ASYMPTOTIC BEHAVIOR FOR THE LOTKA–VOLTERRA EQUATION WITH DISPLACEMENTS AND DIFFUSION

Ahlem Chettouh     (University Center Abdelhafid Boussouf, Mila, 43000; Laboratory of Applied Mathematics and Didactics, Ecole Normale Supérieure of Constantine, Constantine, 25000, Algeria)

Abstract


In this paper, we consider the Lotka–Volterra equation with displacements and diffusion, that is transport-diffusion system describing the evolution of prey and predator populations with their displacements and their diffusion, in a periodic domain in \(\mathbb{R}\). It is shown that the solution to this equation and its logarithm are globally bounded, and that, when the solution converges to the stationary solution in mean value, it converges uniformly with respect to the time variable as well as the space variable. These results are obtained by using \(L^2\)-estimate of the well-known Lyapunov functional, and, in particular, an estimate of the point-wise growth of the solution by means of the application of the fundamental solution of the heat equation.


Keywords


Lotka-Volterra equation, Asymptotic behavior, Diffusion, Transport/displacement, Numerical example.

Full Text:

PDF

References


  1. Alebraheem J. Dynamics of a predator-prey model with the effect of oscillation of immigration of the prey. Diversity, 2021. Vol. 13, No. 1. Art. no. 23. DOI: 10.3390/d13010023
  2. Ambrosio B., Ducrot A., Ruan S. Generalized traveling waves for time-dependent reaction-diffusion systems. Math. Ann., 2021. Vol. 381. P. 1–27. DOI: 10.1007/s00208-020-01998-3
  3. Ducrot A. Convergence to generalized transition waves for some Holling–Tanner prey-predator reaction-diffusion system. J. Math. Pures Appl., 2013. Vol. 100, No. 1. P. 1–15. DOI: 10.1016/j.matpur.2012.10.009
  4. Ducrot A. Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Differential Equations, 2016. Vol. 260, No. 12. P. 8316–8357. DOI: 10.1016/j.jde.2016.02.023
  5.  Ducrot A., Giletti T., Matano H. Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type. Calc. Var., 2019. Vol. 58. Art. no. 137. DOI: 10.1007/s00526-019-1576-2
  6. Dunbar S.R. Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in \(\mathbb{R}^4\). Trans. Amer. Math. Soc., 1984. Vol. 286, No. 2. P. 557–594. DOI: 10.1090/S0002-9947-1984-0760975-3
  7. Fujita Yashima H. Équation stochastique de dynamique de populations du type proie-prédateur avec diffusion dans un territoire. Novi Sad J. Math., 2003. Vol. 33, No. 1. P. 31–52.  URL: http://emis.icm.edu.pl/journals/NSJOM/Papers/33_1/nsjom_33_1_031_052.pdf (in French)
  8. Gabutti B., Negro A. Some results on asymptotic behaviour of the Volterra–Lotka diffusion equations. Univ. Politec. Torino, Rend. Sem. Mat., 1978. Vol. 36. P. 403–414.
  9. Hamdous S., Manca L., Fujita Yashima H. Mesure invariante pour le système d’équations stochastiques du modèle de proie-prédateur avec diffusion spatiale. Rend. Sem. Mat. Univ. Padova, 2010. Vol. 124. P. 57–75. DOI: 10.4171/RSMUP/124-4 (in French)
  10. Huang J., Lu G., Ruan S. Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol., 2003. Vol. 46, No. 2. P. 132–152. DOI: 10.1007/s00285-002-0171-9
  11.  Kangalgil F., Işik S. Effect of immigration in a predator-prey system: Stability, bifurcation and chaos. AIMS Math., 2022. Vol. 7, No. 8. P. 14354–14375. DOI: 10.3934/math.2022791
  12.  Kaviya R., Muthukumar P. The impact of immigration on a stability analysis of Lotka–Volterra system. IFAC-PapersOnLine, 2020. Vol. 53, No. 1. P. 214–219. DOI: 10.1016/j.ifacol.2020.06.037
  13. Liu P.-P. An analysis of a predator-prey model with both diffusion and migration. Math. Comput. Model., 2010. Vol. 51, No. 9–10. P. 1064–1070. DOI: 10.1016/j.mcm.2009.12.010
  14. Murray J.D. Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion. J. Theoret. Biol., 1975. Vol. 52, No. 2. P. 459–469. DOI: 10.1016/0022-5193(75)90012-0
  15. Rothe F. Convergence to the equilibrium state in the Volterra–Lotka diffusion equations. J. Math. Biol., 1976. Vol. 3. P. 319–324. DOI: 10.1007/BF00275064
  16. Volterra V. Théorie Mathématique de la Lutte Pour la Vie. Gauthier-Villars, Paris, 1931. 214 p. (in French)
  17. Wang X., Lin G. Traveling waves for a periodic Lotka–Volterra predator-prey system. J. Appl. Anal., 2019. Vol. 98, No. 14. P. 2619–2638. DOI: 10.1080/00036811.2018.1469007
  18. Yamada Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions. SIAM J. Math. Anal., 1990. Vol. 21, No. 2. P. 327–345. DOI: 10.1137/0521018




DOI: http://dx.doi.org/10.15826/umj.2025.1.003

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.