COMPUTING THE REACHABLE SET BOUNDARY FOR AN ABSTRACT CONTROL SYSTEM: REVISITED

Mikhail I. Gusev     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)

Abstract


A  control system can be treated as a mapping that maps a control to a trajectory (output) of the system. From this point of view, the reachable set, which consists of the ends of all trajectories at a given time, can be considered an image of the set of admissible controls into the state space under a nonlinear mapping. The paper discusses some properties of such abstract reachable sets. The principal attention is paid to the description of the set boundary.


Keywords


Reachable set, Nonlinear mapping, Control system, Extremal problem, Maximum principle

Full Text:

PDF

References


  1. Ananyev B.I., Gusev M.I., Filippova T.F. Upravlenie i ocenivanie sostoyanij dinamicheskikh sistem s neopredelennost’yu [Control and Estimation of Dynamical Systems States with Uncertainty]. Novosibirsk: Izdatel’stvo SO RAN, 2018. 193 p. (in Russian)
  2. Baier R., Gerdts M., Xausa I. Approximation of reachable sets using optimal control algorithms. Numer. Algebra Control Optim., 2013. Vol. 3, No. 3. P. 519–548. DOI: 10.3934/naco.2013.3.519
  3. Clarke F.H. Optimization and Nonsmooth Analysis. New York: J. Willey and Sons Inc., 1983. 308 p.
  4. Dmitruk A.V., Milyutin A.A., Osmolovskii N.P. Lyusternik’s theorem and the theory of extrema. Russian Math. Surveys, 1980. Vol. 35, No. 6. P. 11–51. DOI: 10.1070/RM1980v035n06ABEH001973
  5. Gornov A.Yu., Finkel’shtein E.A. Algorithm for piecewise-linear approximation of the reachable set boundary. Autom. Remote Control, 2015. Vol. 76, No. 3. P. 385–393. DOI: 10.1134/S0005117915030030
  6. Guseinov Kh.G. Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls. Nonlinear Anal. Theory, Methods Appl., 2009. Vol. 71, No. 1–2. P. 622–645. DOI: 10.1016/j.na.2008.10.097
  7. Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Differ. Equ. Appl., 2007. Vol. 14, No. 1–2. P. 57–73. DOI: 10.1007/s00030-006-4036-6
  8. Gusev M.I. On reachability analysis of nonlinear systems with joint integral constraints. In: Lecture Notes in Comput. Sci., vol. 10665: Large-Scale Scientific Computing (LSSC 2017). Lirkov I., Margenov S. (eds.). Cham: Springer, 2018. P. 219–227. DOI: 10.1007/978-3-319-73441-5_23
  9. Gusev M.I. Computing the reachable set boundary for an abstract control problem. AIP Conf. Proc., 2018. Vol. 2025, No. 1. Art. no. 040009. DOI: 10.1063/1.5064893
  10. Gusev M.I., Zykov I.V. On extremal properties of the boundary points of reachable sets for control systems with integral constraints. Proc. Steklov Inst. Math., 2018. Vol. 300, Suppl. 1. P. 114–125. DOI: 10.1134/S0081543818020116
  11. Gusev M.I., Zykov I.V. On the geometry of reachable sets for control systems with isoperimetric constraints. Proc. Steklov Inst. Math., 2019. Vol. 304, Suppl. 1. P. S76–S87. DOI: 10.1134/S0081543819020093
  12. Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation. Systems Control Found. Appl., vol. 85. Basel: Birkhäuser, 2014. 445 p. DOI: 10.1007/978-3-319-10277-1
  13. Lee E.B., Marcus L. Foundations of Optimal Control Theory. New York: J. Willey and Sons Inc., 1967. 576 p.
  14. Patsko V.S., Pyatko S.G., Fedotov A.A. Three-dimensional reachability set for a nonlinear control system. J. Comput. Syst. Sci. Int., 2003. Vol. 42. No. 3. P. 320–328.
  15. Polyak B.T. Convexity of the reachable set of nonlinear systems under \(L_2\) bounded controls. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2004. Vol. 11. P. 255–267.
  16. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishechenko E.F. The Mathematical Theory of Optimal Processes. New York/London: J. Willey and Sons Inc., 1962. 360 p.
  17. Vdovin S.A., Taras’ev A.M., Ushakov V.N. Construction of an attainability set for the Brockett integrator. J. Appl. Math. Mech., 2004. Vol. 68, No. 5. P. 631–646. DOI: 10.1016/j.jappmathmech.2004.09.001




DOI: http://dx.doi.org/10.15826/umj.2023.2.008

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.