Ivan Osipov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)


This paper investigates convexity of reachable sets for quasilinear systems under integral quadratic constraints. Drawing inspiration from B.T. Polyak's work on small Hilbert ball image under nonlinear mappings, the study extends the analysis to scenarios where a small nonlinearity exists on the system's right-hand side. At zero value of a small parameter, the quasilinear system turns into a linear system and its reachable set is convex.  The investigation reveals that to maintain convexity of reachable sets of these systems, the nonlinear mapping's derivative must be Lipschitz continuous. The proof methodology follows a Polyak's scheme. The paper's structure encompasses problem formulation, exploration of parameter linear mapping and image transformation, application to quasilinear control systems, and concludes with illustrative examples.


Quasilinear control system, Small parameter, Integral constraints, Reachable sets, Convexity

Full Text:



  1. Al’brekht E.H. The optimal control of the motion of quasilinear systems. Differ. Uravn., 1969. Vol. 5, No. 3. P. 430–442. (in Russian)
  2. Al’brekht E.H. The coming together of quasilinear objects in the regular case. Differ. Uravn., 1971. Vol. 7, No. 7. P. 1171–1178. (in Russian)
  3. Albrecht E.G. Metod Lyapunova-Puankare v zadachah optimalnogo upravleniya. Diss. dokt. fiz.- mat. nauk [Lyapunov-Poincare method in optimal control problems. Dr. phys. and math. sci. diss.]. Sverdlovsk, 1986. 280 p. (in Russian)
  4. Calvet J.-P., Arkun Y. Design of \(P\) and \(PI\) stabilizing controllers for quasi-linear systems. Comput. Chem. Eng., 1990. Vol. 14, No. 4–5. P. 415–426. DOI: 10.1016/0098-1354(90)87017-j
  5. Ching Sh., Eun Yo., Gokcek C., Kabamba P.T., Meerkov S.M. Quasilinear Control: Performance Analysis and Design of Feedback Systems with Nonlinear Sensors and Actuators. Cambridge: Cambridge University Press, 2010. 282 p. DOI: 10.1017/CBO9780511976476
  6. Dauer J.P. Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl., 1976. Vol. 54, No. 3. P. 717–725. DOI: 10.1016/0022-247X(76)90191-8
  7. Filippov A.F. Differential Equations with Discontinuous Righthand Sides. Dordrecht: Springer, 1988. 304 p. DOI: 10.1007/978-94-015-7793-9
  8. Filippov A.F. Vvedenie v teoriju differencial’nyh uravnenij [Introduction to the theory of differential equations]. Moscow: Comkniga, 2007. 240 p. (in Russian)
  9.  Gabasov R.F., Kalinin A.I., Kirillova F.M., Lavrinovich L.I. On asymptotic optimization methods for  quasilinear control systems. Trudy Inst. Mat. Mekh. UrO RAN, 2019. Vol. 25, No. 3. P. 62–72. DOI: 10.21538/0134-4889-2019-25-3-62-72
  10. Guo Y., Kabamba P.T., Meerkov S.M., Ossareh H.R., Tang C.Y. Quasilinear control of wind farm power output. IEEE Trans. Control Syst. Technol., 2015. Vol. 23, No. 4. P. 1555–1562. DOI: 10.1109/TCST.2014.2363431
  11.  Gusev M.I., Zykov I.V. On Extremal properties of the boundary points of reachable sets for control systems with integral constraints. Proc. Steklov Inst. Math., 2018. Vol. 300, No. Suppl. 1. P. 114–125. DOI: 10.1134/S0081543818020116
  12.  Gusev M.I. The limits of applicability of the linearization method in calculating small-time reachable sets. Ural Math. J., 2020. Vol. 6, No. 1. P. 71–83. DOI: 10.15826/umj.2020.1.006
  13. Gusev M.I., Osipov I.O. Asymptotic behavior of reachable sets on small time intervals. Proc. Steklov Inst. Math., 2020. Vol. 309, Suppl. 1. P. S52–S64. DOI: 10.1134/S0081543820040070
  14. Gusev M.I., Osipov I.O. On a local synthesis problem for nonlinear systems with integral constraints. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022. Vol. 32, No. 2. P. 171–186. DOI: 10.35634/vm220202
  15. Kalinin A.I., Lavrinovich L.I. Asymptotic minimization method of the integral quadratic functional on the trajectories of a quasilinear dynamical system. Dokl. NAN Belarusi, 2018. Vol. 62, No. 5. P. 519–524. DOI: 10.29235/1561-8323-2018-62-5-519-524 (in Russian)
  16. Kiselev Yu.N. An asymptotic solution of the problem of time-optimal control systems which are close to linear ones. Soviet Math. Dokl., 1968. Vol. 9, No. 5. P. 1093–1097.
  17. Krasovskii N.N. Teoriya upravleniya dvizheniem [Theory of Control of Motion]. Moscow: Nauka, 1968. 476 p. (in Russian)
  18. Kremlev A.G. Control of a quasilinear system under indeterminate initial conditions. Differ. Uravn., 1980. Vol. 16, No. 11, P. 1967–1979. (in Russian)
  19. Osipov I.O. On the convexity of the reachable set with respect to a part of coordinates at small time intervals. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021. Vol. 31, No. 2. P. 210–225. DOI: 10.35634/vm210204
  20. Polyak B.T. Gradient methods for solving equations and inequalities. USSR Comput. Math. Math. Phys., 1964. Vol. 4, No. 6. P. 17–32. DOI: 10.1016/0041-5553(64)90079-5
  21. Polyak B.T. Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Analysis, 2001. Vol. 9. P. 159–168. DOI: 10.1023/A:1011287523150
  22. Polyak B.T. Convexity of the reachable set of nonlinear systems under \(L_2\) bounded controls. Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal., 2004. Vol. 11, Suppl. 2–3. P. 255–267.
  23. Subbotin A.I. Control of motion of a quasilinear system. Differ. Uravn., 1967. Vol. 3, No. 7. P. 1113–1118. (in Russian)
  24. Zykov I.V., Osipov I.O. A program for constructing the reachable sets of nonlinear systems with integral control constraints by the Monte Carlo method. Certificates of State Registration of a Computer Program or a Database, 2020. No. 2020661557.
  25. Zykov I.V. An algorithm for constructing reachable sets for systems with multiple integral constraints. In: Mathematical Analysis with Applications: Int. Conf. CONCORD-90, Pinelas S., Kim A., Vlasov V. (eds.), Ekaterinburg, July 2018. Springer Proc. Math. Stat., vol. 318. Cham: Springer, 2020. P. 51–60. DOI: 10.1007/978-3-030-42176-2_6
  26. Zykov I.V. External estimates of reachable sets for control systems with integral constraints. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2021. Vol. 190. P. 107–114. DOI: 10.36535/0233-6723-2021-190-107-114


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.