Ermamat N. Sattorov     (Samarkand State University, Samarkand boulevard 15, Samarkand, Uzbekistan)
Zuxro E. Ermamatova     (Samarkand State University, Samarkand boulevard 15, Samarkand, Uzbekistan)


We suggest an explicit continuation formula for a solution to the Cauchy problem for the Poisson equation in a domain from its values and values of its normal derivative on a part of the boundary. We construct the continuation formula of this problem based on the Carleman--Yarmuhamedov function method.


Poisson equations, Ill-posed problem, Regular solution, Carleman--Yarmuhamedov function, Green's formula, Carleman formula, Mittag-Leffler entire function.

Full Text:



  1. Aizenberg L.A., Tarkhanov N.N. An abstract Carleman formula. Dokl. Math., 1988. Vol. 37, No. 1. P. 235–238.
  2. Aizenberg L.A. Carleman’s Formulas in Complex Analysis. Theory and Applications. Math. Applications, vol. 244. Dordrecht: Springer, 1993. 299 p. DOI: 10.1007/978-94-011-1596-4
  3. Alessandrini G., Rondi L., Rosset E., and Vessella S. The stability for the Cauchy problem for elliptic equations. Inverse problems, 2009. Vol. 25, No. 12. Art. no. 123004. DOI: 10.1088/0266-5611/25/12/123004
  4. Arbuzov E.V., Bukhgeim A.L. The Carleman’s formula for the Maxwell’s equations on a plane. Sib. Elektron. Mat. Izv., 2008. No. 5. P. 448–455. (in Russian)
  5. Belgacem F.B. Why is the Cauchy problem severely ill-posed? Inverse problems, 2007. Vol. 23, No. 2. P. 823–836. DOI: 10.1088/0266-5611/23/2/020
  6. Bers L., John F., Schechter M. Partial Differential Equations. NY: Interscience, 1964. 343 p. 
  7. Blum J. Numerical Simulation and Optimal Control in Plasma Physics. With Applications to Tokamaks. NY: John Wiley and Sons Inc., 1989. 363 p.
  8. Carleman T. Les Founctions Quasi Analitiques. Gauthier-Villars, Paris, 1926. 115 p. (in French) 
  9. Chen G., Zhou J. Boundary Element Methods. London etc.: Academic Press, 1992. 646 p.
  10. Colli-Franzone P., Guerri L., Tentoni S., Viganotti C., Baruffi S., Spaggiari S., Taccardi B. A mathematical procedure for solving the inverse potential problem of electrocardiography. analysis of the time-space accuracy from in vitro experimental data. Math. Biosci., 1985. Vol. 77, No. 1–2. P. 353–396. DOI: 10.1016/0025-5564(85)90106-3
  11. Dzhrbashyan M.M. Integral’nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti [Integral Transformations and Representations of Functions in a Compkjoplex Domain.] M.: Nauka, 1966. 670 p. (in Russian)
  12. Ermamatova Z.E. Carleman’s formula of a solution of the Poisson equation. Int. J. Integrated Education, 2021. Vol. 4, No. 7. P. 112–117. 
  13. Fasino D., Inglese G. An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse problems, 1999. Vol. 15, No. 1. P. 41–48. DOI: 10.1088/0266-5611/15/1/008
  14. Fok V.A., Kuni F.M. On the introduction of a ’suppressing’ function in dispersion relations. Dokl. Akad. Nauk SSSR, 1959. Vol. 127, No. 6. P. 1195–1198. (in Russian)
  15. Gilbarg D., Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Berlin-Heidelberg-NY-Tokyo: Springer–Verlag, 1983. 513 p.
  16. Goluzin G.M., Krylov V.I. A generalized Carleman formula and its application to analytic continuation of functions. Mat. Sb., 1933. Vol. 40, No. 2. P. 144–149. (in Russian)
  17. Hadamard J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale University Press, 1923. 334 p.
  18. Hu X., Mu L., Ye X. A simple finite element method of the Cauchy problem for Poisson equation. Int. J. Numer. Anal. Model., 2017. Vol. 14, No. 4–5. P. 591–603.
  19. Inglese G. An inverse problem in corrosion detection. Inverse problems, 1997. Vol. 13, No. 4. P. 977–994. DOI: 10.1088/0266-5611/13/4/006
  20. Ivanov V.K. Cauchy problem for the Laplace equation in an infinite strip. Differ. Uravn., 1965. Vol. 1, No. 1. P. 131–136. (in Russian)
  21. Kabanikhin S.I. Inverse and Ill-Posed Problems: Theory and Applications. Berlin: De Gruyter, 2011. 459 p. DOI: 10.1515/9783110224016 
  22. Lattès R., Lions J.-L. The Method of Quasi-Reversibility: Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics, vol. 18. NY: American Elsevier Pub. Co., 1969. 388 p.
  23. Lavrentiev M.M. Some Improperly Posed Problems of Mathematical Physics. Springer, Berlin, 1967. 76 p. DOI: 10.1007/978-3-642-88210-4
  24. Lavrentiev M.M. On Cauchy problem for linear elliptical equations of the second order. Dokl. Akad. Nauk SSSR, 1957. Vol. 112, No. 2. P. 195–197. (in Russian) 
  25. Makhmudov O.I. The Cauchy problem for a system of equations of the theory of elasticity and thermoelasticity in space. Russian Math. (Iz. VUZ), 2004. Vol. 48, No. 2. P. 40–50.
  26. Makhmudov O., Niyozov I., Tarkhanov N. The Cauchy problem of couple-stress elasticity. Contemporary Math., 2008. Vol. 455. P. 297–310.
  27. Makhmudov K.O., Makhmudov O.I., Tarkhanov N. Equations of Maxwell type. J. Math. Anal. App., 2011. Vol. 378, No. 1. P. 64–75. DOI: 10.1016/j.jmaa.2011.01.012 
  28. Mergelyan S.N. Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation. Uspekhi Mat. Nauk, 1956. Vol 11, No. 5. P. 3–26. 
  29. Miranda C. Partial Differential Equations of Elliptic Type. Berlin, Heidelberg, NY: Springer, 1970. 370 p. DOI: 10.1007/978-3-642-87773-5
  30. Peicheva A.S. Regularization of the Cauchy problem for elliptic operators. J. Sibirian Federal University. Math. Phy., 2018. Vol. 2. P. 191–193. DOI: 10.17516/1997-1397-2018-18-2-191-193
  31. Sattorov E.N. Regularization of the solution of the Cauchy problem for the generalized Moisil-Theodoresco system. Diff. Equat., 2008. Vol. 44. P. 1136–1146. DOI: 10.1134/S0012266108080119
  32. Sattorov E.N. Continuation of a solution to a homogeneous system of Maxwell equations. Russian Math. (Iz. VUZ), 2008. Vol. 52, No. 8. P. 65–69. DOI: 10.3103/S1066369X08080094 
  33. Sattorov E.N. On the continuation of the solutions of a generalized Cauchy-Riemann system in space. Math. Notes, 2009. Vol. 85, No. 5. P. 733–745. DOI: 10.1134/S0001434609050149
  34. Sattorov E.N. Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain. Math. Notes, 2009. Vol. 86, No. 6. P. 422–431. DOI: 10.1134/S0001434609090156
  35. Sattorov E.N. Reconstruction of solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the boundary. Russian Math., 2011. Vol. 55, No. 1. P. 62–73. DOI: 10.3103/S1066369X11010075
  36. Sattorov E.N., Ermamatova Z.E. Recovery of solutions to homogeneous system of Maxwell’s equations with prescribed values on a part of the boundary of domain. Russian Math., 2019. Vol. 63, No. 2. P. 35–43. DOI: 10.3103/S1066369X19020051
  37. Sattorov E.N., Ermamatova F.E. Carleman’s formula for solutions of the generalized Cauchy–Riemann system in multidimensional spatial domain. Contem. Problems Math. Phys., 2019. Vol. 65, No. 1. P. 95–108. DOI: 10.22363/2413-3639-2019-65-1-95-108
  38. Sattorov E.N., Ermamatova F.E. On continuation of solutions of generalized Cauchy–Riemann system in an unbounded subdomain of multidimensional space. Russian Math., 2021. Vol. 65, No. 2. P. 22–38. DOI: 10.3103/S1066369X21020031 
  39. Sattorov E.N., Ermamatova F.E. Cauchy problem for a generalized Cauchy–Riemann system in a multidimensional bounded spatial domain. Diff. Equat., 2021. Vol. 57, No. 1. P. 86–99. DOI: 10.1134/S0012266121010079 
  40. Sattorov E.N., Mardanov D.A. The Cauchy problem for the system of Maxwell equations. Siberian Math. J., 2003. Vol. 44, No. 4. P. 671–679. DOI: 10.1023/A:1024788607969 
  41. Tarkhanov N.N. The Carleman matrix for elliptic systems. Dokl. Akad. Nauk SSSR, 1985. Vol. 284, No. 2. P. 294–297. (in Russian) 
  42. Tarkhanov N.N. The Cauchy Problem for Solutions of Elliptic Equations. Berlin: Akad. Verl., 1995. 479 p. 
  43. Tikhonov A.N. On the solution of ill-posed problems and the method of regularization. Dokl. Akad. Nauk SSSR, 1963. Vol. 151, No. 3. P. 501–504. (in Russian) 
  44. Tikhonov A.N., Arsenin V.Y. Solutions of Ill-Posed Problems. NY: John Wiley & Sons, 1977. 
  45. Yarmukhamedov Sh. On the Cauchy problem for Laplace’s equation. Dokl. Akad. Nauk SSSR, 1977. Vol. 235, No. 2. P. 281–283. (in Russian)
  46. Yarmukhamedov Sh. Continuing solutions to the Helmholtz equation. Doklady Math., (1997). Vol. 56,  No. 3. P. 887–890. 
  47. Yarmukhamedov Sh. A Carleman function and the Cauchy problem for the Laplace equation. Sib. Math. J., 2004. Vol. 45, No. 3. P. 580–595 DOI: 10.1023/B:SIMJ.0000028622.69605.c0
  48. Yarmukhamedov Sh. Representation of Harmonic Functions as Potentials and the Cauchy Problem. Math. Notes, 2008. Vol. 83, No. 5. P. 693–706. DOI: 10.1134/S0001434608050131


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.