SHILLA GRAPHS WITH $b = 5$ AND $b = 6$†

Alexander A. Makhnev†, Ivan N. Belousov††

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
16 S. Kovalevskaya Str., Ekaterinburg, 620990, Russia

Ural Federal University,
19 Mira str., Ekaterinburg, 620002, Russia

†makhnev@imm.uran.ru, ††belousov@mail.ru

Abstract: A Q-polynomial Shilla graph with $b = 5$ has intersection arrays \{105t, 4(21t + 1), 16(t + 1); 1, 4(t + 1), 84t\}, $t \in \{3, 4, 19\}$. The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of Q-polynomial Shilla graphs with $b = 6$ are found.

Keywords: Shilla graph, Distance-regular graph, Q-polynomial graph.

1. Introduction

We consider undirected graphs without loops or multiple edges. For a vertex a of a graph Γ, denote by $\Gamma_i(a)$ the ith neighborhood of a, i.e., the subgraph induced by Γ on the set of all vertices at distance i from a. Define $[a] = \Gamma_1(a)$ and $a^+= \{a\} \cup [a]$.

Let Γ be a graph, and let $a, b \in \Gamma$. Denote by $\mu(a, b)$ (by $\lambda(a, b)$) the number of vertices in $[a] \cap [b]$ if a and b are at distance 2 (are adjacent) in Γ. Further, the induced $[a] \cap [b]$ subgraph is called μ-subgraph (λ-subgraph).

If vertices u and w are at distance i in Γ, then we denote by $b_i(u, w)$ (by $c_i(u, w)$) the number of vertices in the intersection of $\Gamma_{i+1}(u)$ (of $\Gamma_{i-1}(u)$, respectively) with $[w]$. A graph Γ of diameter d is called distance-regular with intersection array $\{b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d\}$ if, for each $i = 0, \ldots, d$, the values $b_i(u, w)$ and $c_i(u, w)$ are independent of the choice of vertices u and w at distance i in Γ. Define $a_i = k - b_i - c_i$. Note that, for a distance regular graph, b_0 is the degree of the graph and a_1 is the degree of the local subgraph (the neighborhood of the vertex). Further, for vertices x and y at distance l in the graph Γ, denote by $p_{ij}(x, y)$ the number of vertices in the subgraph $\Gamma_i(x) \cap \Gamma_j(y)$. The numbers $p_{ij}(x, y)$ are called the intersection numbers of Γ (see [2]). In a distance-regular graph, they are independent of the choice of x and y.

A Shilla graph is a distance-regular graph Γ of diameter 3 with second eigenvalue θ_1 equal to $a = a_3$. In this case, a divides k and b is defined by $b = b(\Gamma) = k/a$. Moreover, $a_1 = a - b$ and Γ has intersection array $\{ab, (a + 1)(b - 1), b_2, 1, c_2, a(b - 1)\}$. Feasible intersection arrays of Shilla graphs are found in [6] for $b \in \{2, 3\}$.

Feasible intersection arrays of Shilla graphs are found in [1] for $b = 4$ (50 arrays) and for $b = 5$ (82 arrays). At present, a list of feasible intersection arrays of Shilla graphs for $b = 6$ is unknown. Moreover, the existence of Q-polynomial Shilla graphs with $b = 5$ also is unknown.

In this paper, we find feasible intersection arrays of Q-polynomial Shilla graphs with $b = 6$ and prove that Q-polynomial Shilla graphs with $b = 5$ do not exist.

†This work was supported by RFBR and NSFC (project № 20-51-53013).
Theorem 1. A Q-polynomial Shilla graph with $b = 6$ has intersection array

(1) $\{42t, 5(7t + 1), 3(t + 3); 1, 3(t + 3), 35t\}$, where $t \in \{7, 12, 17, 27, 57\}$;

(2) $\{372, 315, 75; 1, 15, 310\}$, $\{744, 625, 125; 1, 25, 620\}$ or $\{930, 780, 150; 1, 30, 775\}$;

(3) $\{312, 265, 48; 1, 24, 260\}$, $\{624, 525, 80; 1, 40, 520\}$, $\{1794, 1500, 200; 1, 100, 1495\}$ or $\{5694, 4750, 600; 1, 300, 4745\}$.

In view of Theorem 2 from [1], a Q-polynomial Shilla graph with $b = 5$ has intersection array $\{105t, 4(21t + 1), 16(t + 1); 1, 4(t + 1), 84t\}$, $t \in \{3, 4, 19\}$.

Theorem 2. Distance-regular graphs with intersection arrays $\{315, 256, 64; 1, 16, 252\}$ and $\{1995, 1600, 320; 1, 80, 1596\}$ do not exist.

Theorem 3. Distance-regular graphs with intersection array $\{420, 340, 80; 1, 20, 336\}$ do not exist.

2. Proof of Theorem 1

In this section, Γ is a Q-polynomial Shilla graph with $b = 6$. Then $(a_2 - 5a_1 - 6)^2 - 4(5b_2 - a_3)$ is the square of an integer. By [6, Lemma 8], we have

$$2a \leq c_2b(b + 1) + b^2 - b - 2;$$

therefore, $a \leq 21c_2 + 14$. It follows from the proof of Theorem 9 in [6] that either $k < b^3 - b = 6 \cdot 35$ or $v < k(2b^3 - b + 1) = 428k$. By [6, Corollary 17 and Theorem 20], the number $b_2 + c_2$ divides $b(b - 1)b_2$ and

$$-34 = -b^2 + 2 \leq \theta_3 \leq -b^2(b + 3)/(3b + 1) \leq -18.$$

Theorem 2 from [7] implies the following lemma.

Lemma 1. If $b_2 = c_2$, then Γ has an intersection arrays $\{42t, 5(7t + 1), 3(t + 3); 1, 3(t + 3), 35t\}$ and $t \in \{7, 12, 17, 27, 57\}$.

To the end of this section, assume that $b_2 \neq c_2$ and $k > \theta_1 > \theta_2 > \theta_3$ are eigenvalues of the graph Γ. Then

$$6(6b_2 + c_2)/(b_2 + c_2) = -\theta_3.$$

On the other hand, according to [6, Lemma 10], the number c_2 divides $(a + 6)b_2$, $30a(a + 1)$ and $(a + 6)b_2 \geq (a + 1)c_2$.

Lemma 2. If $-34 \leq \theta_3 \leq -18$, then one of the following statements holds:

(1) $\theta_3 = -31$ and Γ has one of the intersection arrays $\{372, 315, 75; 1, 15, 310\}$, $\{744, 625, 125; 1, 25, 620\}$, and $\{930, 780, 150; 1, 30, 775\}$;

(2) $\theta_3 = -26$ and Γ has one of the intersection arrays $\{312, 265, 48; 1, 24, 260\}$, $\{624, 525, 80; 1, 40, 520\}$, $\{1794, 1500, 200; 1, 100, 1495\}$, and $\{5694, 4750, 600; 1, 300, 4745\}$;

(3) $\theta_3 = -21$ and Γ has one of the intersection arrays $\{42t, 5(7t + 1), 3(t + 3); 1, 3(t + 3), 35t\}$ for $t \in \{7, 12, 17, 27, 57\}$.
The lemma is proved.

Let \(\theta_3 = -34 \). Then \(3(6b_2 + c_2) = 17(b_2 + c_2) \) and \(b_2 = 14c_2 \). Further, \(\theta_3 \) is a root of the equation \(x^2 - (a_1 + a_2 - k)x + (b - 1)b_2 - a_2 = 0 \); therefore, \(a = 425/28 \cdot c_2 - 34 \). In this case, the multiplicity of the first nonprincipal eigenvalue is \(m = 6/5 \cdot (2545c_2 - 5544)/c_2 \), a contradiction with the fact that 5 does not divide 6 \cdot 5544.

Let \(\theta_3 = -33 \). Then \(2(6b_2 + c_2) = 11(b_2 + c_2) \) and \(b_2 = 9c_2 \). Further, \(a = 275/27 \cdot c_2 - 33 \) and the multiplicity of the first nonprincipal eigenvalue is equal to \(m_1 = 6/5 \cdot (1645c_2 - 5184)/c_2 \), a contradiction as above.

Let \(\theta_3 = -32 \). Then \(3(6b_2 + c_2) = 16(b_2 + c_2) \) and \(2b_2 = 13c_2 \). Further, \(a = 100/13 \cdot c_2 - 32 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (1195c_2 - 4836)/c_2 \), a contradiction as above.

Let \(\theta_3 = -31 \). Then \(6(6b_2 + c_2) = 31(b_2 + c_2) \) and \(b_2 = 5c_2 \). Further, \(a = 31/5 \cdot c_2 - 31 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 30(37c_2 - 180)/c_2 = 1110 - 5400/c_2 \). The number of vertices in the graph is \(31/5 \cdot (222c_2^2 - 2005c_2 + 4500)/c_2 \); hence, \(c_2 \) divides 900 and is a multiple of 5. By computer enumeration, we find that, only for \(c_2 = 15, 25 \) and 30, we have admissible intersection arrays \(\{372, 315, 75; 1, 15, 310\} \), \(\{744, 625, 125; 1, 25, 620\} \) and \(\{930, 780, 150; 1, 30, 775\} \).

Let \(\theta_3 = -30 \). Then \(6(b_2 + c_2) = 5(b_2 + c_2) \) and \(b_2 = 4c_2 \). Further, \(a = 125/24 \cdot c_2 - 30 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (745c_2 - 4176)/c_2 \), a contradiction as above.

Let \(\theta_3 = -27 \). Then \(2(b_2 + c_2) = 9(b_2 + c_2) \) and \(3b_2 = 7c_2 \). Further, \(a = 25/7 \cdot c_2 - 25 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (445c_2 - 3276)/c_2 \), a contradiction as above.

Let \(\theta_3 = -26 \). Then \(3(6b_2 + c_2) = 13(b_2 + c_2) \) and \(b_2 = 12c_2 \). Further, \(a = 13/4 \cdot c_2 - 26 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (77c_2 - 600)/c_2 = 462 - 3600/c_2 \). The number of vertices in the graph is \(13/8 \cdot (231c_2^2 - 3340c_2 + 12000)/c_2 \); hence, \(c_2 \) divides 1200 and is a multiple of 4. By computer enumeration, we find that only for \(c_2 = 24, 40, 100, \) and 300 we have admissible intersection arrays \(\{312, 265, 48; 1, 24, 260\} \), \(\{624, 525, 80; 1, 40, 520\} \), \(\{1794, 1500, 200; 1, 100, 1495\} \), and \(\{5694, 4750, 600; 1, 300, 4745\} \).

Let \(\theta_3 = -21 \). Then \(2(b_2 + c_2) = 7(b_2 + c_2) \) and \(b_2 = c_2 \). Further, \(a = 7/3 \cdot c_2 - 21 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (41c_2 - 360)/c_2 = 246 - 2160/c_2 \). The number of vertices in the graph is \(7/3 \cdot (82c_2^2 - 1335c_2 + 5400)/c_2 \); hence, \(c_2 \) divides 1080 and is a multiple of 3. By computer enumeration, we find that, only for \(c_2 = 18, 30, 45, 60, 90, \) and 180, we have admissible intersection arrays \(\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\} \) for \(t \in \{3, 7, 12, 17, 27, 57\} \).

A graph with the array obtained for \(t = 3 \) does not exist by [5].

Let \(\theta_3 = -18 \). Then \(6(b_2 + c_2) = 19(b_2 + c_2) \), so \(3b_2 = c_2 \). Further, \(a = 2512 \cdot c_2 - 18 \) and the multiplicity of the first nonprincipal eigenvalue is \(m_1 = 6/5 \cdot (145c_2 - 1224)/c_2 \), a contradiction. The lemma is proved.

Theorem 1 follows from Lemmas 1–2.

3. Triple intersection numbers

In the proof of Theorem 3, the triple intersection numbers [3] are used.
Let Γ be a distance-regular graph of diameter d. If u_1, u_2, u_3 are vertices of the graph Γ, then r_1, r_2, r_3 are non-negative integers not greater than d. Denote by $\{u_1 u_2 u_3\over r_1 r_2 r_3\}$ the set of vertices $w \in \Gamma$ such that $d(w, u_i) = r_i$ and by $\{u_1 u_2 u_3\over r_1 r_2 r_3\}$ the number of vertices in $\{u_1 u_2 u_3\over r_1 r_2 r_3\}$. The numbers $\{u_1 u_2 u_3\over r_1 r_2 r_3\}$ are called the triple intersection numbers. For a fixed triple of vertices u_1, u_2, u_3, instead of $\{u_1 u_2 u_3\over r_1 r_2 r_3\}$, we will write $[r_1 r_2 r_3]$. Unfortunately, there are no general formulas for the numbers $[r_1 r_2 r_3]$. However, [3] outlines a method for calculating some numbers $[r_1 r_2 r_3]$.

Let u, v, w be vertices of the graph Γ, $W = d(u, v), U = d(v, w)$, and let $V = d(u, w)$. Since there is exactly one vertex $x = u$ such that $d(x, u) = 0$, then the number $[0 jh]$ is 0 or 1. Hence $[0 jh] = \delta_{W} \delta_{U}$. Similarly, $[i0h] = \delta_{V} \delta_{U}$ and $[ij0] = \delta_{U} \delta_{V}$.

Another set of equations can be obtained by fixing the distance between two vertices from $\{u, v, w\}$ and counting the number of vertices located at all possible distances from the third:

\[
\begin{align*}
\sum_{l=1}^{d} [l jh] &= p_{jh}^{U} - [0 jh] \\
\sum_{l=1}^{d} [i lh] &= p_{jh}^{V} - [i0h] \\
\sum_{l=1}^{d} [i jl] &= p_{ijh}^{W} - [ij0]
\end{align*}
\]

(3.1)

However, some triplets disappear. For $|i - j| > W$ or $i + j < W$, we have $p_{ijh}^{W} = 0$; therefore, $[ijh] = 0$ for all $h \in \{0, ..., d\}$.

We set

\[S_{i j h}(u, v, w) = \sum_{r, s, t = 0}^{d} Q_{r i} Q_{s j} Q_{t h} \left[u w v\right]_{r s t}.\]

If the Krein parameter $q_{ij}^{h} = 0$, then $S_{i j h}(u, v, w) = 0$.

We fix vertices u, v, w of a distance-regular graph Γ of diameter 3 and set

\[
\begin{align*}
\{ijh\} &= \\{uvw\over i j h\}, \quad [ijh] = \left[u w v\right]_{i j h}, \quad [ijh]' = \left[u w v\right]_{i h j}, \quad [ijh]^* = \left[v w u\right]_{j i h}, \quad [ijh]^~ = \left[w v u\right]_{h j i}.
\end{align*}
\]

Calculating the numbers

\[
\begin{align*}
[ijh]' &= \left[u w v\right]_{i h j}, \quad [ijh]^* = \left[v w u\right]_{j i h}, \quad [ijh]^~ = \left[w v u\right]_{h j i}
\end{align*}
\]

(symmetrization of the triple intersection numbers) can give new relations that make it possible to prove the nonexistence of a graph.

4. **Graphs with intersection arrays** $\{315, 256, 64; 1, 16, 252\}$ and $\{1995, 1600, 320; 1, 80, 1596\}$

Let Γ be a distance-regular graph with intersection array $\{315, 256, 64; 1, 16, 252\}$. By [2, Theorem 4.4.3], the eigenvalues of the local subgraph of the graph Γ are contained in the interval $[-5, 59/5]$. Since the Terwilliger polynomial (see [4]) is $-4(5x - 59)(x + 5)(x + 1)(x - 43)$, then these eigenvalues lie in $[-5, -1] \cup (59/5, 43]$. Hence, all nonprincipal eigenvalues are negative and the
Shilla graphs with \(b = 5 \) and \(b = 6 \)

Local subgraph is a union of isolated \((a_1 + 1)\)-cliques, a contradiction with the fact that \(a_1 + 1 = 49 \) does not divide \(k = 315 \).

Thus, a distance-regular graph with intersection array \(\{315, 256, 64; 1, 16, 252\} \) does not exist.

Let \(\Gamma \) be a distance-regular graph with intersection array \(\{1995, 1600, 320; 1, 80, 1596\} \). Then \(\Gamma \) has \(1 + 1995 + 39900 + 8000 = 49896 \) vertices, spectrum \(1995^1, 399^{495}, 15^{23275}, -21^{26125} \), and the dual matrix of eigenvalues

\[
Q = \begin{pmatrix}
1 & 495 & 23275 & 26125 \\
1 & 99 & 175 & -275 \\
1 & 0 & -56 & 55 \\
1 & -99/4 & 931/4 & -209 \\
\end{pmatrix}
\]

The Terwilliger polynomial of the graph \(\Gamma \) is \(-20(x+5)(x+1)(x-79)(x-299)\); hence, the eigenvalues of the local subgraph are contained in \([-5, -1] \cup \{79\} \cup \{394\}\).

Note that the multiplicity \(m_1 = 495 \) of the eigenvalue \(\theta_1 = 399 \) is less than \(k \). By the corollary to Theorem 4.4.4 from [2] for \(b = b_1/(\theta_1 + 1) = 4 \), the graph \(\Sigma = [u] \) has an eigenvalue \(-1 - b = -5\) of multiplicity at least \(k - m_1 = 1500 \).

Let the number of eigenvalues \(79 \) of the graph \(\Sigma \) be equal to \(y \). Then the sum of eigenvalues of the graph \(\Sigma \) is at most \(-7500 - (494 - y) + 79y + 394\); therefore, \(y \geq 95 \). Now twice the number of edges in \(\Sigma \) is equal to \(786030 = 1995 \cdot 394 = \sum_i m_i \theta_i^2 \) but not less than \(25 \cdot 1500 + 399 \cdot 79^2 + 394^2 = 786030 \).

Hence, \(\Sigma \) has spectrum \(394^1, 79^{95}, -1^{399}, -5^{1500} \).

Now the number \(t = k_\Sigma \lambda_\Sigma/2 \) of triangles in \(\Sigma \) containing this vertex is equal to \(\sum_i m_i \theta_i^3/(2v) \).

Therefore,

\[
t = \sum_i m_i \theta_i^3/(2v) = (394^3 + 79^3 \cdot 95 - 399 - 125 \cdot 1500)/3990 = 27021
\]

and \(\lambda_\Sigma = 54042/394 \) is approximately equal to 137.16, a contradiction.

Thus, a distance-regular graph with intersection array \(\{1995, 1600, 320; 1, 80, 1596\} \) does not exist.

Theorem 2 is proved.

5. Graph with array \(\{420, 340, 80; 1, 20, 336\} \)

Let \(\Gamma \) be a distance-regular graph with intersection array \(\{420, 340, 80; 1, 20, 336\} \). Then \(\Gamma \) is a formally self-dual graph having \(1 + 420 + 7140 + 1700 = 9261 \) vertices, spectrum \(420^1, 84^{420}, 0^{140}, -21^{1700} \), and the dual matrix of eigenvalues

\[
Q = \begin{pmatrix}
1 & 420 & 7140 & 1700 \\
1 & 84 & 0 & -85 \\
1 & 0 & -21 & 20 \\
1 & -21 & 84 & -64 \\
\end{pmatrix}
\]

The Terwilliger polynomial of the graph \(\Gamma \) is \(-20(x+5)(x+1)(x-16)(x-59)\) and the eigenvalues of the local subgraph are contained in \([-5, -1] \cup \{16\} \cup \{79\}\). If the nonprincipal eigenvalues of a local subgraph are negative, then this subgraph is a union of isolated \((a_1 + 1)\)-cliques, a contradiction with the fact that \(a_1 + 1 = 80 \) does not divide \(k = 420 \). Hence, the local subgraph has eigenvalue 6.
Lemma 3. Intersection numbers of a graph Γ satisfy the equalities

1. $p_{11}^1 = 79, p_{21}^1 = 340, p_{32}^1 = 1360, p_{22}^1 = 5440, p_{33}^1 = 340,$
2. $p_{11}^2 = 20, p_{12}^2 = 320, p_{23}^2 = 80, p_{22}^2 = 5519, p_{23}^2 = 1300, p_{33}^2 = 320;$
3. $p_{12}^3 = 336, p_{13}^3 = 84, p_{22}^3 = 5460, p_{23}^3 = 1344, p_{33}^3 = 271.$

Proof. Direct calculations. \(\square\)

Let $u, v,$ and w be vertices of a graph $\Gamma,$ $[rst] = [uvw]$, $\Omega = \Gamma_3(u)$, and let $\Sigma = \Omega_2$. Then Σ is a regular graph of degree 1344 on 1700 vertices.

Lemma 4. Let $d(u,v) = d(u,w) = 3$ and $d(v,w) = 1$. Then the following equalities hold:

1. $[122] = 2r_6/5 - 136, [123] = [132] = -2r_6/5 + 472, [133] = 2r_6/5 - 388;$
2. $[211] = r_6/10 - 38, [212] = [221] = -r_6/10 + 374, [222] = -14r_6/10 + 5576,$
 $[223] = [232] = 3r_6/2 - 490, [233] = -3r_6/2 + 1834;$
 $[333] = 11r_6/10 - 1107,$

where $r_6 \in \{1010, 1020, \ldots, 1170\}.$

Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u,v,w) = S_{131}(u,v,w) = S_{311}(u,v,w) = 0.$ \(\square\)

By Lemma 4, we have $1010 \leq [322] = r_6 \leq 1170.$

Lemma 5. Let $d(u,v) = d(u,w) = d(v,w) = 3$. Then the following equalities hold:

1. $[122] = -r_{17} + 336, [123] = [132] = r_{17}, [133] = -r_{17} + 84;$
2. $[213] = [231] = r_{17}, [212] = [221] = -r_{17} + 336, [222] = 39r_{17}/4 + 3444,$
 $[223] = [232] = -35r_{17}/4 + 1680, [233] = 31r_{17}/4 - 336;$
3. $[313] = [331] = -r_{17} + 84, [312] = [321] = r_{17}, [322] = -35r_{17}/4 + 1680,$
 $[323] = [332] = 31r_{17}/4 - 336, [333] = -27r_{17}/4 + 522,$

where $r_{17} \in \{44, 48, \ldots, 76\}$.

Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u,v,w) = S_{131}(u,v,w) = S_{311}(u,v,w) = 0.$ \(\square\)

By Lemma 5, we have $1015 \leq [322] = -35r_{17}/4 + 1680 \leq 1295.$

The number d of edges between $\Sigma(w)$ and $\Sigma - (\{w\} \cup \Lambda(w))$ satisfies the inequalities

$$359905 = 84 \cdot 1010 + 271 \cdot 1015 \leq d \leq 84 \cdot 1170 + 271 \cdot 1295 = 449225,$$
$$267.786 \leq 1343 - \lambda \leq 334.245,$$
$$1008.755 \leq \lambda \leq 1075.214,$$

where λ is the mean value of the parameter $\lambda(\Sigma).$
Lemma 6. Let \(d(u, v) = d(u, w) = 3 \) and \(d(v, w) = 2 \). Then the following equalities hold:

1. \([122] = (-64r_{15} + 4r_{16} + 7364)/27 \), \([123] = [132] = (64r_{15} - 4r_{16} + 1708)/27 \), \([133] = (-64r_{15} + 4r_{16} + 560)/27 \);

2. \([211] = -r_{15} + 20, [212] = [221] = (71r_{15} + 4r_{16} + 6392)/27, [222] = (-17r_{15} - 13r_{16} + 38311)/9 \), \([223] = [232] = (-20r_{15} + 35r_{16} + 26095)/27, [233] = (64r_{15} - 31r_{16} + 8053)/27 \);

3. \([311] = r_{15}, [312] = [321] = (71r_{15} - 4r_{16} + 2248)/27, [313] = (44r_{15} + 4r_{16} + 20)/27 \), \([322] = (115r_{15} + 35r_{16} + 26716)/27, [323] = [332] = (44r_{15} - 31r_{16} + 7297)/27, [333] = r_{16}, \)

where \(-10r_{15} + 4r_{16} + 20\) is a multiple of 27, \(r_{15} \in \{0, 1, \ldots, 20\} \), and \(r_{16} \in \{0, 1, \ldots, 235\} \).

Proof. A simplification of formulas (3.1) taking into account the equalities \(S_{113}(u, v, w) = S_{131}(u, v, w) = S_{311}(u, v, w) = 0 \).

By Lemma 6, we have

\[998 \leq [322] = (115r_{15} + 35r_{16} + 26716)/27 \leq 1294. \]

Let us count the number \(h \) of pairs of vertices \(y \) and \(z \) at distance 3 in the graph \(\Omega \), where

\[y \in \left\{ \begin{array}{c} uv \\ 31 \end{array} \right\}, \quad z \in \left\{ \begin{array}{c} uv \\ 32 \end{array} \right\}. \]

On the one hand, by Lemma 4, we have \([323] = -11r_{6}/10 + 1378 \), where \(r_{6} \in \{1010, 1020, \ldots, 1170\} \), therefore

\[7644 = 8491 \leq h \leq 84267 = 22428. \]

On the other hand, by Lemma 6, we have \([313] = (44r_{15} + 4r_{16} + 20)/27 \), where \(r_{15} \in \{0, 1, \ldots, 20\} \), \(r_{16} \in \{0, 1, \ldots, 235\} \), therefore

\[7644 \leq \sum_{i} (44r_{15}^{i} + 4r_{16}^{i}) + 995.55 \leq 22428, \]

\[6648.44 \leq \sum_{i} (44r_{15}^{i} + 4r_{16}^{i}) \leq 21432.45, \]

\[4.96 \leq \sum_{i} (11r_{15}^{i} + r_{16}^{i})/1344 \leq 15.947. \]

If \(r_{15} = 0 \), then \(r_{16} + 5 \) is a multiple of 27 and \(r_{16} = 22.49, \ldots \).
If \(r_{15} = 1 \), then \(2r_{16} + 5 \) is a multiple of 27 and \(r_{16} = 11.38, \ldots \).

In any case,

\[\sum_{i} (11r_{15}^{i} + r_{16}^{i})/1344 \geq 22, \]

a contradiction.

Theorem 3 is proved. \(\square \)

Conclusion

The following are the main steps in creating a theory of Shilla graphs:

1. finding a list of feasible intersection arrays of Shilla graphs with \(b = 6 \);
2. classification of \(Q \)-polynomial Shilla graphs with \(b_{2} = c_{2} \).
REFERENCES

