A NEW CHARACTERIZATION OF SYMMETRIC DUNKL AND q-DUNKL-CLASSICAL ORTHOGONAL POLYNOMIALS

Yahia Habbachi
Faculty of Sciences, University of Gabes, Erriadh City 6072, Zrig, Gabes, Tunisia
Yahiahabbachi@hotmail.com

Abstract: In this paper, we consider the following \mathcal{L}-difference equation

$$\Phi(x)\mathcal{L}P_{n+1}(x) = (\xi_n x + \vartheta_n)P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0,$$

where Φ is a monic polynomial (even), $\deg \Phi \leq 2$, ξ_n, ϑ_n, λ_n, $n \geq 0$, are complex numbers and \mathcal{L} is either the Dunkl operator T_μ or the q-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L} = T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L} = T_{(\theta,q)}$, then the q^2-analogue of generalized Hermite and the q^2-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the \mathcal{L}-difference equation.

Keywords: Orthogonal polynomials, Dunkl operator, q-Dunkl operator.

1. Introduction

The classical orthogonal polynomials (Hermite, Laguerre, Bessel, and Jacobi) have a lot of useful characterizations: they satisfy a Hahn’s property, that the sequence of their monic derivatives is again orthogonal (see [1, 8, 14, 16]), they are characterized as the polynomial eigenfunctions of a second order homogeneous linear differential (or difference) hypergeometric operator with polynomial coefficients [4, 15, 16], their corresponding linear functionals satisfy a distribution equation of Pearson type (see [11, 13, 15]).

Another characterization was established by Al-Salam and Chihara in [1], in particular they showed that the sequences Hermite, Laguerre and Jacobi are the only monic orthogonal polynomial sequences $\{P_n\}_{n \geq 0}$ that satisfy an equation of the form:

$$\pi(x)P_{n+1}^\prime(x) = (a_n x + b_n)P_{n+1} + c_n P_n(x), \quad n \geq 0,$$ \hspace{1cm} (1.1)

where π is a monic polynomial, $\deg \pi \leq 2$.

Recently, Datta and J. Griffin [9] studied the q-analogue of (1.1). More precisely they studied a q-difference equation of the form:

$$\pi(x)D_q P_{n+1}^\prime(x) = (a_n x + b_n)P_{n+1} + c_n P_n(x), \quad n \geq 0,$$ \hspace{1cm} (1.2)

where π is a monic polynomial, $\deg \pi \leq 2$ and D_q is the Hahn operator defined by

$$D_q f(x) = (f(qx) - f(x))/(q - 1)x, \quad f \in \mathcal{P}.$$

In particular they showed that the only orthogonal polynomials satisfying (1.2) are the Al-Salam-Carlitz I, the little and big q-Laguerre, the little and big q-Jacobi and the q-Bessel polynomials.

The aim of this paper is to study the equation of the form:

$$\Phi(x)\mathcal{L}P_{n+1}(x) = (\xi_n x + \vartheta_n)P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0,$$ \hspace{1cm} (1.3)
where \(\Phi \) is a monic polynomial (even), \(\deg \Phi \leq 2 \) and \(\mathcal{L} \in \{ T_{\mu}, T_{(\theta, q)} \} \).

This paper is organized as follows. In Section 2, we introduce the basic background and some preliminary results that will be used in what follows. In Section 3, we show that the only symmetric orthogonal polynomials satisfying (1.3), are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials if \(\mathcal{L} = T_{\mu} \) and the \(q^2 \)-analogue of generalized Hermite polynomials and the \(q^2 \)-analogue of generalized Gegenbauer polynomials if \(\mathcal{L} = T_{(\theta, q)} \).

2. Preliminaries and notations

Let \(\mathcal{P} \) be the vector space of polynomials with coefficients in \(\mathbb{C} \) and let \(\mathcal{P}' \) be its dual. We denote by \(\langle u, f \rangle \) the action of \(u \in \mathcal{P}' \) on \(f \in \mathcal{P} \). In particular, we denote by \((u)_n = \langle u, x^n \rangle \), \(n \geq 0 \), the moments of \(u \). For any form \(u \), any polynomial \(f \) and any \(a \in \mathbb{C} \setminus \{ 0 \} \), let \(fu \) and \(h ערפוא, \) be the forms defined by duality:

\[
\langle fu, p \rangle = \langle u, fp \rangle, \quad \langle h ערפוא, p \rangle = \langle u, h ערפוא p \rangle, \quad p \in \mathcal{P},
\]

where \(h ערפוא p(x) = p(ax) \).

Let \(\{ P_n \}_{n \geq 0} \) be a sequence of monic polynomials (MPS, in short) with \(\deg P_n = n, n \geq 0 \). The dual sequence associated with \(\{ P_n \}_{n \geq 0} \) is the sequence \(\{ u_n \}_{n \geq 0}, u_n \in \mathcal{P}' \) such that \(\langle u_n, P_m \rangle = \delta_{n,m}, n, m \geq 0 \), where \(\delta_{n,m} \) is the Kronecker symbol [14].

The linear functional \(u \) is called regular if there exists a MPS \(\{ P_n \}_{n \geq 0} \) such that (see [8, p. 7]):

\[
\langle u, P_m P_n \rangle = r_n \delta_{n,m}, \quad n, m \geq 0, \quad r_n \neq 0, \quad n \geq 0.
\]

Then the sequence \(\{ P_n \}_{n \geq 0} \) is said to be orthogonal with respect to \(u \). In this case, we have

\[
u_n = (\langle u_0, P_n^2 \rangle)^{-1} P_n u_0, \quad n \geq 0.
\]

Moreover, \(u = \lambda u_0 \), where \((u)_0 = \lambda \neq 0 \) [17].

In what follows all regular linear functionals \(u \) will be taken normalized i.e., \((u)_0 = 1 \). Therefore, \(u = u_0 \).

A polynomial set \(\{ P_n \}_{n \geq 0} \) is called symmetric if

\[
P_n(-x) = (-1)^n P_n(x), \quad n \geq 0.
\]

According to Favard’s theorem [8], a sequence of monic orthogonal polynomials \(\{ P_n(x) \}_{n \geq 0} \) (MOPS, in short) satisfies a three-term recurrence relation

\[
\begin{cases}
P_0(x) = 1, & P_1(x) = x, \\P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), & n \geq 0, \quad \gamma_{n+1} \neq 0, \quad n \geq 0.
\end{cases}
\tag{2.1}
\]

with

\[
\beta_n = \frac{\langle u_0, xP_n^2 \rangle}{\langle u_0, P_n^2 \rangle}, \quad \gamma_{n+1} = \frac{\langle u_0, P_{n+1}^2 \rangle}{\langle u_0, P_n^2 \rangle}, \quad n \geq 0.
\]

A dilatation preserves the property of orthogonality. Indeed, the sequence \(\{ \tilde{P}_n(x) \}_{n \geq 0} \) defined by

\[
\tilde{P}_n(x) = a^{-n} P_n(ax), \quad n \geq 0, \quad a \in \mathbb{C} \setminus \{ 0 \},
\]

satisfies the recurrence relation [16]

\[
\begin{cases}
\tilde{P}_0(x) = 1, & \tilde{P}_1(x) = x - \tilde{\beta}_0, \\
\tilde{P}_{n+2}(x) = (x - \tilde{\beta}_{n+1})\tilde{P}_{n+1}(x) - \tilde{\gamma}_{n+1}\tilde{P}_n(x), & n \geq 0,
\end{cases}
\]
We introduce also the q-Dunkl operator $T_{\theta,q}$ defined on \mathcal{P} by $\langle 1, 2, 7 \rangle$

$$
(T_{\theta,q}f)(x) = \frac{f(qx) - f(x)}{(q-1)x} + \theta H_{-1}f(x), \quad f \in \mathcal{P}, \theta \in \mathbb{C}.
$$

Remark 1. Note that when $q \to 1$, we again meet the Dunkl operator.

From the last definition, it is easy to prove that

$$
T_{\theta,q}(fg) = (T_{\theta,q}f)g + (h_{q}f)(T_{\theta,q}g) + \theta(h_{-1}f - h_{q}f)H_{-1}g, \quad f, g \in \mathcal{P}.
$$

In particular,

$$
T_{\mu}(xP_{n+1}) = \left(1 + \theta - \theta(q + 1)\frac{1 - (-1)^{n+1}}{2}\right)P_{n+1}(x) + qx(T_{\theta,q}P_{n+1})(x), \quad n \geq 0. \tag{2.4}
$$
We define the operator $T_{(θ,q)}$ from \mathcal{P}' to \mathcal{P}' as follows:

$$\langle T_{(θ,q)} u, f \rangle = - \langle u, T_{(θ,q)} f \rangle, \quad f \in \mathcal{P}, \quad u \in \mathcal{P}'.$$

In particular,

$$(T_{(θ,q)})_n = -θ_{n,q}(u)_{n-1}, \quad n \geq 0,$$

where $(u)_{-1} = 0$ and

$$θ_{n,q} = [n]_q + \frac{θ\left(1 - (-1)^n\right)}{2}, \quad n \geq 0,$$ \hspace{1cm} (2.5)

here $[n]_q, n \geq 0$, denotes the basic q-number defined by

$$[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + ... + q^{n-1}, \quad n \geq 1, \quad [0]_q = 0.$$

According to the definitions of $T_μ$ and $T_{(θ,q)}$, we have

$$T_μ(x^n) = μ_n x^{n-1}, \quad T_{(θ,q)}(x^n) = θ_{n,q} x^{n-1}.$$

3. The main results

In this section, we will look for all symmetric MOPS satisfying (1.3). We distinguish two cases. The first case is when $L = T_μ$ and the second one is when $L = T_{(θ,q)}$.

3.1. First case: when $L = T_μ$

Theorem 2. The only symmetric MOPS satisfying a $T_μ$-difference equation of the form

$$Φ(x)T_μP_{n+1}(x) = (ξ_n x + ϑ_n)P_{n+1}(x) + λ_nP_n(x), \quad n \geq 0,$$ \hspace{1cm} (3.1)

where $Φ$ is a monic polynomial (even), $\deg Φ \leq 2$, are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials.

Proof. Let $\{P_n\}_{n \geq 0}$ be a symmetric MOPS satisfying (3.1). Since $Φ$ is a monic, even and $\deg Φ \leq 2$, then we distinguish two cases: $Φ(x) = 1$ and $Φ(x) = x^2 + c$.

Case 1. $Φ(x) = 1$, then (3.1) becomes

$$T_μP_{n+1}(x) = (ξ_n x + ϑ_n)P_{n+1}(x) + λ_nP_n(x), \quad n \geq 0.$$

By comparing the degrees in the last equation (in x^{n+2} and x^{n+1}), we obtain $ξ_n = ϑ_n = 0, n \geq 0$ and then

$$T_μP_{n+1}(x) = λ_nP_n(x), \quad n \geq 0.$$ \hspace{1cm} (3.2)

Identifying coefficients in the monomials of degree n in the last equation, we obtain

$$λ_n = μ_{n+1}, \quad n \geq 0.$$ \hspace{1cm} (3.3)

On the other hand, applying the operator $T_μ$ to (2.1) with $β_{n+1} = 0$ and using (2.3), we get

$$T_μP_{n+2}(x) = (1 + 2μ(-1)^{n+1})P_{n+1}(x) + x(T_μP_{n+1})(x) - γ_{n+1}(T_μP_n)(x), \quad n \geq 0.$$

Substituting (3.2) and (3.3) in the last equation and taking into account the fact that

$$1 + 2μ(-1)^{n+1} = μ_{n+2} - μ_{n+1},$$
Comparing the degrees in the last equation, we obtain
\[\vartheta \]

Multiplying the previous equation by \(\mu_{n+1} \), or, equivalently,
\[T \]

Applying the operator \(T \) in both sides of (3.4), we identify the coefficients of higher degree in both sides of (3.4), we obtain \(\xi_n = \mu_{n+1} \), \(n \geq 0 \). Therefore, (3.4) becomes
\[(x^2 + c)T_\mu P_{n+1}(x) = (\mu_{n+1}x + \vartheta_n)P_{n+1}(x) + \lambda_n P_n(x) \]

Identifying the coefficients of higher degree in both sides of (3.4), we obtain \(\xi_n = \mu_{n+1} \), \(n \geq 0 \). Therefore, (3.4) becomes
\[(x^2 + c)T_\mu P_{n+1}(x) = (\mu_{n+1}x + \vartheta_n)P_{n+1}(x) + \lambda_n P_n(x) \]

Applying the operator \(T_\mu \) to (2.1) with \(\beta_{n+1} = 0 \) and using (2.3) and the fact that
\[1 + 2\mu(-1)^{n+1} = \mu_{n+2} - \mu_{n+1} \]

we get
\[T_\mu P_{n+2}(x) = (\mu_{n+2} - \mu_{n+1})P_{n+1}(x) + x(T_\mu P_{n+1})(x) - \gamma_{n+1}(T_\mu P_n)(x) \]

Multiplying the previous equation by \(x^2 + c \) and using (3.5), we get
\[(\mu_{n+2}x + \vartheta_{n+1})P_{n+2}(x) + \lambda_{n+1}P_{n+1}(x) = (\mu_{n+2} - \mu_{n+1})(x^2 + c)P_{n+1}(x) + \lambda_n xP_n(x) - \gamma_{n+1}((\mu_n x + \vartheta_{n-1})P_n(x) + \lambda_{n-1}P_{n-1}(x)) \]

or, equivalently,
\[(\vartheta_{n+1} - \vartheta_n)xP_{n+1}(x) - c(\mu_{n+2} - \mu_{n+1})P_{n+1} + \lambda_{n+1}P_{n+1}(x) \]

Comparing the degrees in the last equation, we obtain \(\vartheta_{n+1} = \vartheta_n \), \(n \geq 1 \). But, from (3.5) and the fact that \(\{P_n\}_{n \geq 0} \) is symmetric, where \(n = 0 \) and \(n = 1 \), we get, respectively,
\[v_0 = 0, \quad \lambda_0 = c(1 + 2\mu) \]
\[v_1 = 0, \quad \lambda_1 = 2(\gamma_1 + c) \]
Thus,

\[\vartheta_n = 0, \quad n \geq 0. \]

Therefore, (3.6) becomes

\[
c(\mu_{n+1} - \mu_{n+2})P_{n+1}(x) + \lambda_{n+1}P_{n+1}(x) = \lambda_n xP_n(x) + \gamma_{n+1}((\mu_{n+2} - \mu_n)xP_n(x) - \lambda_{n-1}P_{n-1}(x)), \quad n \geq 1.
\]

Taking into account (2.1), we get

\[
(\lambda_{n+1} + c(\mu_{n+1} - \mu_{n+2}))xP_n(x) - \gamma_n(\lambda_{n+1} + c(\mu_{n+1} - \mu_{n+2}))P_{n-1}(x) = (\lambda_n + (\mu_{n+2} - \mu_n)\gamma_{n+1})xP_n(x) - \lambda_{n-1}\gamma_{n+1}P_{n-1}(x), \quad n \geq 1.
\]

Then,

\[
\lambda_{n+1} + c(\mu_{n+1} - \mu_{n+2}) = \lambda_n + (\mu_{n+2} - \mu_n)\gamma_{n+1}, \quad n \geq 1, \quad (3.8)
\]

\[
(\lambda_{n+1} + c(\mu_{n+1} - \mu_{n+2}))\gamma_n = \lambda_{n-1}\gamma_{n+1}, \quad n \geq 1. \quad (3.9)
\]

Since \(\mu_{n+2} - \mu_n = 2 \), then, substitution of (3.8) in (3.9) gives

\[
(\lambda_n + 2\gamma_{n+1})\gamma_n = \lambda_{n-1}\gamma_{n+1}, \quad n \geq 1.
\]

Therefore,

\[
\frac{\lambda_n}{\gamma_{n+1}} = \frac{\lambda_{n-1}}{\gamma_n} - 2, \quad n \geq 1.
\]

So,

\[
\lambda_n = \frac{\lambda_0 - 2n\gamma_1}{\gamma_1}\gamma_{n+1}, \quad n \geq 1. \quad (3.10)
\]

It is clear that (3.10) remains valid for \(n = 0 \). Then, we have

\[
\lambda_n = \frac{\lambda_0 - 2n\gamma_1}{\gamma_1}\gamma_{n+1}, \quad n \geq 0. \quad (3.11)
\]

Substitution of (3.11) in (3.8) gives

\[
\lambda_{n+1} = \frac{\lambda_0 - 2(n-1)\gamma_1}{\lambda_0 - 2n\gamma_1}\lambda_n + c(\mu_{n+2} - \mu_{n+1}), \quad n \geq 1.
\]

By virtue of fourth equality in (3.7), we obtain that the previous equation remains valid for \(n = 0 \). Hence,

\[
\lambda_{n+1} = \frac{\lambda_0 - 2(n-1)\gamma_1}{\lambda_0 - 2n\gamma_1}\lambda_n + c(\mu_{n+2} - \mu_{n+1}), \quad n \geq 0. \quad (3.12)
\]

We will distinguish two situations: \(c = 0 \) and \(c \neq 0 \).

- If \(c = 0 \), then from (3.7) we have \(\lambda_0 = 0 \). Therefore, \(\lambda_n = 0, \quad n \geq 0 \). Consequently, according to (3.11) and the fourth equality in (3.7), \(\gamma_{n+1} = 0, \quad n \geq 0 \). This contradicts the orthogonality of \(\{P_n\}_{n \geq 0} \).
- If \(c \neq 0 \), using a dilatation, we can take \(c = -1 \). Putting

\[
\gamma_1 = \frac{1 + 2\mu}{3 + 2\mu + 2\alpha},
\]
then \((3.12)\) becomes

$$\lambda_{n+1} = \frac{2n + 2\alpha + 2\mu + 1}{2n + 2\alpha + 2\mu + 3} \lambda_n + \mu_{n+1} - \mu_{n+2}, \quad n \geq 0. \tag{3.13}$$

From \((3.13)\), we can easily prove by induction that

$$\lambda_n = -\frac{\mu_{n+1}(\mu_{n+1} + 2\alpha)}{2n + 2\alpha + 2\mu + 1}, \quad n \geq 0.$$

Thus, \((3.11)\) gives

$$\gamma_{n+1} = \frac{\mu_{n+1}(\mu_{n+1} + 2\alpha)}{(2n + 2\alpha + 2\mu + 1)(2n + 2\alpha + 2\mu + 3)}, \quad n \geq 0.$$

So, we meet the recurrence coefficients for the generalized Gegenbauer polynomial (see \([3, 8]\)). \(\Box\)

Remark 2. Notice that when \(\mu = 0\) in \((3.1)\), we again meet \((1.1)\) for the symmetric case.

3.2. Second case: when \(L = T_{(\theta,q)}\)

Theorem 3. The only symmetric MOPS satisfying a \(T_{(\theta,q)}\)-difference equation of the form:

$$\Phi(x) T_{(\theta,q)} P_{n+1}(x) = (\xi_n x + \vartheta_n) P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0, \tag{3.14}$$

where \(\Phi\) is a monic polynomial (even), \(\deg \Phi \leq 2\), are, up a dilation, the \(q^2\)-analogue of generalized Hermite polynomials and the \(q^2\)-analogue of generalized Gegenbauer polynomials.

Proof. Let \(\{P_n\}_{n \geq 0}\) be a symmetric MOPS satisfying \((3.1)\). As in proof of Theorem 2, we distinguish two cases: \(\Phi(x) = 1\) and \(\Phi(x) = x^2 + c\).

Case 1. \(\Phi(x) = 1\), then \((3.14)\) becomes

$$T_{(\theta,q)} P_{n+1}(x) = (\xi_n x + \vartheta_n) P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0. \tag{3.15}$$

By comparing the degrees in \((3.15)\), we obtain \(\xi_n = \vartheta_n = 0\), \(n \geq 0\). Then,

$$T_{(\theta,q)} P_{n+1}(x) = \lambda_n P_n(x), \quad n \geq 0.$$

The comparison of the coefficients of \(x^n\) in the previous equation leads to \(\lambda_n = \theta_{n+1, q}, \quad n \geq 0\). Therefore,

$$T_{(\theta,q)} P_{n+1}(x) = \theta_{n+1, q} P_n(x), \quad n \geq 0. \tag{3.16}$$

Now, applying \(T_{(\theta,q)}\) to \((2.1)\) with \(\beta_{n+1} = 0\) and using \((2.4)\), we get

$$T_{(\theta,q)} P_{n+2}(x) = \left(1 + \theta - \theta(q + 1) \frac{1 - (-1)^{n+1}}{2}\right) P_{n+1}(x) + q x (T_{(\theta,q)} P_{n+1})(x) - \gamma_{n+1} (T_{(\theta,q)} P_n)(x), \quad n \geq 0.$$

Substituting \((3.16)\) in the last equation, we get

$$\theta_{n+2, q} P_{n+1}(x) = \left(1 + \theta - \theta(q + 1) \frac{1 - (-1)^{n+1}}{2}\right) P_{n+1}(x) + q \theta_{n+1, q} x P_n(x) - \gamma_{n+1} \theta_{n, q} P_{n-1}(x), \quad n \geq 0.$$
Using the fact that

\[xP_n = P_{n+1} + \gamma_n P_{n-1}, \]

we obtain

\[\left(\theta_{n+2,q} - 1 - \theta + \theta(q + 1) \frac{1 - (-1)^{n+1}}{2} - q\theta_{n+1,q} \right) P_{n+1}(x) = q\theta_{n+1,q}\gamma_n P_{n-1}(x) - \theta_{n,q}\gamma_{n+1} P_{n-1}(x), \quad n \geq 0. \]

After easy calculations from (2.5), we have

\[\theta_{n+2,q} - 1 - \theta + \theta(q + 1) \frac{1 - (-1)^{n+1}}{2} - q\theta_{n+1,q} = 0, \quad n \geq 0. \tag{3.17} \]

Therefore,

\[(q\theta_{n+1,q} \gamma_n - \theta_{n,q} \gamma_{n+1}) P_{n-1}(x) = 0, \quad n \geq 0. \]

Hence,

\[q\theta_{n+1,q} \gamma_n = \theta_{n,q} \gamma_{n+1}, \quad n \geq 1. \]

Then, we can deduce by induction that

\[\gamma_{n+1} = \frac{\gamma_1}{1 + \theta} q^n \theta_{n+1,q}, \quad n \geq 1. \]

Moreover, the previous identity remains valid for \(n = 0 \), thus

\[\gamma_{n+1} = \frac{\gamma_1}{1 + \theta} q^n \theta_{n+1,q}, \quad n \geq 0. \]

Then, according to (2.2), with the choice

\[a^2 = q(q + 1) \frac{\gamma_1}{1 + \theta} \]

and putting

\[\mu = \frac{1 + \theta}{q(q + 1)} - \frac{1}{2}, \]

we obtain

\[\tilde{\beta}_n = 0, \quad \tilde{\gamma}_{n+1} = q^n \theta_{n+1,q}, \quad n \geq 0, \]

which are the recurrence coefficients for the \(q^2 \)-analogue of generalized Hermite polynomial \(H_{n}^{(\mu,q^2)} \) [12], with

\[\mu = \frac{1 + \theta}{q(q + 1)} - \frac{1}{2}. \]

Case 2: \(\Phi(x) = x^2 + c \), then in this case (3.14) becomes

\[(x^2 + c)T_{(\theta,q)} P_{n+1}(x) = (\xi_n x + \vartheta_n) P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0. \tag{3.18} \]

By comparing terms of higher degree in the previous equation, we obtain

\[\xi_n = \theta_{n+1,q}, \quad n \geq 0. \]

Then, equation (3.18) becomes

\[(x^2 + c)T_{(\theta,q)} P_{n+1}(x) = (\theta_{n+1,q} x + \vartheta_n) P_{n+1}(x) + \lambda_n P_n(x), \quad n \geq 0. \tag{3.19} \]
Applying the operator $T_{(\theta,q)}$ to (2.1) with $\beta_{n+1} = 0$ and using (2.4), we get

\[
T_{(\theta,q)}P_{n+2}(x) = \left(1 + \theta - \theta(q + 1)\frac{1 - (-1)^{n+1}}{2}\right)P_{n+1}(x) + q x(T_{(\theta,q)}P_{n+1})(x) - \gamma_{n+1}(T_{(\theta,q)}P_n)(x), \quad n \geq 0.
\]

By (3.17), the last equation becomes

\[
T_{(\theta,q)}P_{n+2}(x) = (\theta_{n+2,q} - q\theta_{n+1,q})P_{n+1}(x) + q x(T_{(\theta,q)}P_{n+1})(x) - \gamma_{n+1}(T_{(\theta,q)}P_n)(x), \quad n \geq 0.
\]

Multiplying the above equation by $x^2 + c$ and substituting (3.19) into the result, we get

\[
(\theta_{n+2,q}x + \theta_{n+1})P_{n+2}(x) + \lambda_{n+1}P_{n+1}(x) = (\theta_{n+2,q} - q\theta_{n+1,q})(x^2 + c)P_{n+1}(x) + q(\theta_{n+1,q}x^2 + \theta_{n+1})P_{n+1}(x) + q\lambda_{n}xP_{n}(x) - \gamma_{n+1}((\theta_{n,q}x + \theta_{n-1})P_{n}(x) + \lambda_{n-1}P_{n-1}(x)), \quad n \geq 1.
\]

Substituting of (2.1) in the previous equation, we get

\[
(\theta_{n+1} - q\theta_{n})xP_{n+1}(x) + (\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}))P_{n+1}(x) = q\lambda_{n}xP_{n}(x) + \gamma_{n+1}((\theta_{n+2,q} - \theta_{n,q})x + \theta_{n+1} - \theta_{n-1})P_{n}(x) - \lambda_{n-1}P_{n-1}(x), \quad n \geq 1.
\]

The comparison of the coefficients of x^{n+2} in the previous equation gives $\theta_{n+1} = q\theta_{n}$, $n \geq 1$ and putting $n = 0$ and $n = 1$ in (3.19), we get respectively

\[
v_0 = 0, \quad \lambda_0 = c(1 + \theta),
\]

\[
v_1 = 0, \quad \lambda_1 = (1 + q)(\gamma_1 + c).
\]

Hence, $\vartheta = 0$, $n \geq 0$.

Therefore, the last equation becomes

\[
(\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}))P_{n+1}(x) = q\lambda_{n}xP_{n}(x) + \gamma_{n+1}((\theta_{n+2,q} - \theta_{n,q})xP_{n}(x) - \lambda_{n-1}P_{n-1}(x)), \quad n \geq 1.
\]

Using the fact that $P_{n+1} = xP_{n}(x) - \gamma_{n}P_{n-1}$, the above equation is equivalent to

\[
(\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}))xP_{n}(x) - \gamma_{n}(\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}))P_{n-1}(x) = (q\lambda_{n} + (\theta_{n+2,q} - \theta_{n,q})\gamma_{n+1})xP_{n}(x) - \lambda_{n-1}\gamma_{n+1}P_{n-1}(x), \quad n \geq 1.
\]

Then, we deduce

\[
\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}) = q\lambda_{n} + (\theta_{n+2,q} - \theta_{n,q})\gamma_{n+1}, \quad n \geq 1,
\]

\[
(\lambda_{n+1} - c(\theta_{n+2,q} - q\theta_{n+1,q}))\gamma_{n} = \lambda_{n-1}\gamma_{n+1}, \quad n \geq 1.
\]

Since

\[
\theta_{n+2,q} - \theta_{n,q} = (1 + q)q^n,
\]

then the substitution of (3.21) in (3.22) gives

\[
(q\lambda_{n} + (1 + q)q^n\gamma_{n+1})\gamma_{n} = \lambda_{n-1}\gamma_{n+1}, \quad n \geq 1,
\]

therefore,

\[
q\lambda_{n} = \left(\frac{\lambda_{n-1}}{\gamma_{n}} - (1 + q)q^n\right)\gamma_{n+1}, \quad n \geq 1.
\]
We can easily deduce by induction that
\[q^n \lambda_n = \left(\frac{\lambda_0}{\gamma_1} - q(q + 1)[n]_q^2 \right) \gamma_{n+1}, \quad n \geq 1. \]
It is clear that the previous identity remains valid for \(n = 0 \). Then, we have
\[q^n \lambda_n = \left(\frac{\lambda_0}{\gamma_1} - q(q + 1)[n]_q^2 \right) \gamma_{n+1}, \quad n \geq 0. \]
(3.23)
Now, we will determine \(\lambda_n \). By (3.23), we have
\[\gamma_{n+1} = q^n \frac{\gamma_1}{\lambda_0 - q(q + 1)[n]_q^2} \lambda_n, \quad n \geq 0. \]
(3.24)
Therefore, (3.21) becomes
\[\lambda_{n+1} = \frac{q\lambda_0 - (q + 1)\gamma_1 [n]_q^2 - 1}{\lambda_0 - q(q + 1)\gamma_1 [n]_q^2} \lambda_n + c(\theta_{n+2,q} - q\theta_{n+1,q}), \quad n \geq 1. \]
By virtue of (3.20), we obtain that the previous equation remains valid for \(n = 0 \).
Then,
\[\lambda_{n+1} = \frac{q\lambda_0 - (q + 1)\gamma_1 [n]_q^2 - 1}{\lambda_0 - q(q + 1)\gamma_1 [n]_q^2} \lambda_n + c(\theta_{n+2,q} - q\theta_{n+1,q}), \quad n \geq 0. \]
(3.25)
We will distinguish two situations: \(c = 0 \) and \(c \neq 0 \).
- If \(c = 0 \), then from (3.20) \(\lambda_0 = 0 \). Therefore, \(\lambda_n = 0, n \geq 0 \). Consequently, according to (3.24) and the fourth equality in (3.20), \(\gamma_{n+1} = 0, n \geq 0 \). This contradicts the orthogonality of \(\{ P_n \}_{n \geq 0} \).
- If \(c \neq 0 \), using a suitable dilatation, we can suppose that \(c = -1 \). Putting
\[\gamma_1 = \frac{1 + \theta}{1 + \theta + q(q + 1)(\alpha + 1)}. \]
(3.26)
Equation (3.25) becomes
\[\lambda_{n+1} = q \frac{\frac{q(q + 1)(\alpha + 1) + \theta_{2n-1,q}}{q(q + 1)(\alpha + 1) + \theta_{2n+1,q}} \lambda_n - (\theta_{n+2,q} - q\theta_{n+1,q})}{q(q + 1)(\alpha + 1) + \theta_{2n-1,q}}, \quad n \geq 0. \]
(3.27)
Therefore, from (3.27), we can prove by induction that
\[\lambda_n = -\frac{\theta_{n+1,q} \left(q(q + 1)(\alpha + 1) + \theta_{n-1,q}(1 + \theta(1 - q)(1 - (-1)^n)/2) \right)}{q(q + 1)(\alpha + 1) + \theta_{2n-1,q}}, \quad n \geq 0. \]
(3.28)
By virtue of (3.24), (3.26) and (3.28), we get
\[\gamma_{n+1} = q^n \frac{\theta_{n+1,q} \left(q(q + 1)(\alpha + 1) + \theta_{n-1,q}(1 + \theta(1 - q)(1 - (-1)^n)/2) \right)}{\left(q(q + 1)(\alpha + 1) + \theta_{2n-1,q} \right) \left(q(q + 1)(\alpha + 1) + \theta_{2n+1,q} \right)}, \quad n \geq 0. \]
So, we meet the recurrence coefficients for the \(q^2 \)-analogue of generalized Gegenbauer polynomial \(S_n^{(\alpha,\beta,q^2)} \), with
\[\beta = \frac{1 + \theta}{q(q + 1)} - 1 \]
(see [12]). \(\square \)

Remark 3. Notice that when \(q \to 1 \), we recover the result in Theorem 2 and when \(\theta = 0 \) in (3.14), we again meet (1.2) for symmetric case.
4. Conclusion

To conclude this paper, we will present two tables in which we give the only symmetric MOPS verifying the L-difference (1.3).

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Φ</th>
<th>ξ_n</th>
<th>ϑ_n</th>
<th>λ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Hermite $H_n^{(\mu,q)}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>μ_{n+1}, $n \geq 0$</td>
</tr>
<tr>
<td>Generalized Gegenbauer $S_n^{(\alpha,\beta,q)}$</td>
<td>$x^2 - 1$</td>
<td>μ_{n+1}</td>
<td>0</td>
<td>$\frac{\mu_{n+1}(\mu_{n+1} + 2\alpha)}{2n + 2\alpha + 2\mu + 1}$, $n \geq 0$</td>
</tr>
</tbody>
</table>

Table 1: Case when $L = T_\mu$

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Φ</th>
<th>ξ_n</th>
<th>ϑ_n</th>
<th>λ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^2-analogue of generalized Hermite $H_n^{(\mu,q^2)}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\theta_{n+1,q}$, $n \geq 0$</td>
</tr>
<tr>
<td>q^2-analogue of generalized Gegenbauer $S_n^{(\alpha,\beta,q^2)}$</td>
<td>$x^2 - 1$</td>
<td>$\theta_{n+1,q}$</td>
<td>0</td>
<td>$-\frac{\theta_{n+1,q}(q(q+1)(\alpha+1)+\theta_{n-1,q}(1+\theta(1-q)(1-(1)^n)/2))}{q(q+1)(\alpha+1)+\theta_{n-1,q}}$, $n \geq 0$</td>
</tr>
</tbody>
</table>

Table 2: Case when $L = T(\theta,q)$

Remark 4. In this paper, we have studied only the symmetric case. The question for non-symmetric case remains open.

Acknowledgements

The author thanks Professor Francisco Marcellán for many enlightening discussions and the anonymous referees for their careful reading of the manuscript and corrections.

REFERENCES

