KERNEL DETERMINATION PROBLEM FOR ONE PARABOLIC EQUATION WITH MEMORY
Abstract
This paper studies the inverse problem of determining a multidimensional kernel function of an integral term which depends on the time variable \(t\) and \((n-1)\)-dimensional space variable \(x'= \left(x_1,\ldots, x_ {n-1}\right)\) in the \(n\)-dimensional diffusion equation with a time-variable coefficient at the Laplacian of a direct problem solution. Given a known kernel function, a Cauchy problem is investigated as a direct problem. The integral term in the equation has convolution form: the kernel function is multiplied by a solution of the direct problem's elliptic operator. As an overdetermination condition, the result of the direct question on the hyperplane \(x_n = 0\) is used. An inverse question is replaced by an auxiliary one, which is more suitable for further investigation. After that, the last problem is reduced to an equivalent system of Volterra-type integral equations of the second order with respect to unknown functions. Applying the fixed point theorem to this system in Hölder spaces, we prove the main result of the paper, which is a local existence and uniqueness theorem.
Keywords
Inverse problem, Resolvent, Integral equation, Fixed point theorem, Existence, Uniqueness
Full Text:
PDFReferences
- Colombo F. An inverse problem for a parabolic integro-differential model in the theory of combustion. Phys. D., 2007. Vol. 236, No. 2. P. 81–89. DOI: 10.1016/j.physd.2007.07.012
- Durdiev D.K., Jumaev J.J., Atoev D.D. Inverse problem on determining two kernels in integro-differential equation of heat flow. Ufa Math. J., 2023. Vol. 15, No. 2. P. 120–135.
- Durdiev D.K., Nuriddinov J.Z. On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020. Vol. 30, No. 4. P. 572–584. DOI: 10.35634/vm200403
- Durdiev D.K., Nuriddinov Zh.Z. Problem of determining a multidimensional kernel in one parabolic integro–differential equation. J. Siberian Federal Univ. Math. Phys., 2021. Vol. 14, No. 1. P. 117–127. DOI: 10.17516/1997-1397-2020-14-1-117-127
- Durdiev D.K., Rashidov A.S. Inverse problem of determining the kernel in an integro-differential equation of parabolic type. Diff. Equ., 2014. Vol. 50, No. 1. P. 110–116. DOI: 10.1134/S0012266114010145
- Durdiev D., Shishkina E., Sitnik S. The Explicit formula for solution of anomalous diffusion equation in the multi-dimensional space. Lobachevskii J. Math., 2021. Vol. 42, No. 6. P. 1264–1273. DOI: 10.1134/S199508022106007X
- Durdiev D.K., Zhumaev Zh.Zh. Problem of determining a multidimensional thermal memory in a heat conductivity equation. Methods Funct. Anal. Topology, 2019. Vol. 25, No. 3. P. 219–226.
- Durdiev D.K., Zhumaev Zh.Zh. Problem of determining the thermal memory of a conducting medium. Diff. Equ., 2020. Vol. 56, No. 6. P. 785–796. DOI: 10.1134/S0012266120060117
- Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor. Math. Methods Appl. Sci., 2020. Vol. 45, No. 14. P. 8374–8388. DOI: 10.1002/mma.7133
- Dyatlov G.V. Determination for the memory kernel from boundary measurements on a finite time interval. J. Inverse Ill-Posed Probl., 2003. Vol. 11, No. 1. P. 59–66. DOI: 10.1515/156939403322004937
- Grasselli M. An identification problem for a linear integrodifferential equation occurring in heat flow. Math. Meth. Appl. Sci., 1992. Vol. 15, No. 3. P. 167–186. DOI: 10.1002/mma.1670150304
- Gurtin M.E., Pipkin A.C. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal., 1968. Vol. 31. P. 113–126. DOI: 10.1007/BF00281373
- Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B. Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions. Appl. Math. Comput., 2019. Vol. 346. P. 800–815. DOI: 10.1016/j.amc.2018.10.059
- Huntul M.J., Lesnic D., Hussein M.S. Reconstruction of time-dependent coefficients from heat moments. Appl. Math. Comput., 2017. Vol. 301. P. 233–253. DOI: 10.1016/j.amc.2016.12.028
- Ivanchov M.I., Saldina N.V. Inverse problem for a parabolic equation with strong power degeneration. Ukr. Math. J., 2006. Vol. 58, No. 11. P. 1685–1703. DOI: 10.1007/s11253-006-0162-x
- Janno J., Lorenzi A. Recovering memory kernels in parabolic transmission problems. J. Inverse Ill-Posed Probl., 2008. Vol. 16, No. 3. P. 239–265. DOI: 10.1515/JIIP.2008.015
- Janno J., Wolfersdorf L. Inverse problems for identification of memory kernels in heat flow. J. Inverse Ill-Posed Probl., 1996, Vol. 4, No. 1. P. 39–66. DOI: 10.1515/jiip.1996.4.1.39
- Ladyženskaja O., Solonnikov V.A., Ural’ceva N.N. Linear and Quasi-linear Equations of Parabolic Type. Transl. Math. Monographs, vol. 23. Providence, RI.: American Mathematical Soc., 1968. 648 p.
- Lorenzi A. Severely ill-posed linear parabolic integro-differential problems. J. Inverse Ill-Posed Probl., 2013. Vol. 21, No. 2. P. 223–264. DOI: 10.1515/jip-2012-0099
- Lorenzi A., Lorenzi L., Yamamoto M. Continuous dependence and uniqueness for lateral Cauchy problems for linear integro-differential parabolic equations. J. Inverse Ill-Posed Probl., 2017. Vol. 25, No. 5. P. 617–631. DOI: 10.1515/jiip-2016-0066
- Lorenzi A., Messina F. Unique continuation and continuous dependence results for a severely ill-posed integrodifferential parabolic problem with a memory term in the principal part of the differential operator. J. Inverse Ill-Posed Probl., 2013. Vol. 21, No. 2. P. 281–309. DOI: 10.1515/jip-2012-0047
- Kolmogorov A., Fomin S. Elementy teorii funkcij i funkcional’nogo analiza [Elements of Function Theory and Functional Analysis]. Moscow: Nauka, 1972. 544 p. (in Russian)
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.