TERNARY ∗-BANDS ARE GLOBALLY DETERMINED
Abstract
A non-empty set \(S\) together with the ternary operation denoted by juxtaposition is said to be ternary semigroup if it satisfies the associativity property \(ab(cde)=a(bcd)e=(abc)de\) for all \(a,b,c,d,e\in S\). The global set of a ternary semigroup \(S\) is the set of all non empty subsets of \(S\) and it is denoted by \(P(S)\). If \(S\) is a ternary semigroup then \(P(S)\) is also a ternary semigroup with a naturally defined ternary multiplication. A natural question arises: "Do all properties of \(S\) remain the same in \(P(S)\)?"
The global determinism problem is a part of this question. A class \(K\) of ternary semigroups is said to be globally determined if for any two ternary semigroups \(S_1\) and \(S_2\) of \(K\), \(P(S_1)\cong P(S_2)\) implies that \(S_1\cong S_2\). So it is interesting to find the class of ternary semigroups which are globally determined. Here we will study the global determinism of ternary \(\ast\)-band.
Keywords
Full Text:
PDFReferences
- Gan A., Zhao X. Global determinism of Clifford semigroups. J. Aust. Math. Soc., 2014. Vol. 97, No. 1. P. 63–77. DOI: 10.1017/S1446788714000032
- Gan A., Zhao X., Shao Y. Globals of idempotent semigroups. Commun. Algebra, 2016. Vol. 44, No. 9. P. 3743–3766. DOI: 10.1080/00927872.2015.1087006
- Gan A., Zhao X., Ren M. Global determinism of semigroups having regular globals. Period. Math. Hung., 2016. Vol. 72. P. 12-22. DOI: 10.1007/s10998-015-0107-y
- Gould M., Iskra J.A. Globally determined classes of semigroups. Semigroup Forum, 1984. Vol. 28. P. 1–11. DOI: 10.1007/BF02572469
- Gould M., Iskra J.A., Tsinakis C. Globals of completely regular periodic semigroups. Semigroup Forum, 1984. Vol. 29. P. 365–374.
- Gould M., Iskra J.A., Tsinakis C. Globally determined lattices and semilattices. Algebra Universalis, 1984. Vol. 19. P. 137–141. DOI: 10.1007/BF01190424
- Kar S., Dutta I. Globally determined ternary semigroups. Asian-Eur. J. Math., 2017. Vol. 10, No. 3. Art. no. 1750038. 13 p. DOI: 10.1142/S1793557117500383
- Kar S., Dutta I. Global determinism of ternary semilattices. Asian-Eur. J. Math., 2020. Vol. 13, No. 4. Art. no. 2050083. 9 p. DOI: 10.1142/S1793557120500837
- Kobayashi Y. Semilattices are globally determined. Semigroup Forum, 1984. Vol. 29. P. 217–222. DOI: 10.1007/BF02573326
- Tamura T. Power semigroups of rectangular groups. Math. Japon., 1984. Vol. 29. P. 671–678.
- Tamura T., Shafer J. Power semigroups. Math. Japon., 1967. Vol. 12. P. 25–32.
- Yu B., Zhao X., Gan A. Global determinism of idempotent semigroups. Communm Algebra, 2018. Vol. 46. P. 241–253. DOI: 10.1080/00927872.2017.1319474
- Vinčić M. Global determinism of *-bands. In: IMC Filomat 2001, Niš, August 26–30, 2001. 2001. P. 91–97.
Article Metrics
Refbacks
- There are currently no refbacks.