GRAPHICAL PROPERTIES OF CLUSTERED GRAPHS

Sambanthan Gurunathan     (Department of Mathematics, Rajalakshmi Engineering College, Thandalam, Chennai - 602 105, India)
Thangaraj Yogalakshmi     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology(VIT), Vellore - 632 014, Tamil Nadu, India)

Abstract


Clustering is a strategy for discovering homogeneous clusters in heterogeneous data sets based on comparable structures or properties. The number of nodes or links that must fail for a network to be divided into two or more sub-networks is known as connectivity. In addition to being a metric of network dependability, connectivity also serves as an indicator of performance. The Euler graph can represent almost any issue involving a discrete arrangement of objects. It can be analyzed using the recent field of mathematics called graph theory. This paper discusses the properties of clustered networks like connectivity and chromaticity. Further, the structure of the antipodal graph in the clustered network has been explored.

Keywords


Clustered graph, Euler graph, Antipodal graph

Full Text:

PDF

References


  1. Abd-El-Barr M. Topological network design: A survey. J. Netw. Comp. Appl., 2009. Vol. 32, No. 3. P. 501–509. DOI: 10.1016/j.jnca.2008.12.001
  2. Al-Kuwaiti M., Kyriakopoulos N., Hussein S. A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability. IEEE Communications Surveys & Tutorials, 2009. Vol. 11, No. 2. P. 106–124. DOI: 10.1109/SURV.2009.090208
  3. Aravamudhan R., Rajendran B. On antipodal graphs. Discrete Math., 1984. Vol. 49, No. 2. P. 193–195. DOI: 10.1016/0012-365X(84)90117-1
  4. Chartrand G., Lesniak L., Zhang P. Graphs & Digraphs, 5rd ed. New York: Chapman & Hall, 2010. 598 p. DOI: 10.1201/b14892
  5. Chen Y.-C., Tan J.J.M., Hsu L.-H., Kao S.-S. Super-connectivity and super-edge-connectivity for some interconnection networks. Appl. Math. Comput., 2003. Vol. 140, No. 2–3. P. 245–254. DOI: 10.1016/S0096-3003(02)00223-0
  6. Elghazel W., Bahi J., Guyeux C., Hakem M., Medjaher K., Zerhouni N. Dependability of wireless sensor networks for industrial prognostics and health management. Compu. Ind., 2015. Vol. 68. P. 1–15. DOI: 10.1016/j.compind.2014.10.004
  7. Esfahanian A.-H., Hakimi S.L. On computing a conditional edge-connectivity of a graph. Inform. Process. Lett., 1988. Vol. 27, No. 4. P. 195–199. DOI: 10.1016/0020-0190(88)90025-7
  8. Fàbrega J., Fiol M.A. On the extra connectivity of graphs. Discrete Math., 1996. P. 155, No. 1–3. P. 49–57. DOI: 10.1016/0012-365X(94)00369-T
  9. Harary F. Conditional connectivity. Networks, 1983. Vol. 13, No. 3. P. 347–357. DOI: 10.1002/net.3230130303
  10. Guo L., Liu R., Guo X. Super connectivity and super edge connectivity of the Mycielskian of a graph. Graphs Combin., 2012. Vol. 28, No. 2. P. 143–147. DOI: 10.1007/s00373-011-1032-3
  11. Gurunathan S., Yogalakshmi T. Statistical analysis on the topological indices of clustered graphs. In: Proc. Int. Conf. on Paradigms of Communication, Computing and Data Sciences. Algorithms for Intelligent Systems. Dua M., Jain A.K., Yadav A., Kumar N., Siarry P. (eds.). Singapore: Springer, 2022. P. 379–388. DOI: 10.1007/978-981-16-5747-4_33
  12. Gurunathan S., Yogalakshmi T., Balasubramanian K. Topological characterization of statistically clustered networks for molecular similarity analysis. J. Math. Chem., 2023. Vol. 61. P. 859–876. DOI: 10.1007/s10910-022-01438-4
  13. Latifi S., Hegde M., Naraghi-Pour M. Conditional connectivity measures for large multiprocessor systems. IEEE Trans. Comput., 1994. Vol. 43, No. 2. P. 218–222. DOI: 10.1109/12.262126
  14. Li X., Mao Y. A Survey on the Generalized Connectivity of Graphs. 2012. 51 p. arXiv: 1207.1838v10 [math.CO]
  15. Lü M., Chen G.-L., Xu J.-M. On super edge-connectivity of Cartesian product graphs. Networks, 2007. Vol. 49, No. 2. P. 152–157. DOI: 10.1002/net.20149
  16. Shen C., Liu Y. A tripartite clustering analysis on microRNA, gene and disease model. J. Bioinf. Comp. Biol., 2012. Vol. 10, No. 1. Art. no. 1240007. DOI: 10.1142/S0219720012400070
  17. Ustunbas Y., Öguducu S.G. A recommendation model for social resource sharing systems based on tripartite graph clustering. In: 2011 European Intelligence and Security Informatics Conference, 12–14 September 2011, Athens, Greece. IEEE Xplore, 2011. P. 378–381. DOI: 10.1109/EISIC.2011.56
  18. Wang M., Li Q. Conditional edge connectivity properties, reliability comparisons and transitivity of graphs. Discrete Math., 2002 Vol. 258, No. 1–3. P. 205–214. DOI: 10.1016/S0012-365X(02)00299-6
  19. Xu J.-M., Wang J.-W., Wang W.-W. On super and restricted connectivity of some interconnection networks. Ars Combin., 2010. Vol. 94, No. 6. P. 25–32.




DOI: http://dx.doi.org/10.15826/umj.2024.2.006

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.