BIHARMONIC GREEN FUNCTION AND BISUPERMEDIAN ON INFINITE NETWORKS

Manivannan Varadha Raj     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India)
Venkataraman Madhu     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India)

Abstract


In this article, we have discussed Biharmonic Green function on an infinite network and bimedian functions. We have proved some standard results in terms of supermedian and bimedian. Also, we have proved the Discrete Riquier problem in the setting of bimedian functions.

Keywords


Biharmonic Green function, Bisupermedian function, Dirichlet problem, Discrete Riquier problem, Hyperbolic networks

Full Text:

PDF

References


  1. Abodayeh K., Anandam V. Bipotential and biharmonic potential on infinite network. Int. J. Pure. Appl. Math., 2017. Vol. 112. No. 2 P. 321–332. DOI: 10.12732/ijpam.v112i2.9
  2. Abodayeh K., Anandam V. Schrödinger networks and their Cartesian products. Math. Methods Appl. Sci., 2021. Vol. 44. No. 6. P. 4342–4347. DOI: 10.1002/mma.7034
  3. Al-Gwaiz M.A., Anandam V. On the representation of biharmonic functions with singularities in \(\mathbb{R}^n\). Indian J. Pure Appl. Math., 2013. Vol. 44. No. 3. P. 263–276. DOI: 10.1007/s13226-013-0013-z
  4. Anandam V. Harmonic Functions and Potentials on Finite or Infinite Networks. Ser. Lect. Notes Unione Mat. Ital, vol. 12. Berlin, Heidelberg: Springer, 2011. DOI: 10.1007/978-3-642-21399-1
  5. Anandam V. Some potential-theoretic techniques in non-reversible Markov chains. Rend. Circ. Mat. Palermo (2), 2013. Vol. 62, No. 2. P. 273–284.
  6. Anandam V. Biharmonic classification of harmonic spaces. Rev. Roumaine Math. Pures Appl., 2000. Vol. 41. P. 383–395.
  7. Bendito E., Carmona Á., Encinas A.M. Potential theory for Schrödinger operators on finite networks. Rev. Mat. Iberoamenicana, 2005. Vol. 21, No. 3. P. 771–818. DOI: 10.4171/RMI/435
  8. Brelot M. Lesétapes et les aspects multiples de la théorie du potential. Enseign. Math., II. Sér. 18, 1972. Vol. 58. P. 1–36. (in French)
  9. Lyons T. A simple criterion for transience of a reversible Markov chain. Ann. Probab., 1983. Vol. 11, No. 2. P. 393–402. DOI: 10.1214/aop/1176993604
  10. Nash-Williams C.St J.A. Random walk and electric currents in networks. Math. Proc. Camb. Philos. Soc., 1959. Vol. 55, No. 2. P. 181–195. DOI: 10.1017/S0305004100033879
  11. Venkataraman M. Laurent decomposition for harmonic and biharmonic functions in an infinite network. Hokkaido Math. J., 2013. Vol. 42, No. 3. P. 345–356. DOI: 10.14492/hokmj/1384273386
  12. Woess W. Random Walks on Infinite Graphs and Groups. Ser. Cambrige Tracts in Mathematics, vol. 138. Cambridge: Cambridge University Press, 2000. 334 p. DOI: 10.1017/CBO9780511470967
  13. Zemanian A.H. Infinite Electrical Networks. Ser. Cambrige Tracts in Mathematics, vol. 101. Cambridge: Cambridge University Press, 1991. 308 p. DOI: 10.1017/CBO9780511895432




DOI: http://dx.doi.org/10.15826/umj.2022.2.015

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.