SPECTRAL EXPANSION FOR SINGULAR BETA STURM-LIOUVILLE PROBLEMS

Bilender P. Allahverdiev     (Department of Mathematics, Khazar University, 41 Mahsati Str., AZ1096 Baku, Azerbaijan; UNEC-Azerbaijan State University of Economics, 6 Istiglaliyyat Str., Baku, Azerbaijan, Azerbaijan)
Hüseyin Tuna     (Department of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey; UNEC-Azerbaijan State University of Economics, 6 Istiglaliyyat Str., Baku, Azerbaijan, Azerbaijan)
Yüksel Yalçinkaya     (Department of Mathematics, Süleyman Demirel University, 32260 Isparta, Turkey, Turkey)

Abstract


In this study, beta Sturm–Liouville problems are discussed. For such equations, the spectral function is established in the singular case. A spectral expansion is given with the help of this function.


Keywords


Sturm–Liouville theory, Fractional derivatives and integrals, Spectral expansion

Full Text:

PDF

References


  1. Allahverdiev B.P., Tuna H., Yalçınkaya Y. Spectral expansion for singular conformable Sturm–Liouville problem. Math. Commun., 2020. Vol. 25. P. 237–252. URL: https://hrcak.srce.hr/244270
  2. Allahverdiev B.P., Tuna H., Yalçınkaya Y. Conformable fractional Sturm–Liouville equation. Math. Meth. Appl. Sci., 2019. Vol. 42, No. 10. P. 3508–3526. DOI: 10.1002/mma.5595
  3. Atangana A., Alqahtani R.T. Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy, 2016. Vol. 18, No. 2. Art. no. 40. DOI: 10.3390/e18020040
  4. Atangana A., Goufo E.F.D. On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries. BioMed Res. Int., 2014. Art. no. 261383. DOI: 10.1155/2014/261383
  5. Atangana A., Oukouomi Noutchie S.C. Model of break-bone fever via beta-derivatives. BioMed Res. Int., 2014. Art. no. 523159. DOI: 10.1155/2014/523159
  6. Aydemir K., Mukhtarov O. Sh. A new type Sturm–Liouville problem with an abstract linear operator contained in the equation. Quaest. Math., 2022. Vol. 45, No. 12. P. 1931–1948. DOI: 10.2989/16073606.2021.1979681
  7. Cetinkaya F.A. On a conformable fractional wave equation. J. Natural App. Sci., 2018. Vol. 22, No. 3. P. 1110–1113. DOI: 10.19113/sdufenbed.430296
  8. Gülşen T., Yılmaz E., Kemaloğlu H. Conformable fractional Sturm–Liouville equation and some existence results on time scales. Turkish J. Math., 2018. Vol. 42, No. 3. Art. no. 48. P. 1348–1360. DOI: 10.3906/mat-1704-120
  9. Khalil R., Horani M.Al., Yousef A., Sababheh M. A new definition of fractional derivative. J. Computat. Appl. Math., 2014. Vol. 264. P. 65–70. DOI: 10.1016/j.cam.2014.01.002
  10. Kolmogorov A.N., Fomin S.V. Introductory Real Analysis. New York: Dover Publ. Inc., 1970. 393 p.
  11. Levitan B.M., Sargsjan I.S. Sturm–Liouville and Dirac Operators. Ser. Math. Appl. (Soviet Series). Dordrecht: Kluwer Academic Publishers Group, 1991. 350 p. DOI: 10.1007/978-94-011-3748-5
  12. Naimark M.A. Linear Differential Operators, 2nd edn. New York: Ungar, 1968. 156 p.
  13. Yépez-Martínez H., Gómez-Aguilar J.F., Baleanu D. Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik, 2018. Vol. 155. P. 357–365. DOI: 10.1016/j.ijleo.2017.10.104
  14. Wang W.-C. Some notes on conformable fractional Sturm–Liouville problems. Boundary Value Probl., 2021. Vol. 2021. Art. no. 103. DOI: 10.1186/s13661-021-01581-y




DOI: http://dx.doi.org/10.15826/umj.2024.2.001

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.