Md. Yasin Ali     (Faculty of Science and Engineering, University of Information Technology and Sciences, Dhaka-1212, Bangladesh)


Similarity measures of fuzzy sets are applied to compare the closeness among fuzzy sets. These measures have numerous applications in pattern recognition, image processing, texture synthesis, medical diagnosis, etc. However, in many cases of pattern recognition, digital image processing, signal processing, and so forth, the similarity measures of the fuzzy sets are not appropriate due to the presence of dual information of an object, such as amplitude term and phase term. In these cases, similarity measures of complex fuzzy sets are the most suitable for measuring proximity between objects with two-dimensional information. In the present paper, we propose some trigonometric similarity measures of the complex fuzzy sets involving similarity measures based on the sine, tangent, cosine, and cotangent functions. Furthermore, in many situations in real life, the weight of an attribute plays an important role in making the right decisions using similarity measures. So in this paper, we also consider the weighted trigonometric similarity measures of the complex fuzzy sets, namely, the weighted similarity measures based on the sine, tangent, cosine, and cotangent functions. Some properties of the similarity measures and the weighted similarity measures are discussed. We also apply our proposed methods to the pattern recognition problem and compare them with existing methods to show the validity and effectiveness of our proposed methods.


Complex fuzzy set, Similarity measures, Pattern recognition

Full Text:



  1. Alkouri A.U.M., Salleh A.R. Linguistic variables, hedges and several distances on complex fuzzy sets. J. Intell. Fuzzy Syst., 2014. Vol. 26, No. 5. P. 2527–2535. DOI: 10.3233/IFS-130923
  2. Balopoulos V., Hatzimichailidis A.G., Papadopoulos B.K. Distance and similarity measures for fuzzy operators. Inform. Sci., 2007. Vol. 177, No. 11. P. 2336–2348. DOI: 10.1016/j.ins.2007.01.005
  3. Bi L., Dai S., Hu B. Complex fuzzy geometric aggregation operators. Symmetry, 2018. Vol. 10, No. 7. Art. no. 251. DOI: 10.3390/sym10070251
  4. Bi L. et al. Complex fuzzy arithmetic aggregation operators. J. Intell. Fuzzy Syst., 2019. Vol. 36, No. 3. P. 2765–2771. DOI: 10.3233/JIFS-18568
  5. Bosteels K., Kerre E.E. A triparametric family of cardinality-based fuzzy similarity measures. Fuzzy Sets and Systems, 2007. Vol. 158, No. 22. P. 2466–2479. DOI: 10.1016/j.fss.2007.05.006
  6. Bouchon-Meunier B., Coletti G., Lesot M.-J., Rifqi M. Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Lecture Notes in Computer Sci., vol. 6178: Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. E. Hüllermeier, R. Kruse, F. Hoffmann (eds.). Berlin, Heidelberg: Springer, 2010. P. 1–10. DOI: 10.1007/978-3-642-14049-5_1
  7. Camastra F. et al., Fuzzy similarity-based hierarchical clustering for atmospheric pollutants prediction. In: Lecture Notes in Computer Sci., vol. 11291: Fuzzy Logic and Applications. WILF 2018. Fullér R., Giove S., Masulli F. (eds.). Cham: Springer, 2019. P. 123–133. DOI: 10.1007/978-3-030-12544-8_10
  8. Cheng S.-H., Chen S.-M., Jian W.-S. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Inform. Sci., 2016. Vol. 327. P. 272–287. DOI: 10.1016/j.ins.2015.08.024
  9. Chen S.-M., Yeh M.-S., Hsiao P.-Y. A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems, 1995. Vol. 72, No. 1. P. 79–89. DOI: 10.1016/0165-0114(94)00284-E
  10. Ciaramella A., Nardone D., Staiano A. Data integration by fuzzy similarity-based hierarchical clustering. BMC Bioinformatics, 2020. Vol. 21, No. Suppl. 10. Art. no. 350. DOI: 10.1186/s12859-020-03567-6
  11. Couso I., Garrido L., Sánchez L. Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Inform. Sci., 2013. Vol. 229. P. 122–141. DOI: 10.1016/j.ins.2012.11.012
  12. De Baets B., De Meyer H. Transitivity-preserving fuzzification schemes for cardinality-based similarity measures. European J. Oper. Res., 2005. Vol. 160, No. 3. P. 726–740. DOI: 10.1016/j.ejor.2003.06.036
  13. Goyal S., Kumar S., Shukla A.K. Fuzzy similarity measure based spectral clustering framework for noisy image segmentation. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 2017. Vol. 25, No. 4. P. 649–673. DOI: 10.1142/S0218488517500283
  14.  Guo W., Bi L., Hu B., Dai S. Cosine similarity measure of complex fuzzy sets and robustness of complex fuzzy connectives. Math. Probl. Eng., 2020. Vol. 2020. Art. no. 6716819. DOI: 10.1155/2020/6716819
  15. Hesamian G., Chachi J. On similarity measures for fuzzy sets with applications to pattern recognition, decision making, clustering, and approximate reasoning. J. Uncertain Systems, 2017. Vol. 11, No. 1. P. 35–48.
  16. Hu B., Bi L., Dai S. The orthogonality between complex fuzzy sets and its application to signal detection. Symmetry, 2017. Vol. 9, No. 9. Art. no. 175. DOI: 10.3390/sym9090175
  17. Hyung L.-K., Song Y.-S., Lee K.-M. Similarity measures between fuzzy sets and between elements. Fuzzy Sets and Systems, 1994. Vol. 62, No. 3. P. 291–293. DOI: 10.1016/0165-0114(94)90113-9
  18. Lee S.-H., Pedrycz W., Sohn G. Design of similarity and dissimilarity measures for fuzzy sets on the basis of distance measure. Int. J. Fuzzy Syst., 2009. Vol. 11, No. 2. P. 67–72.
  19. Li C., Wu T., Chan F.-T. Self-learning complex neuro-fuzzy system with complex fuzzy sets and its application to adaptive image noise canceling. Neurocomputing, 2012. Vol. 94. P. 121–139. DOI: 10.1016/j.neucom.2012.04.011
  20. Liu P., Ali Z., Mahmood T. The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making. J. Intell. Fuzzy Syst., 2020. Vol. 39, No. 3. P. 3351–3374. DOI: 10.3233/JIFS-191718
  21. Ma J., Zhang G., Lu J. A method for multiple periodic factor prediction problems using complex fuzzy sets. IEEE Trans. Fuzzy Syst., 2011. Vol. 20, No. 1. P. 32–45. DOI: 10.1109/TFUZZ.2011.2164084
  22. Ma J., Feng L., Yang J. Using complex fuzzy sets for strategic cost evaluation in supply chain downstream. In: 2017 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2017. P. 1–6. DOI: 10.1109/FUZZ-IEEE.2017.8015452
  23. Pal A. et al. Similarity in fuzzy systems. J. Uncertain. Anal. Appl., 2014. Vol. 2, No. 18. DOI: 10.1186/s40467-014-0018-0
  24. Pappis C.P., Karacapilidis N.I. A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems, 1993. Vol. 56. P. 171–174. DOI: 10.1016/0165-0114(93)90141-4
  25. Ramot D. et al., Complex fuzzy sets. IEEE Trans. Fuzzy Syst., 2002. Vol. 10, No. 9. P. 171–186. DOI: 10.1109/91.995119
  26. Raha S., Hossain A., Ghosh S. Similarity based approximate reasoning: fuzzy control. J. Appl. Log., 2008. Vol. 6. P. 47–71. DOI: 10.1016/j.jal.2007.01.001
  27. Ren S., Ye J. Multicriteria decision-making method using cosine similarity measures for reduct fuzzy sets of interval-valued fuzzy sets. J. Comput., 2014. Vol. 9, no. 1. P. 107–111. DOI: 10.4304/jcp.9.1.107-111
  28. Sahoo L. Similarity measures for Fermatean fuzzy sets and its applications in group decision-making. Decis. Sci. Letters, 2022. Vol. 11. P. 167–180. DOI: 10.5267/j.dsl.2021.11.003
  29. Van der Weken D. at al. A survey on the use and the construction of fuzzy similarity measures in image processing. In: CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Giardini Naxos (ed), Italy, 20-22 July 2005, 2005. P. 187–192. DOI: 10.1109/CIMSA.2005.1522858
  30. Wang W.J. New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 1997. Vol. 85, No. 3. P. 305–309. DOI: 10.1016/0165-0114(95)00365-7
  31. Xuecheng L. Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets and Systems, 1992. Vol. 52. P. 305–318. DOI: 10.1016/0165-0114(92)90239-Z
  32. Yang M.-S., Hung W.-L., Chang-Chien S.-J. On a similarity measure between LR-type fuzzy numbers and its application to database acquisition. Int. J. Intell. Syst., 2005. Vol. 20. P. 1001–1016. DOI: 10.1002/int.20102
  33. Yeung D.S., Tsang E.C.C. A comparative study on similarity based fuzzy reasoning methods. IEEE Trans. SMC Part B: Cyber., 1997. Vol. 27, No. 2. P. 216–227. DOI: 10.1109/3477.558802
  34. Zadeh L.A. Fuzzy sets. Inform. Control, 1965. Vol. 8, No. 3. P. 338–353. DOI: 10.1016/S0019-9958(65)90241-X
  35. Zhang G. et al. Operation properties and δ-equalities of complex fuzzy sets. Int. J. Approx. Reason., 2009. Vol. 50, No. 8. P. 1227–1249. DOI: 10.1016/j.ijar.2009.05.010
  36. Zwick R., Carlstein E., Budescu D. Measures of similarity among fuzzy sets: A comparative analysis. Int. J. Approximate Reasoning, 1987. Vol. 1. P. 221–242. DOI: 10.1016/0888-613X(87)90015-6


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.