GRAPHS Γ OF DIAMETER 4 FOR WHICH $\Gamma_{3,4}$ IS A STRONGLY REGULAR GRAPH WITH $\mu = 4, 6^i$

Alexander A. Makhneva,d, Mikhail P. Golubyatnikova,c,
Konstantin S. Efimovb,c,†††

aKrasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation

bUral State Mining University,
30 Kuibyshev Str., Ekaterinburg, 620144, Russian Federation

cUral Federal University,
19 Mira Str., Ekaterinburg, 620002, Russian Federation

dUniversity Hainan Province,
58 Renmin Av., Haikou 570228, Hainan, P.R. China

†makhnev@imm.uran.ru ††mike.ru1@mail.ru †††konstantin.s.efimov@gmail.com

Abstract: We consider antipodal graphs Γ of diameter 4 for which $\Gamma_{1,2}$ is a strongly regular graph. A.A. Makhnev and D.V. Paduchikh noticed that, in this case, $\Delta = \Gamma_{3,4}$ is a strongly regular graph without triangles. It is known that in the cases $\mu = \mu(\Delta) \in \{2, 4, 6\}$ there are infinite series of admissible parameters of strongly regular graphs with $k(\Delta) = \mu(r+1)+r^2$, where r and $s = -(\mu + r)$ are nonprincipal eigenvalues of Δ. This paper studies graphs with $\mu(\Delta) = 4$ and 6. In these cases, Γ has intersection arrays \{r^2 + 4r + 3, r^2 + 4r, 4, 1, 1, 4, r^2 + 4r, r^2 + 4r + 3\} and \{r^2 + 6r + 5, r^2 + 6r, 6, 1, 1, 6, r^2 + 6r, r^2 + 6r + 5\}, respectively. It is proved that graphs with such intersection arrays do not exist.

Keywords: Distance-regular graph, Strongly regular graph, Triple intersection numbers.

1. Introduction

We consider undirected graphs without loops or multiple edges.

Let Γ be a connected graph. The distance $d(a, b)$ between two vertices a and b of Γ is the length of a shortest path between a and b in Γ. Given a vertex a in a graph Γ, we denote by $\Gamma_i(a)$ the subgraph induced by Γ on the set of all vertices that are at distance i from a. The subgraph $[a] = \Gamma_1(a)$ is called the neighbourhood of the vertex a.

Let Γ be a graph and $a, b \in \Gamma$. Then the number of vertices in $[a] \cap [b]$ is denoted by $\mu(a,b)$ (by $\lambda(a,b)$) if a and b are at distance 2 (are adjacent) in Γ. Further, a subgraph induced by $[a] \cap [b]$ is called a μ-subgraph (a λ-subgraph). Let Γ be a graph of diameter d and $i, j \in \{1, 2, 3, \ldots, d\}$. A graph Γ_i has the same set of vertices as Γ and vertices u and w are adjacent in Γ_i if $d_{\Gamma}(u, w) = i$. A graph $\Gamma_{i,j}$ has the same set of vertices as Γ and vertices u and w are adjacent in Γ_j if $d_{\Gamma}(u, w) \in \{i, j\}$.

If vertices u and w are at distance i in Γ, then we denote by $b_i(u, w)$ (by $c_i(u, w)$) the number of vertices in the intersection $\Gamma_{i+1}(u)$ ($\Gamma_{i-1}(u)$) with $[w]$. A graph Γ of diameter d is called distance-regular with intersection array \{b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d\} if the values $b_i(u, w)$ and $c_i(u, w)$ are

1The study was supported by National Natural Science Foundation of China (12171126) and grant Laboratory of Endgeeniring Modelling and Statistics Calculations of Hainan Province.
Let Δ be a distance-regular graph with intersection array $\{k, k - a_1 - 1, (r - 1)c_2, 1; 1, c_2, k - a_1 - 1, k\}$.

Consider an antipodal distance-regular graph Γ of diameter 4 for which Γ is a strongly regular graph. Makhnev and Paduchikh noticed in [3] that, in this case, $\Delta = \Gamma_{3,4}$ is a strongly regular graph without triangles and the antipodality index of Γ equals 2. It is known that in the cases $\mu = \mu(\Delta) \in \{2, 4, 6\}$ there arise infinite series of admissible parameters of strongly regular graphs with $k(\Delta) = \mu(r + 1) + r^2$, where r and $s = -(\mu + r)$ are nonprincipal eigenvalues of Δ.

In the present paper, we consider graphs with $\mu(\Delta) = 4$ and 6. In these cases, Γ has intersection arrays

$$\{r^2 + 4r + 3, r^2 + 4r, 4, 1; 1, 4, r^2 + 4r, r^2 + 4r + 3\}$$

and

$$\{r^2 + 6r + 5, r^2 + 6r, 6, 1; 1, 6, r^2 + 6r, r^2 + 6r + 5\},$$

respectively.

If $\mu(\Delta) = 4$, then Δ has parameters $(v, r^2 + 4r + 4, 0, 4)$, where

$$v = 1 + (r^2 + 4r + 4) + \frac{(r^2 + 4r + 4)(r^2 + 4r + 3)}{4}.$$

Further, Δ has nonprincipal eigenvalues r and $-(r + 4)$, and the multiplicity of r is equal to $(r + 3)(r + 2)(r^2 + 5r + 8)/8$.

Theorem 1. A distance-regular graph with intersection array

$$\{r^2 + 4r + 3, r^2 + 4r, 4, 1; 1, 4, r^2 + 4r, r^2 + 4r + 3\}$$

does not exist.

If $\mu(\Delta) = 6$, then Δ has parameters $(v, r^2 + 6r + 6, 0, 6)$, where

$$v = 1 + (r^2 + 6r + 6) + (r^2 + 6r + 6)(r^2 + 6r + 5)/6.$$

Further, Δ has nonprincipal eigenvalues r and $-(r + 6)$, and the multiplicity of r is equal to $(r + 5)(r^2 + 6r + 6)(r + 4)/12$. Therefore, r is even or congruent to 3 modulo 4.

Theorem 2. A distance-regular graph with intersection array

$$\{r^2 + 6r + 5, r^2 + 6r, 6, 1; 1, 6, r^2 + 6r, r^2 + 6r + 5\}$$

does not exist.

Corollary 1. Distance-regular graphs with intersection arrays

$$\{32, 27, 6, 1; 1, 6, 27, 32\}, \quad \{45, 40, 6, 1; 1, 6, 40, 45\}, \quad \{77, 72, 6, 1; 1, 6, 72, 77\}, \quad \{96, 91, 6, 1; 1, 6, 91, 96\}, \quad \{117, 112, 6, 1; 1, 6, 112, 117\}$$

do not exist.
2. Triple intersection numbers

Let Γ be a distance-regular graph of diameter d. If u_1, u_2, and u_3 are vertices of the graph Γ and $r_1, r_2,$ and r_3 are nonnegative integers not greater than d, then $\{u_1u_2u_3 \mid r_1r_2r_3\}$ is the set of vertices $w \in \Gamma$ such that

$$d(w, u_i) = r_i, \quad \left\{u_1u_2u_3 \mid r_1r_2r_3\right\} = \left\{u_1u_2u_3 \mid r_1r_2r_3\right\}.$$

The numbers $\left[u_1u_2u_3 \mid r_1r_2r_3\right]$ are called triple intersection numbers. For a fixed triple u_1, u_2, u_3 of vertices, we will write $[r_1r_2r_3]$ instead of $\left[u_1u_2u_3 \mid r_1r_2r_3\right]$.

Unfortunately, there are no general formulas for numbers $[r_1r_2r_3]$. However, [2] suggests a method for calculating some numbers $[r_1r_2r_3]$.

Assume that $u, v,$ and w are vertices of the graph Γ, $W = d(u, v)$, $U = d(v, w)$, and $V = d(u, w)$. Since there is exactly one vertex $x = u$ such that $d(x, u) = 0$, then the number $[0jh]$ is 0 or 1. Hence, $[0jh] = \delta_{jW}\delta_{hV}$. Similarly, $[i0h] = \delta_{iW}\delta_{hU}$ and $[ij0] = \delta_{U}\delta_{jV}$.

Another set of equations can be obtained by fixing the distance between two vertices from $\{u, v, w\}$ and counting the number of vertices located at all possible distances from the third. Then, we get

$$\sum_{l=1}^{d} [ijh] = p_{jh}^U - [0jh], \quad \sum_{l=1}^{d} [i lh] = p_{lh}^V - [i0h], \quad \sum_{l=1}^{d} [ijl] = p_{ijl}^W - [ij0]. \tag{2.1}$$

At the same time, some triples disappear. If $|i - j| > W$ or $i + j < W$, then $p_{ij}^W = 0$; therefore, $[ijh] = 0$ for all $h \in \{0, \ldots, d\}$. Define

$$S_{ijh}(u, v, w) = \sum_{r,s,t=0}^{d} Q_{r_1}Q_{s_j}Q_{t_h} \left[uvw \mid r_st\right].$$

If Krein’s parameter q_{ijh}^h is 0, then $S_{ijh}(u, v, w) = 0$.

3. A distance-regular graph with intersection array

$$\{r^2 + 4r + 3, r^2 + 4r, 4, 1, 4, r^2 + 4r, r^2 + 4r + 3\}\}

In this section, Γ is a distance-regular graph with intersection array

$$\{r^2 + 4r + 3, r^2 + 4r, 4, 1, 4, r^2 + 4r, r^2 + 4r + 3\}\}.$$

Then, Γ has $1 + (r^2 + 4r + 3) + (r^2 + 4r + 3)(r^2 + 4r)/4 + (r^2 + 4r + 3) + 1$ vertices and the spectrum

$$(r + 3)(r + 1) \quad \text{of multiplicity} \quad 1,$$

$r + 3 \quad \text{of multiplicity} \quad \frac{(r^2 + 5r + 8)(r^2 + 3r + 4)(r + 1)}{16(r + 2)}$,

$r - 1 \quad \text{of multiplicity} \quad \frac{(r^2 + 5r + 8)(r + 4)(r + 3)(r + 1)}{16(r + 2)}$,

$-(r + 1) \quad \text{of multiplicity} \quad \frac{(r^2 + 5r + 8)(r^2 + 3r + 4)(r + 3)}{16(r + 2)}$,

$-(r + 5) \quad \text{of multiplicity} \quad \frac{(r^2 + 3r + 4)(r + 3)(r + 1)r}{16(r + 2)}$.

The multiplicity of \(r + 3 \) is equal to
\[
\frac{(r^2 + 5r + 8)(r^2 + 3r + 4)(r + 1)}{16(r + 2)}.
\]

Further,
\[
(r^2 + 5r + 8, r + 2) = (3r + 8, r + 2)
\]
divides 2 and \((r + 2, r^2 + 3r + 4) = (r + 2, r + 4)\) divides 2; therefore \(r + 2 \) divides 4. Consequently, \(r = 2 \), a contradiction with the fact that the multiplicity of \(r + 3 \) is equal to
\[
(r^2 + 5r + 8)(r^2 + 3r + 4)(r + 1)/(16(r + 2)) = 22 \times 14 \times 3/64.
\]

Theorem 1 is proved.

4. A distance-regular graph with intersection array
\[
\{r^2 + 6r + 5, r^2 + 6r, 6; 1, 6, r^2 + 6r, r^2 + 6r + 5\}
\]

In this section, \(\Gamma \) is a distance-regular graph with intersection array
\[
\{r^2 + 6r + 5, r^2 + 6r, 6; 1, 6, r^2 + 6r, r^2 + 6r + 5\}.
\]

Then, \(\Gamma \) has
\[
1 + (r^2 + 6r + 5) + (r^2 + 6r + 5)(r^2 + 6r)/6 + (r^2 + 6r + 5) + 1
\]
vertices, the spectrum
\[
(r + 5)(r + 1) \quad \text{of multiplicity} \quad 1,
\]
\[
r + 5 \quad \text{of multiplicity} \quad f = (r + 4)(r + 3)(r + 2)(r + 1)/24,
\]
\[
r - 1 \quad \text{of multiplicity} \quad (r + 6)(r + 5)(r + 4)(r + 1)/24,
\]
\[
-(r + 1) \quad \text{of multiplicity} \quad (r + 5)(r + 4)(r + 3)(r + 2)/24,
\]
\[
-(r + 7) \quad \text{of multiplicity} \quad (r + 5)(r + 2)(r + 1)r/24,
\]

and the matrix \(Q \) (see [1]) of dual eigenvalues

\[
\begin{pmatrix}
1 & f & f(r + 6)(r + 5) & f(r + 5) & f(r + 5)r \\
1 & r + 1 & (r + 2)(r + 3)(r + 1) & r + 1 & (r + 4)(r + 3)(r + 1) \\
1 & 0 & r/2 - 2 & 0 & r/2 + 1 \\
1 & -f & (r + 6)(r - 1) & f & f(r + 7)r \\
1 & -f & (r + 2)(r + 3)(r + 1) & f(r + 5) & f(r + 5)r
\end{pmatrix}.
\]

Lemma 1. The intersection numbers are
\[
\begin{align*}
p_{11}^1 &= 4, & p_{11}^2 &= r^2 + 6r, & p_{12}^1 &= r^2 + 6r, & p_{12}^2 &= r^4/6 + 2r^3 + 29r^2/6 - 7r, & p_{13}^1 &= 0, & p_{14}^1 &= 1; \\
p_{11}^2 &= 6, & p_{12}^2 &= r^2 + 6r - 7, & p_{13}^2 &= 6, & p_{22}^1 &= r^4/6 + 2r^3 + 29r^2/6 - 7r + 12, & p_{22}^2 &= 1, & p_{23}^2 &= 2; & \\
p_{12}^3 &= r^2 + 6r, & p_{13}^3 &= 4, & p_{14}^3 &= 1, & p_{22}^3 &= 1, & p_{23}^3 &= 3, & p_{33}^3 &= 0; & \\
p_{13}^4 &= r^2 + 6r + 5, & p_{22}^4 &= r^4/6 + 2r^3 + 41r^2/6 + 5r.
\end{align*}
\]
Proof. Direct calculations using formulas from [1, Lemma 4.1.7]. □

Fix vertices \(u, v, \) and \(w \) of the graph \(\Gamma \) and define

\[
\{ijh\} = \left\{ \frac{uvw}{ijh} \right\}, \quad [ijh] = \left[\frac{uvw}{ijh} \right].
\]

Let \(\Delta = \Gamma_2(u) \), and let \(\Lambda \) be a graph with vertices from \(\Delta \) in which two vertices are adjacent if they are at distance 2 in \(\Gamma \). Then \(\Lambda \) is a regular graph of degree

\[
p_{22}^2 = r^4/6 + 2r^3 + 29r^2/6 - 7r + 12
\]
on vertices.

Lemma 2. Let \(d(u, v) = d(u, w) = 2 \) and \(d(v, w) = 1 \). Then, the triple intersection numbers are

\[
[111] = r_4, \quad [112] = [121] = -r_4 + 6, \quad [122] = r_3 + r_4 + r^2 + 6r - 19, \quad [123] = [132] = -r_3 + 6; \quad [211] = -r_3 - r_4 + 4, \quad [212] = [221] = r_3 + r_4 + r^2 + 6r - 12,
\]

\[
[222] = r^4/6 + 2r^3 + 17r^2/6 - 19r + 36, \quad [223] = [232] = r_3 + r_4 + r^2 + 6r - 12, \quad [233] = -r_3 - r_4 + 4, \quad [234] = [243] = 1; \quad [311] = r_3, \quad [312] = [321] = -r_3 + 6, \quad [322] = r_3 + r_4 + r^2 + 6r - 19, \quad [323] = [332] = -r_4 + 6;
\]

\[
[333] = r_4, \quad [422] = 1,
\]

where \(r_3 + r_4 \leq 4 \).

Proof. Simplification of formulas (2.1). □

By Lemma 2, we have

\[
r^4/6 + 2r^3 + 17r^2/6 - 19r + 28 \leq [222] = -2r_3 - 2r_4 + r^4/6 + 2r^3 + 17r^2/6 - 19r + 36 \leq r^4/6 + 2r^3 + 17r^2/6 - 19r + 36.
\]

Lemma 3. Let \(d(u, v) = d(u, w) = 2 \) and \(d(v, w) = 3 \). Then, the triple intersection numbers are

\[
[112] = -r_{11} + 6, \quad [113] = r_{11}, \quad [121] = -r_{12} + 6, \quad [122] = r_{11} + r_{12} + r^2 + 6r - 19, \quad [123] = -r_{11} + 6, \quad [132] = -r_{12} + 6; \quad [212] = [221] = r_{11} + r_{12} + r^2 + 6r - 12, \quad [213] = [231] = -r_{11} - r_{12} + 4, \quad [214] = [241] = 1,
\]

\[
[222] = -2r_3 - 2r_4 + r^4/6 + 2r^3 + 17r^2/6 - 19r + 36, \quad [223] = [232] = r_{11} + r_{12} + r^2 + 6r - 12; \quad [312] = -r_{12} + 6, \quad [313] = r_{12}, \quad [321] = -r_{11} + 6, \quad [322] = r_{11} + r_{12} + r^2 + 6r - 19,
\]

\[
[323] = -r_{12} + 6, \quad [331] = r_{11}, \quad [332] = -r_{11} + 6; \quad [422] = 1,
\]

where \(r_{11} + r_{12} \leq 4 \).
\textbf{Proof.} Simplification of formulas (2.1). □

By Lemma 3, we have
\[r^4/6 + 2r^3 + 17r^2/6 - 19r + 28 \leq [222] = -2r_3 - 2r_4 + r^4/6 + 2r^3 + 17r^2/6 - 19r + 36 \leq r^4/6 + 2r^3 + 17r^2/6 - 19r + 36. \]

\textbf{Lemma 4.} Let \(d(u, v) = d(u, w) = 2 \) and \(d(v, w) = 4 \). Then, the triple intersection numbers are
\[
[113] = [131] = 6, \quad [122] = r^2 + 6r - 7;
\]
\[
[213] = [231] = r^2 + 6r - 7, \quad [222] = r^4/6 + 2r^3 + 29r^2/6 - 7r + 12;
\]
\[
[313] = [331] = 6, \quad [322] = r^2 + 6r - 7;
\]
\[
[422] = 1.
\]

\textbf{Proof.} Simplification of formulas (2.1). □

By Lemma 4, we have
\[[222] = r^4/6 + 2r^3 + 29r^2/6 - 7r + 12. \]

Recall that
\[p_{12}^2 = r^2 + 6r - 7, \quad p_{22}^2 = r^4/6 + 2r^3 + 29r^2/6 - 7r + 12, \quad p_{23}^2 = r^2 + 6r - 7, \quad p_{24}^2 = 1. \]

Let \(v \) and \(w \) be vertices from \(\Lambda \). Then the number \(d \) of edges between \(\Lambda(v) \) and \(\Lambda - (\{v\} \cup \Lambda(v)) \) is
\[d = p_{12}^2 \frac{[uwx]}{221} + p_{23}^2 \frac{[uwy]}{223} + p_{24}^2 \frac{[uwz]}{224}, \]
where \(x, y, \) and \(z \) are vertices from \(\{uw\} \) for \(i = 1, 3, \) and \(4 \), respectively. Now, \(d \) satisfies the inequalities
\[
(r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 56) + r^4/6 + 2r^3 + 29r^2/6 - 7r + 12 \leq d
\]
\[
\leq (r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 72) + r^4/6 + 2r^3 + 29r^2/6 - 7r + 12.
\]

On the other hand,
\[d = \sum_{w \in \Lambda(v)} (p_{22}^2 - 1 - \lambda_\Lambda(v, w)) = k_\Lambda \left(p_{22}^2 - 1 - \frac{\sum_{w \in \Lambda(v)} \lambda_\Lambda(v, w)}{k_\Lambda} \right). \]

So,
\[d = (r^4/6 + 2r^3 + 29r^2/6 - 7r + 12)(r^4/6 + 2r^3 + 29r^2/6 - 7r + 11 - \lambda), \]
where \(\lambda \) is the average value of degree of the vertex \(w \) in the graph \(\Lambda \). Consequently,
\[
\frac{(r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 56) + 1}{r^4/6 + 2r^3 + 29r^2/6 - 7r + 12} + 1 \leq \frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 11 - \lambda
\]
\[
\leq \frac{(r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 72)}{r^4/6 + 2r^3 + 29r^2/6 - 7r + 12} + 1
\]
and
\[
\frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 10 - \frac{(r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 72)}{r^4/6 + 2r^3 + 29r^2/6 - 7r + 12} \leq \lambda
\]
\[
\leq \frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 10 - \frac{(r^2 + 6r - 7)(r^4/3 + 4r^3 + 17r^2/3 - 38r + 56)}{r^4/6 + 2r^3 + 29r^2/6 - 7r + 12}.
\]
Lemma 5. Let \(d(u, v) = d(u, w) = d(v, w) = 2 \). Then, the triple intersection numbers are

\[
[111] = r_9, \quad [112] = -r_7 - r_9 + 6, \quad [113] = r_7, \quad [121] = -r_10 - r_9 + 6,
\]
\[
[122] = r_7 + r_8 + r_9 + r_{10} + r^2 + 6r - 19, \quad [123] = -r_7 - r_8 + 6,
\]
\[
[131] = r_{10}, \quad [132] = -r_{10} - r_8 + 6, \quad [133] = r_8;
\]
\[
[211] = -r_8 - r_9 + 6, \quad [212] = [221] = r_7 + r_8 + r_9 + r_{10} + r^2 + 6r - 19,
\]
\[
[213] = [231] = -r_{10} - r_7 + 6, \quad [222] = -2r_7 - 2r_8 - 2r_9 - 2r_{10} + r^4/6 + 2r^3 + 17r^2/6 - 19r + 48,
\]
\[
[223] = [232] = r_7 + r_8 + r_9 + r_{10} + r^2 + 6r - 19, \quad [224] = [242] = 1, \quad [233] = -r_8 - r_9 + 6;
\]
\[
[311] = r_8, \quad [312] = -r_{10} - r_8 + 6, \quad [313] = r_{10}, \quad [321] = -r_7 - r_8 + 6,
\]
\[
[322] = r_7 + r_8 + r_9 + r_{10} + r^2 + 6r - 19, \quad [323] = -r_{10} - r_9 + 6,
\]
\[
[331] = r_7, \quad [332] = -r_7 - r_9 + 6, \quad [333] = r_9; \quad [422] = 1,
\]

where

\[
r_9 + r_7, \quad r_9 + r_{10}, \quad r_7 + r_8, \quad r_{10} + r_8, \quad r_8 + r_9, \quad r_7 + r_{10} \leq 6.
\]

\[\square\]

Proof. Simplification of formulas (2.1).

By Lemma 5, we have

\[
\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 24 \leq [222] = -2r_7 - 2r_8 - 2r_9 - 2r_{10} + \frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 48
\]
\[
\leq \frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 48.
\]

Let \(d(u, v) = 2 \).

Let us count the number \(e_2 \) of pairs of vertices \((s, t)\) at distance 2, where \(s \in \{ uu \} \) and \(t \in \{ uu \} \).

On the one hand, by Lemma 2, we have

\[
\frac{r^4}{6} + 2r^3 + 17r^2/6 - 19r + 28 \leq [222] \leq \frac{r^4}{6} + 2r^3 + 17r^2/6 - 19r + 36,
\]

so,

\[
(r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 28\right) \leq e_2 \leq (r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 36\right).
\]

On the other hand, by Lemma 5, we have

\[
[212] = r_7 + r_8 + r_9 + r_{10} + r^2 + 6r - 19
\]

and

\[
(r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 28\right) \leq e_2
\]
\[
= -\sum_i (r_i^2 + r_i^3 + r_i^9 + r_{10}^2) + (r^2 + 6r - 19)\left(\frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 12\right)
\]
\[
\leq (r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 36\right).
\]
In this way,

\[(r^2 + 6r - 19)\left(\frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 12\right) - (r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 36\right) \leq (r_7^i + r_8^i + r_9^i + r_{10}^i) \]

\[\leq (r^2 + 6r - 19)\left(\frac{r^4}{6} + 2r^3 + \frac{29r^2}{6} - 7r + 12\right) - (r^2 + 6r - 7)\left(\frac{r^4}{6} + 2r^3 + \frac{17r^2}{6} - 19r + 28\right).\]

Consequently,

\[(r_7^i + r_8^i + r_9^i + r_{10}^i) \leq -145r^3/6 - 16r^2 - 96r - 12,
\]
a contradiction.

Theorem 2 is proved. \(\square\)

The corollary follows from Theorems 1 and 2.

So, we have shown the nonexistence of graphs with intersection arrays

\[\{r^2 + 4r + 3, r^2 + 4r, 4, 1; 1, 4, r^2 + 4r, r^2 + 4r + 3\}\]

and

\[\{r^2 + 6r + 5, r^2 + 6r, 6, 1; 1, 6, r^2 + 6r, r^2 + 6r + 5\}\]

In particular, distance-regular graphs with intersection arrays

\[\{32, 27, 6, 1; 1, 6, 27, 32\}, \quad \{45, 40, 6, 1; 1, 6, 40, 45\}, \quad \{77, 72, 6, 1; 1, 6, 72, 77\}\]

\[\{96, 91, 6, 1; 1, 6, 91, 96\}, \quad \{117, 112, 6, 1; 1, 6, 112, 117\}\]
do not exist.

REFERENCES

