ON SOME VERTEX-TRANSITIVE DISTANCE-REGULAR ANTIPODAL COVERS OF COMPLETE GRAPHS
Abstract
In the present paper, we classify abelian antipodal distance-regular graphs \(\Gamma\) of diameter 3 with the following property: \((*)\) \(\Gamma\) has a transitive group of automorphisms \(\widetilde{G}\) that induces a primitive almost simple permutation group \(\widetilde{G}^{\Sigma}\) on the set \({\Sigma}\) of its antipodal classes. There are several infinite families of (arc-transitive) examples in the case when the permutation rank \({\rm rk}(\widetilde{G}^{\Sigma})\) of \(\widetilde{G}^{\Sigma}\) equals 2 moreover, all such graphs are now known. Here we focus on the case \({\rm rk}(\widetilde{G}^{\Sigma})=3\).Under this condition the socle of \(\widetilde{G}^{\Sigma}\) turns out to be either a sporadic simple group, or an alternating group, or a simple group of exceptional Lie type, or a classical simple group. Earlier, it was shown that the family of non-bipartite graphs \(\Gamma\) with the property \((*)\) such that \(rk(\widetilde{G}^{\Sigma})=3\) and the socle of \(\widetilde{G}^{\Sigma}\) is a sporadic or an alternating group is finite and limited to a small number of potential examples. The present paper is aimed to study the case of classical simple socle for \(\widetilde{G}^{\Sigma}\). We follow a classification scheme that is based on a reduction to minimal quotients of \(\Gamma\) that inherit the property \((*)\). For each given group \(\widetilde{G}^{\Sigma}\) with simple classical socle of degree \(|{\Sigma}|\le 2500\), we determine potential minimal quotients of \(\Gamma\), applying some previously developed techniques for bounding their spectrum and parameters in combination with the classification of primitive rank 3 groups of the corresponding type and associated rank 3 graphs. This allows us to essentially restrict the sets of feasible parameters of \(\Gamma\) in the case of classical socle for \(\widetilde{G}^{\Sigma}\) under condition \(|{\Sigma}|\le 2500.\)
Keywords
Full Text:
PDFReferences
- Aschbacher M. Finite Group Theory, 2-nd ed. Cambridge: Cambridge University Press, 2000. 305 p. DOI: 10.1017/CBO9781139175319
- Brouwer A.E., Cohen A.M., Neumaier A. Distance-Regular Graphs. Berlin etc: Springer-Verlag, 1989. 494 p. DOI: 10.1007/978-3-642-74341-2
- Brouwer A.E., Van Maldeghem H. Strongly Regular Graphs. Cambridge: Cambridge University Press, 2022. 462 p. DOI: 10.1017/9781009057226
- Conway J., Curtis R., Norton S., Parker R., Wilson R. Atlas of Finite Groups. Oxford: Clarendon Press, 1985. 252 p.
- Godsil C.D., Hensel A.D. Distance regular covers of the complete graph. J. Comb. Theory Ser. B, 1992. Vol. 56, No. 2. P. 205–238. DOI: 10.1016/0095-8956(92)90019-T
- Godsil C.D., Liebler R.A., Praeger C.E. Antipodal distance transitive covers of complete graphs. Europ. J. Comb., 1998. Vol. 19, No. 4. P. 455–478. DOI: 10.1006/eujc.1997.0190
- Gorenstein D. Finite Simple Groups: An Introduction to Their Classification. New York: Springer, 1982. DOI: 10.1007/978-1-4684-8497-7
- Kantor W.M., Liebler R.A. The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc., 1982. Vol. 271, No. 1. P. 1–71. DOI: 10.2307/1998750
- Klin M., Pech C. A new construction of antipodal distance-regular covers of complete graphs through the use of Godsil-Hensel matrices. Ars Math. Contemp., 2011. Vol. 4. P. 205–243. DOI: 10.26493/1855-3974.191.16b
- Klin M., Pech C., Reichard S. COCO2P — a GAP4 Package, ver. 0.18, 2020. URL: https://github.com/chpech/COCO2P/.
- Liebeck M.W., Saxl J. The finite primitive permutation groups of rank three. Bull. London Math. Soc., 1986. Vol. 18, No. 2. P. 165–172. DOI: 10.1112/blms/18.2.165
- Mazurov V.D. Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups. Algebr. Logic, 1993. Vol. 32, No. 3. P. 142–153. DOI: 10.1007/BF02261693
- Roney-Dougal C.M. The primitive permutation groups of degree less than 2500. J. Algebra, 2005. Vol. 292, No. 1. P. 154–183. DOI: 10.1016/j.jalgebra.2005.04.017
- The GAP – Groups, Algorithms, and Programming – a System for Computational Discrete Algebra, ver. 4.7.8, 2015. URL: https://www.gap-system.org/
- Soicher L.H. The GRAPE package for GAP, ver. 4.6.1, 2012. URL: https://github.com/gap-packages/grape.
- Tsiovkina L.Yu. On a class of vertex-transitive distance-regular covers of complete graphs. Sib. Elektron. Mat. Izv., 2021. Vol. 8, No. 2. P. 758–781. (in Russian) DOI: 10.33048/semi.2021.18.056
- Tsiovkina L.Yu. On a class of vertex-transitive distance-regular covers of complete graphs II. Sib. Electron. Mat. Izv., 2022. Vol. 19, No. 1. P. 348–359. (in Russian) DOI: 10.33048/semi.2022.19.030
- Vasil’ev A.V., Mazurov V.D. Minimal permutation representations of finite simple orthogonal groups. Algebr. Logic, 1995. Vol. 33, No. 6. P. 337–350. DOI: 10.1007/BF00756348
Article Metrics
Refbacks
- There are currently no refbacks.