ON LOCAL IRREGULARITY OF THE VERTEX COLORING OF THE CORONA PRODUCT OF A TREE GRAPH

Arika Indah Kristiana     (Department of Mathematics Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)
M. Hidayat     (Department of Mathematics Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)
Robiatul Adawiyah     (Department of Mathematics Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)
D. Dafik     (Department of Mathematics Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)
Susi Setiawani     (Department of Mathematics Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)
Ridho Alfarisi     (Department of Elementary School Education, University of Jember, Jalan Kalimantan 37, 68126, Jember, Jawa Timur, Indonesia)

Abstract


Let \(G=(V,E)\) be a graph with a vertex set \(V\) and an edge set \(E\). The graph \(G\) is said to be with a local irregular vertex coloring if there is a function \(f\) called a local irregularity vertex coloring with the properties: (i) \(l:(V(G)) \to \{ 1,2,...,k \} \) as a vertex irregular \(k\)-labeling and \(w:V(G)\to N,\) for every \(uv \in E(G),\) \({w(u)\neq w(v)}\) where \(w(u)=\sum_{v\in N(u)}l(i)\) and  (ii) \(\mathrm{opt}(l)=\min\{ \max \{ l_{i}:  l_{i} \ \text{is a vertex irregular labeling}\}\}\). The chromatic number of the local irregularity vertex coloring of \(G\) denoted by \(\chi_{lis}(G)\), is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular vertex coloring of \(P_m\bigodot G\) when \(G\) is a family of tree graphs, centipede \(C_n\), double star graph \((S_{2,n})\), Weed graph \((S_{3,n})\), and \(E\) graph \((E_{3,n})\).

 


Keywords


Local irregularity, Corona product, Tree graph family.

Full Text:

PDF

References


  1. Fructh R., Harary F. On the corona of two graphs. Aequationes Math., 1970. Vol. 4. P. 322–325. DOI: 10.1007/BF01844162
  2. Kristiana A.I., Dafik, Utoyo M.I., Slamin, Alfarisi R., Agustin I.H., Venkatachalam M. Local irregularity vertex coloring of graphs. Int. J. Civil Eng. Technol., 2019. Vol. 10, No. 3. P. 1606–1616.
  3. Kristiana A.I., Utoyo M.I., Dafik, Agustin I.H., Alfarisi R., Waluyo E. On the chromatic number local irregularity of related wheel graph. J. Phys.: Conf. Ser., 2019. Vol. 1211. Art. no. 0120003. P. 1–10. DOI: 10.1088/1742-6596/1211/1/012003
  4. Kristiana A.I., Alfarisi R., Dafik, Azahra N. Local irregular vertex coloring of some families of graph. J. Discrete Math. Sci. Cryptogr., 2020. P. 15–30. DOI: 10.1080/09720529.2020.1754541




DOI: http://dx.doi.org/10.15826/umj.2022.2.008

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.