsev A.V., Pimenov V.G. Convergence of the Alternating Direction Methods for the Numerical solution of a Heat Conduction Equation with Delay // Proc. Steklov Inst. Math., 2011. Vol. 272. Suppl. 1. P. 101–118.
- Lekomtsev A., Pimenov V. Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity // Appl. Math. Comput., 2015. Vol. 256. P. 83–93.
- Pimenov V.G. Difference methods for the solution of the equations in partial derivatives with heredity. Ekaterinburg: Ural Federal University, 2014. 232 p. [In Russian]
- Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications. Boca Raton: CRC Press, 1993. 1006 p.
- Miller K., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993. 384 p.
- Podlubny I. Fractional differential equations. San Diego: Acad. Press, 1999. 368 p.
- Khader M.M., Danaf T.E., Hendy A.S. A computational matrix method for solving systems of high order fractional differential equations// Appl. Math. Modell., 2013. Vol. 37, no. 6. P. 4035–4050.
- Pimenov V., Hendy V. Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev approximations // Abstract and Applied Analysis. 2015. Article ID 510875. P. 1–12.
- Alikhanov A.A. Numerical methods of solutions boundary value problems for multi-term veriable-distributed order diffusion equations // Appl. Math. Comput., 2015. Vol. 268. P. 12–22.
- Meerschaert M.M.,Tadjeran C. Finite difference approximations for two sided space fractional partial differential equations // Applied numerical mathematics, 2006. Vol. 65. P. 80–90.
- Tadjeran C., Meerschaert M.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation // Journal of Computational Physics, 2006. Vol. 213. P. 205–214.
- Pimenov V.G., Hendy A.S. Numerical methods for the equation with fractional derivative on state and with functional delay on time // Bulletin of the Tambov university. Series: Natural and technical science, 2015. Vol. 20, no. 5. P. 1358–1361.
- Wang H., Wang K., Sircar T. A direct O(Nlog2N) finite difference method for fractional diffusion equations // Journal of Computational Physics, 2010. Vol. 229. P. 8095–8104.
- Isaacson E., Keller H.B. Analysis of Numerical Methods. New York: Wiley, 1966. 541 p.
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.