COUNTABLE COMPACTNESS MODULO AN IDEAL OF NATURAL NUMBERS
Abstract
In this article, we introduce the idea of \(I\)-compactness as a covering property through ideals of \(\mathbb N\) and regardless of the \(I\)-convergent sequences of points. The frameworks of \(s\)-compactness, compactness and sequential compactness are compared to the structure of \(I\)-compact space. We began our research by looking at some fundamental characteristics, such as the nature of a subspace of an \(I\)-compact space, then investigated its attributes in regular and separable space. Finally, various features resembling finite intersection property have been investigated, and a connection between \(I\)-compactness and sequential \(I\)-compactness has been established.
Keywords
Full Text:
PDFReferences
- Bal P. On the class of \(I\)-\(\gamma\)-open cover and \(I\)-\(St\)-\(\gamma\)-open cover. Hacet. J. Math. Stat., 2023. Vol. 52, No. 3. P. 630–639.
- Bal P., Bhowmik S. Star-selection principle: another new direction. J. Indian Math. Soc., 2017. Vol. 84, No. 1–2. P. 1–6. DOI: 10.18311/jims/2017/6124
- Bal P., Bhowmik S. On \(R\)-star-Lindelöf spaces. Palest. J. Math., 2017. Vol. 6, No. 2. P. 480–486.
- Bal P., Bhowmik S. Some new star-selection principles in topology. Filomat, 2017. Vol. 31, No. 13. P. 4041–4050. DOI: 10.2298/FIL1713041B
- Bal P., Bhowmik S., Gauld D. On Selectively star-Lindelöf properties. J. Indian Math. Soc., 2018. Vol. 85, No. 3–4. P. 291–304. DOI: 10.18311/jims/2018/20145
- Bal P., Kočinac L.D.R. On selectively star-ccc spaces. Topology Appl., 2020. Vol. 281. Art. no. 107184. DOI: 10.1016/j.topol.2020.107184
- Bal P., Rakshit D. A variation of the class of statistical \(\gamma\)-covers. Topol. Algebra Appl., 2023. Vol. 11, No. 1. Art. no. 20230101. DOI: 10.1515/taa-2023-0101
- Bal P., Rakshit D., Sarkar S. On statistical compactness. Iran. J. Math. Sci. Inform., 2023. (accepted).
- Bal P., De R. On strongly star semi-compactness of topological spaces. Khayyam J. Math., 2023. Vol. 9, No. 1. P. 54–60. DOI: 10.22034/KJM.2022.342863.2546
- Balcerzak M., Filipczak M.L. Ideal convergence of sequences and some of its applications. Folia Math., 2017. Vol. 19, No. 1. P. 3–8.
- Çakallı H. Sequential definitions of compactness. Appl. Math. Lett., 2008. Vol. 21, No. 6. P. 594–598. DOI: 10.1016/j.aml.2007.07.011
- Das P. Certain types of open covers and selection principles using ideals. Houston J. Math., 2013, Vol. 39, No. 2. P. 637–650.
- Debnath S., Rakshit D. On \(I\)-statistical convergence. Iran. J. Math. Sci. Inform., 2018. Vol. 13, No. 2. P. 101–109.
- Di Maio G., Kočinak L.D.R. Statistical convergence in topology. Topology Appl., 2008. Vol. 156, No. 1. P. 28–45. DOI: 10.1016/j.topol.2008.01.015
- van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J. Star covering properties. Topology Appl., 1991. Vol. 39, No. 1. P. 71–103. DOI: 10.1016/0166-8641(91)90077-Y
- Engelking R. General Topology. Sigma Ser. Pure Math. Rev. compl. ed. Berlin: Heldermann, 1989. 529 p.
- Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. (in French)
- Gupta A., Kaur R. Compact spaces with respect to an ideal. Int. J. Pure Appl. Math., 2014. Vol. 92, No. 3. P. 443–448.
- Kostyrko P., Salat T., Wilczynski W. \(I\)-convergence. Real Anal. Exchange, 2000. Vol. 26, No. 2. P. 669–686.
- Lahiri B.K., Das P. \(I\) and \(I^∗\) -convergence in topological spaces. Math. Bohem., 2005. Vol. 130, No. 2. P. 153–160. DOI: 10.21136/MB.2005.134133
- Schoenberg I.J. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 1959. Vol. 66, No. 5. P. 361–375. DOI: 10.2307/2308747
- Singha M., Roy S. Compactness with Ideals. arXiv:2107.00050 [math.GN]
Article Metrics
Refbacks
- There are currently no refbacks.