A PRESENTATION FOR A SUBMONOID OF THE SYMMETRIC INVERSE MONOID
Abstract
In the present paper, we study a submonoid of the symmetric inverse semigroup \(I_n\). Specifically, we consider the monoid of all order-, fence-, and parity-preserving transformations of \(I_n\). While the rank and a set of generators of minimal size for this monoid are already known, we will provide a presentation for this monoid.
Keywords
Symmetric inverse monoid, Order-preserving, Fence-preserving, Presentation
Full Text:
PDFReferences
- Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups. Math. Surveys Monogr., vol. 7, part 1. Providence. R.I.: Amer. Math. Soc. Surveys, 1961. DOI: 10.1090/surv/007.1; Math. Surveys Monogr., vol. 7, part 2. Providence. R.I.: Amer. Math. Soc. Surveys, 1967. DOI: 10.1090/surv/007.2
- Currie J.D., Visentin T.I. The number of order-preserving maps of fences and crowns. Order, 1991. Vol. 8. P. 133–142.
- Dimitrova I., Koppitz J., Lohapan L. Generating sets of semigroups of partial transformations preserving a zig-zag order on \(\mathbb{N}\). Int. J. Pure Appl. Math., 2017. Vol. 117, No. 2. P. 279–289. DOI: 10.12732/ijpam.v117i2.4
- East J. A presentation of the singular part of the symmetric inverse monoid. Comm. Algebra, 2006. Vol. 34, No. 5. P. 1671–1689. DOI: 10.1080/00927870500542689
- East J. A presentation for the singular part of the full transformation semigroup. Semigroup Forum, 2010. Vol 81. P. 357–379. DOI: 10.1007/s00233-010-9250-1
- Fernandes V.H. The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum, 2001. Vol. 62. P. 178–204. DOI: 10.1007/s002330010056
- Fernandes V.H., Koppitz J., Musunthia T. The rank of the semigroup of all order-preserving transformations on a finite fence. Bull. Malays. Math. Sci. Soc., 2019. Vol. 42. P. 2191–2211. DOI: 10.1007/s40840-017-0598-1
- Howie J.M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995. 351 p.
- Jendana K., Srithus R. Coregularity of order-preserving self-mapping semigroups of fences. Commun. Korean Math. Soc., 2015. Vol. 30, No. 4. P. 349–361. DOI: 10.4134/CKMS.2015.30.4.349
- Lallement G. Semigroups and Combinatorial Applications. New York: Wiley, 1979. 376 p.
- Lohapan L., Koppitz J. Regular semigroups of partial transformations preserving a fence \(\mathbb{N}\). Novi Sad J. Math., 2017. Vol. 47, No. 2. P. 77–91. DOI: 10.30755/NSJOM.05333
- Lohapan L., Koppitz J., Worawiset S. Congruences on infinite semigroups of transformations preserving a zig-zag order. J. Algebra Appl., 2021. Vol. 20, No. 09. Art. no. 2150167. DOI: 10.1142/S021949882150167X
- Ruškuc N. Semigroup Presentations. Ph. D. Thesis. St Andrews: University of St Andrews, 1995.
- Rutkowski A. The formula for the number of order-preserving selfmappings of a fence. Order, 1992. Vol. 9. P. 127–137. DOI: 10.1007/BF00814405
- Sareeto A., Koppitz J. The rank of the semigroup of order-, fence- and parity-preserving partial injections on a finite set. Asian-Eur. J. Math., 2023. DOI: 10.1142/S1793557123502236
- Srithus R., Chinram R., Khongthat C. Regularity in the semigroup of transformations preserving a zig-zag order. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43, No. 2. P. 1761–1773. DOI: 10.1007/s40840-019-00772-2
- Wagner V.V. Generalized groups. Dokl. Akad. Nauk SSSR, 1952. Vol. 84, No. 6. P. 1119–1122. (in Russian)
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.