AN EXPLICIT ESTIMATE FOR APPROXIMATE SOLUTIONS OF ODES BASED ON THE TAYLOR FORMULA

Abdulla Kh. Abdullayev     (V.I. Romanovskiy Institute of Mathematics of Uzbekistan Academy of Sciences, 9 University Str., 100174 Tashkent, Uzbekistan)
Abdulla A. Azamov     (V.I. Romanovskiy Institute of Mathematics of Uzbekistan Academy of Sciences, 9 University Str., 100174 Tashkent, Uzbekistan)
Marks B. Ruziboev     (Kimyo International University, 156 Shota Rustaveli Str., 100121 Tashkent, Uzbekistan)

Abstract


In this paper, we consider a third-order explicit scheme based on Taylor's formula to obtain an approximate solution for the Cauchy problem of systems of ODEs. We prove an estimate for the accuracy of the approximate solution with an explicit constant that depends only on the right-hand side of the equation and the domain of the solution.

Keywords


Dynamical Systems, Cauchy Problem, Approximate solution, Taylor formula, Accuracy precision of an approximate solution, Level of accuracy, Error term

Full Text:

PDF

References


  1. Azamov A.A., Abdullaev A.X., Tilavov A.M. On the derivation of an inequality for estimating the accuracy of an approximate solution to the initial value problem. Bull. Inst. Math., 2022. Vol. 5, No. 5. P. 105–111.
  2. Babenko K.I. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. 2nd edition. Moscow, Izhevck: Regulyarnaya i haoticheskaya dinamika, 2002. 848 p. (in Russian)
  3. Bakhvalov N.S. Numerical Methods (Analysis, Algebra, Ordinary Differential Equations) [CHislennye metody (analiz, algebra, obyknovennye differencial’nye uravneniya)]. Moscow: Nauka, 1975. 632 p.
  4. Berezin I.S., Zhidkov P.N. Computing Methods. Vol. 2. Pergamon Press, 1965. 464 p.
  5. Bieberbach L. On the remainder of the Runge–Kutta formula in the theory of ordinary differential equations. J. Appl. Math. Phys. (ZAMP), 1951. Vol. 2. P. 233–248. DOI: 10.1007/BF02579687 (in German) 
  6. Brenan K.E., Campbell S.L., Petzold L.R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Philadelphia: SIAM, 1995. XII+251 p. DOI: 10.1137/1.9781611971224
  7. Buchberger B., Collins G.E., Loos R., Albrecht R.  Computer Algebra: Symbolic and Algebraic Computation. Vienna: Springer, 1983. VII+283 p. DOI: 10.1007/978-3-7091-7551-4
  8. Butcher J.C. Numerical Methods for Ordinary Differential Equations. 3rd edition. United Kingdom: John Wiley & Sons Ltd., 2016. 544 p.
  9. Cartan H. Formes Différentielles. Hermann Paris, 1967. 190 p. (in French)
  10. Hairer E., Norsett S., Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd edition. Berlin, Heidelberg: Springer, 2008. XV+528 p. DOI: 10.1007/978-3-540-78862-1
  11. Hartman P. Ordinary Differential Equation. SIAM, 2002. XVIII+624 p. DOI: 10.1137/1.9780898719222
  12. Gathen J., Gerhard J. Modern Computer Algebra. 3rd edition. Cambridge University Press, 2013. 796 p. DOI: 10.1017/CBO9781139856065
  13. Geddes K.O., Czapor S.R., Labahn G. Algorithms for Computer Algebra. NY: Springer, 2007. XXII+586 p. DOI: 10.1007/b102438
  14. Kendall A.E. An Introduction to Numerical Analysis. 2nd edition. John Wiley & Sons, Inc., 1989. 693 p.
  15. Krilov V.I., Bobkov V.V., Monastirniy P.I. Computational Methods [Vychislitel’nye metody]. Vol. II. Moscow: Nauka, 1977. 399 p. (in Russian)
  16. Lambert J.D. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, 1992. 304 p.
  17. Milne W.E. Numerical Calculus. Princeton University Press, 1949. 404 p.
  18. Milne W.E. The Remainder in linear methods of approximation. J. Res. Nat. Bur. Stand., 1949. Vol. 43. Art. no. RP2401. P. 501–511.




DOI: http://dx.doi.org/10.15826/umj.2024.1.002

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.