SPECTRAL EXPANSION FOR SINGULAR BETA STURM-LIOUVILLE PROBLEMS
Abstract
In this study, beta Sturm–Liouville problems are discussed. For such equations, the spectral function is established in the singular case. A spectral expansion is given with the help of this function.
Keywords
Sturm–Liouville theory, Fractional derivatives and integrals, Spectral expansion
Full Text:
PDFReferences
- Allahverdiev B.P., Tuna H., Yalçınkaya Y. Spectral expansion for singular conformable Sturm–Liouville problem. Math. Commun., 2020. Vol. 25. P. 237–252. URL: https://hrcak.srce.hr/244270
- Allahverdiev B.P., Tuna H., Yalçınkaya Y. Conformable fractional Sturm–Liouville equation. Math. Meth. Appl. Sci., 2019. Vol. 42, No. 10. P. 3508–3526. DOI: 10.1002/mma.5595
- Atangana A., Alqahtani R.T. Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative. Entropy, 2016. Vol. 18, No. 2. Art. no. 40. DOI: 10.3390/e18020040
- Atangana A., Goufo E.F.D. On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries. BioMed Res. Int., 2014. Art. no. 261383. DOI: 10.1155/2014/261383
- Atangana A., Oukouomi Noutchie S.C. Model of break-bone fever via beta-derivatives. BioMed Res. Int., 2014. Art. no. 523159. DOI: 10.1155/2014/523159
- Aydemir K., Mukhtarov O. Sh. A new type Sturm–Liouville problem with an abstract linear operator contained in the equation. Quaest. Math., 2022. Vol. 45, No. 12. P. 1931–1948. DOI: 10.2989/16073606.2021.1979681
- Cetinkaya F.A. On a conformable fractional wave equation. J. Natural App. Sci., 2018. Vol. 22, No. 3. P. 1110–1113. DOI: 10.19113/sdufenbed.430296
- Gülşen T., Yılmaz E., Kemaloğlu H. Conformable fractional Sturm–Liouville equation and some existence results on time scales. Turkish J. Math., 2018. Vol. 42, No. 3. Art. no. 48. P. 1348–1360. DOI: 10.3906/mat-1704-120
- Khalil R., Horani M.Al., Yousef A., Sababheh M. A new definition of fractional derivative. J. Computat. Appl. Math., 2014. Vol. 264. P. 65–70. DOI: 10.1016/j.cam.2014.01.002
- Kolmogorov A.N., Fomin S.V. Introductory Real Analysis. New York: Dover Publ. Inc., 1970. 393 p.
- Levitan B.M., Sargsjan I.S. Sturm–Liouville and Dirac Operators. Ser. Math. Appl. (Soviet Series). Dordrecht: Kluwer Academic Publishers Group, 1991. 350 p. DOI: 10.1007/978-94-011-3748-5
- Naimark M.A. Linear Differential Operators, 2nd edn. New York: Ungar, 1968. 156 p.
- Yépez-Martínez H., Gómez-Aguilar J.F., Baleanu D. Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik, 2018. Vol. 155. P. 357–365. DOI: 10.1016/j.ijleo.2017.10.104
- Wang W.-C. Some notes on conformable fractional Sturm–Liouville problems. Boundary Value Probl., 2021. Vol. 2021. Art. no. 103. DOI: 10.1186/s13661-021-01581-y
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.