ON LOCAL IRREGULARITY OF THE VERTEX COLORING OF THE CORONA PRODUCT OF A TREE GRAPH
Abstract
Let \(G=(V,E)\) be a graph with a vertex set \(V\) and an edge set \(E\). The graph \(G\) is said to be with a local irregular vertex coloring if there is a function \(f\) called a local irregularity vertex coloring with the properties: (i) \(l:(V(G)) \to \{ 1,2,...,k \} \) as a vertex irregular \(k\)-labeling and \(w:V(G)\to N,\) for every \(uv \in E(G),\) \({w(u)\neq w(v)}\) where \(w(u)=\sum_{v\in N(u)}l(i)\) and (ii) \(\mathrm{opt}(l)=\min\{ \max \{ l_{i}: l_{i} \ \text{is a vertex irregular labeling}\}\}\). The chromatic number of the local irregularity vertex coloring of \(G\) denoted by \(\chi_{lis}(G)\), is the minimum cardinality of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular vertex coloring of \(P_m\bigodot G\) when \(G\) is a family of tree graphs, centipede \(C_n\), double star graph \((S_{2,n})\), Weed graph \((S_{3,n})\), and \(E\) graph \((E_{3,n})\).
Keywords
Full Text:
PDFReferences
- Fructh R., Harary F. On the corona of two graphs. Aequationes Math., 1970. Vol. 4. P. 322–325. DOI: 10.1007/BF01844162
- Kristiana A.I., Dafik, Utoyo M.I., Slamin, Alfarisi R., Agustin I.H., Venkatachalam M. Local irregularity vertex coloring of graphs. Int. J. Civil Eng. Technol., 2019. Vol. 10, No. 3. P. 1606–1616.
- Kristiana A.I., Utoyo M.I., Dafik, Agustin I.H., Alfarisi R., Waluyo E. On the chromatic number local irregularity of related wheel graph. J. Phys.: Conf. Ser., 2019. Vol. 1211. Art. no. 0120003. P. 1–10. DOI: 10.1088/1742-6596/1211/1/012003
- Kristiana A.I., Alfarisi R., Dafik, Azahra N. Local irregular vertex coloring of some families of graph. J. Discrete Math. Sci. Cryptogr., 2020. P. 15–30. DOI: 10.1080/09720529.2020.1754541
Article Metrics
Refbacks
- There are currently no refbacks.