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Abstract: In the paper, a four-dimensional model of cyclic reactions of the type Prigogine’s Brusselator
is considered. It is shown that the corresponding dynamical system does not have a closed trajectory in the
positive orthant that will make it inadequate with the main property of chemical reactions of Brusselator type.
Therefore, a new modified Brusselator model is proposed in the form of a four-dimensional dynamic system.
Also, the existence of a closed trajectory is proved by the DN-tracking method for a certain value of the
parameter which expresses the rate of addition one of the reagents to the reaction from an external source.

Keywords: Chemical reaction, Closed trajectory, DN-tracking method, Discrete trajectory, Numerical
trajectory.

1. Introduction

Cyclic (oscillating) reactions such as the Brusselator of Prigogine [12, 24, 25] are of importance
in the kinetic theory of chemical reactions.

The mechanism of this reaction is described by the following reactions:

A
k1

−−−−→ X,

B +X
k2

−−−−→ Y +D,

2X + Y
k3

−−−−→ 3X,

X
k4

−−−−→ E.

(1.1)

The mathematical model of such reactions is also called Brusselator and serves as an impor-
tant tool for their study. In fact, the Brusselator is adequately described by a system of two

1This work was supported by the grant of the Ministry of Innovative Development of the Republic of
Uzbekistan (Project No. OT-Φ4-84).
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parabolic equations (diffusion and transfer equations) with respect to the concentrations of sub-
stances involved in the reaction that occurs in a given region in R

3 (see [20, system (7.11)] and
also [1, 2, 30, 34]. In practice, one mainly considers models in the form of a system of ordinary
differential equations for averaged concentrations of substances A,B,X, Y,D, and E involved in
the reaction

dA

dt
= −k1A,

dB

dt
= −k2BX,

dX

dt
= k1A− k2BX + k3X

2Y − k4X,

dY

dt
= k2BX − k3X

2Y,
dD

dt
= k2BX,

dE

dt
= k4X,

(1.2)

where the parameters ki = const characterize the reaction rate constants of reaction (1.1).

The reagents D and E express the final products of reaction, therefore, their influence on other
quantities can be neglected, and so we focus only on the dynamics of the reagents A,B,X, and Y .
Assuming that the concentrations of A and B remain unchanged, after substituting X = λx,
Y = λy, and t = µτ , model (1.2) reduces to the second-order dynamical system

dx

dτ
= a− bx+ x2y − x,

dy

dτ
= bx− x2y,

(1.3)

where λ =

√
k4
k3

, µ =
1

k4
, a =

k1A

λ
µ, and b = k2Bµ. For system (1.3) and its diffusion form, the

constructions of both phase portraits and bifurcations were completely studied [17–19, 22, 26, 28,
29, 31–33].

The three-dimensional model with the positive dynamics of the reagent B was also studied in
the case when the corresponding reagent is constantly added to the reaction with the rate β [14].
In this case, the substitution X = λx, Y = λy, B = λb, and t = µτ into system (1.2) gives

db

dτ
= −bx+ β̃,

dx

dτ
= ã− bx+ x2y − c̃x,

dy

dτ
= bx− x2y,

(1.4)

where

λ =
k2
k3

, µ =
k3
k22

, ã =
k1A

λ
µ, c̃ = k4µ, β̃ =

β

λ
µ.

System (1.4) still has a periodic trajectory, for example, for ã = 1, c̃ = 1, and for a certain range
of the parameter β. In [11], a full Brusselator model taking into account the diffusion was studied
and its mathematical description of a long-term behavior was developed.

In [4, 6], with the use of the discrete-numerical tracking (DN-tracking) method [3], the existence
of a closed trajectory was proved for specific values of the parameters of two-dimensional and three-
dimensional systems of the Brusselator model, respectively.

Notice that, if the initial concentration of the reagent A is equal to λ/(k1µ) and it is added to
the reaction with the rate λ/µ, then one can provide the equality ã = 1, and if the reaction rate k4

of X
k4

−−−−→ E is equal to 1/µ, then c̃ = 1.

In the present paper, we consider the problem of the existence of a periodic regime in the
four-dimensional model of Brusselator, where the dynamics of all reagents A, B, X, and Y are of
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interest. In the classic case, the Brusselator system has the form

dA

dt
= −k1A,

dB

dt
= −k2BX + β,

dX

dt
= k1A− k2BX + k3X

2Y − k4X,

dY

dt
= k2BX − k3X

2Y.

(1.5)

Due to the first equation of (1.5), which corresponds to the reaction A
k1

−−−−→ X, system (1.5)
cannot have a closed trajectory in the positive orthant A > 0, B > 0,X > 0, Y > 0 for any values
of parameters ki, i = 1, 4 and β, since A (t) → 0 as t → +∞. Based on this circumstance, one may
conclude that the model (1.5) does not possess the main property of the Brusselator, that is, there
is no an attractor, namely, an asymptotically stable periodic trajectory.

The simplest way to correct this is to replace the equation

dA

dt
= −k1A

by the equation
dA

dt
= −k1A+ α,

where α > 0, i.e., to add some compensation of the reagent A from an external source with the
rate α. However, in this case, it is easy to see that A (t) → α/k1 as t → +∞ for any initial
concentration of A unless it is equal to 0, meaning that there is no a closed trajectory. Moreover,
the restriction of the new system to the invariant hyperplane A = α/k1 coincides with system (1.4).

The other way to compensate the concentration of A is to replace the reagent D with A in the

bimolecular reaction B +X
k2

−−−−→ Y +D, i.e., to consider the new mechanism of reaction as

A
k1

−−−−→ X,

B +X
k2

−−−−→ Y +A,

2X + Y
k3

−−−−→ 3X,

X
k4

−−−−→ E.

Then, a modified 4-dimensional Brussellator model corresponding to the above reaction is

dA

dt
= −k1A+ k2BX,

dB

dt
= −k2BX + β,

dX

dt
= k1A− k2BX + k3X

2Y − k4X,

dY

dt
= k2BX − k3X

2Y.

(1.6)

In the study of the qualitative behaviour of trajectories of system (1.6), it was established that
system (1.6) has a closed trajectory, which will be proved in the next section.

One can use other approaches to obtain a modified Brusselator model with the cyclical regime
provided such a model exists. However, our purpose is to get a modified Brusselator model such that
its two- and three-dimensional models are the same with the models (1.3) and (1.4), respectively.
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Thus, unlike the model (1.5), the dynamics of the component A in (1.6) is determined by the
influence of the reagents X and B.

Substituting X = λx, Y = λy, B = λb, A = λa, and t = µτ , we can write model (1.6) as
follows:

da

dτ
= −αa+ bx,

db

dτ
= −bx+ β̃,

dx

dτ
= αa− bx+ x2y − γx,

dy

dτ
= bx− x2y,

(1.7)

where

λ =
k2
k3

, µ =
k3
k22

, α = k1µ, γ = k4µ, β̃ =
β

λ
µ.

2. Main result

The rest of the paper is devoted to the proof of below given Theorem 1, which states that
model (1.7) has a periodic trajectory for certain values of β̃ and α = γ = 1 (meaning that k1 =
k4 = 1/µ).

In vector form, system (1.7) is

ż = f (z) , (2.1)

where

z = (z1, z2, z3, z4), f = (f1, f2, f3, f4), f1 (z) = −z1 + z2z3,

f2 (z) = −z2z3 + β̃, f3 (z) = z1 − z2z3 − z3 + z3
2z4, f4 (z) = z2z3 − z3

2z4.

A computer experiment allows us to formulate the following conjecture: for β = 1.17,
system (2.1) has a closed trajectory z(t) of the period T ≈ 8.36 passing near the point

z
(1)
0 = (1.11692, 0.99112, 1.09485, 0.80461) .

System (2.1) does not have an internal symmetry; moreover, it is impossible to find its integral
in explicit form. One may conclude that the only way to prove the existence of a closed trajectory
is to apply the method of Poincaré map. To construct the Poincaré map, we use the DN-tracking
method [3, 5]. To this end, first, it is necessary to choose the starting point as close to the proposed

closed trajectory as possible. The point z
(1)
0 defined above is selected as the starting point.

Theorem 1. For β̃ = 1.17, system (2.1) has a closed trajectory in the region

Π4 =
{
(z1, z2, z3, z3) | 1.07 ≤ z1 ≤ 1.26, 0.85 ≤ z2 ≤ 1.15, 0.98 ≤ z3 ≤ 1.38, 0.65 ≤ z4 ≤ 1.1

}
.

3. Proof of Theorem 1

3.1. Preliminaries

Let

m0 = max
z∈Π4

‖f(z)‖ , m1 = max
z∈Π4

∥∥f ′(z)
∥∥ , m2 = max

z∈Π4

∥∥f ′′(z)
∥∥ , m3 = max

z∈Π4

∥∥f ′′′(z)
∥∥ ,
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where ‖·‖ is the Euclidean norm of tensor quantities of type (1, 0), (1, 1), (1, 2), and (1, 3), respec-
tively [10].

It is easy to establish the following exact estimates:

0.83 < m0 < 0.85, 4.8 < m1 < 4.9, 6.9 < m2 < 7, m3 = 2
√
6. (3.1)

Let P =
{
z ∈ R

d| − 0.001 ≤ zi ≤ 0.001, i = 1, 4
}
. Using the Minkowski–Pontryagin differ-

ence [21], we construct the parallelepipeds Πj = Π4−̇ (4− j)P, j = 0, 1, 2, 3.
Obviously, Π0 ⊂ Π1 ⊂ Π2 ⊂ Π3 ⊂ Π4 and dist (Πj, ∂Πj+1) = 0.001, j = 0, 1, 2, 3.

Let Σ(1) be a hyperplane passing through the point z
(1)
0 and orthogonal to the vector f

(
z
(1)
0

)
.

On the hyperplane Σ(1), we introduce the Cartesian coordinate system (u, v, w) with the origin z
(1)
0 .

As a basis on Σ(1), we take the vectors u, v, w ∈ R
4 with the coordinates

u1 = n2, u2 = −n1, u3 = n4, u4 = −n3,

v1 =
√

n2
3 + n2

4, v2 = 0, v3 = −n1n3 + n2n4

v1
, v4 =

n2n3 − n1n4

v1
,

w1 = 0, w2 = v1, w3 = −v4, w4 = v3,

(3.2)

where ni = fi(z
(1)
0 )

/∣∣f(z(1)0 )
∣∣∣∣f(z(1)0 )

∣∣, i = 1, 4. It is easy to verify that the vectors u, v, w defined

by (3.2) really form an orthonormal basis on Σ(1).
As the domain of the Poincaré map, we take the parallelepiped

S(1) =
{
ξ = (ξ1, ξ2, ξ3)

∣∣∣ ξ ∈ Σ(1), −325δ ≤ ξ1 ≤ 325δ,−20δ ≤ ξ2 ≤ 20δ, −24δ ≤ ξ3 ≤ 24δ
}
⊂ Σ(1).

Next, we construct a grid

K
(1)
δ = δM

(1)
δ ⊂ S(1),

where δ = 4 · 10−6, M
(1)
δ =

{
(i, j, k) ∈ Z

3 | −325 ≤ i ≤ 325, −20 ≤ j ≤ 20, −24 ≤ k ≤ 24
}
. Note

that the grid K
(1)
δ contains exactly 1307859 nodes.

It is known that, if analytical and topological methods are not enough for studying the non-
local qualitative properties of dynamical systems, then one has to involve the methods of numerical
integration and computer visualization. The corresponding approach was given the special name
“Computational Dynamics” [13].

For numerical integration of system (2.1), we apply the Runge–Kutta method [7, 9, 15]. For
our purpose, a second-order accuracy scheme is sufficient:

z̃(n+1) = z̃(n) + F
(
k1(z̃

(n), h), k2(z̃
(n), h)

)
, n = 0, 1, . . . , (3.3)

where F (k1, k2) = 0.5 (k1 + k2) , k1 = hf(z), k2 = hf(z + k1), and z̃(0) ∈ K
(1)
δ .

We call the approximate solution z̃(n) obtained by formula (3.3) the discrete trajectory of
system (2.1). Note that one cannot find the discrete trajectory explicitly as well as the trajectory
of the Cauchy problem, despite the fact that system (2.1) is polynomial. Therefore, one has to
work with another sequence of vectors ζ̃(n) to be obtained by rounding the values of z̃(n) by a
computer [8, 16].

Indeed, in real calculations, due to rounding of the results of arithmetic operations by a com-
puter (in our case, we used a computer with IntelCore i5 processor, frequency of 2.50 GHz and
with extended accuracy), instead of the sequence z̃(n), we get another sequence of vectors ζ̃(n). We
call this solution a numerical trajectory of system (2.1).

Let zuvw(t) be the trajectory starting from the point zuvw(0) ∈ S(1), and let z̃ijk(t) be the

trajectory corresponding to the trajectory zuvw(t) and starting from the point z̃ijk(0) ∈ K
(1)
δ close
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to zuvw(0), i.e., i = [u/h + 1/2], j = [v/h + 1/2], and k = [w/h + 1/2]. It is easy to see that
|zuvw(0)−z̃ijk(0)| ≤

√
3/2δ.

In [27], an algorithm based on a partitioning process and using the interval arithmetics with di-
rected rounding is proposed for computing rigorous solutions to a large class of ordinary differential
equations. As an application, it was proved that the Lorenz system supports a strange attractor.

In the present paper, the DN-tracking method is used as the method of proof of the existence
of a closed trajectory. It is based on the estimations of the accuracy of numerical and discrete
solutions approximating the solution of system (2.1). This requires rigorous proof of the inequal-
ities establishing the accuracy of the estimate. Therefore, it is necessary to derive the required
estimate with deductive rigour. The estimations given below were derived in [6] for the considering
scheme (3.3) based on two preliminary assumptions.

Assumption 1. The trajectory zuvw(t) exists on a time interval 0 ≤ t ≤ T and zuvw(t) ∈ Π4.

Assumption 2. The inclusion z̃(n) ∈ Π1 holds for all n = 0, 1, . . . , N .

Estimation 1. ∣∣∣ζ̃(n+1) − ζ̃(n)
∣∣∣ < m0h+∆∗, n = 0, N,

where ∆∗ is the local round-off error that produced by scheme (3.3). In our case, the inequality
∆∗ < 10−14 holds.

Estimation 2. ∣∣∣z̃(n) − ζ̃(n)
∣∣∣ <

eLT − 1

Lh
∆∗, n = 0, N, (3.4)

where L = m1 + 0.5m2
1h.

Estimation 3.

∣∣∣z̃ijk (nh)− z̃(n)
∣∣∣ <

m2
0m2 + 4m0m

2
1

12m1

(
em1T − 1

)
h2, n = 0, N, (3.5)

where z̃ijk (0) = z̃(0).

Estimation 4.

|z̃ijk(t)− z̃ijk(nh)| <
m0h

2
,

where n = [t/h + 1/2].

Estimation 5.

|zuvw(t)− z̃ijk(t)| <
√
3

2
em1T δ. (3.6)

By estimate (3.1), m1 > 4.8; hence, em1T > 3 · 1017. This inequality means that estimates (3.4),
(3.5), and (3.6) are not effective for tracking the trajectories of zuvw(t) on the time interval [0, 8.37].
Therefore, to overcome this difficulty, we use the technique of dividing the interval into 23 subin-
tervals:

J (m) = [0.37(m − 1), 0.37m + 0.03], m = 1, 2, . . . , 22

(of length 0.40) and the last one is
J (23) = [8.14, 8.37]

(of length 0.23).
In this case, on each time interval J (m), estimates (3.4)–(3.6) are acceptable to apply the DN-

tracking.



Four-Dimensional Brusselator Model with Periodical Solution 9

3.2. Constructing a map on the first segment

Further, we continue the reasoning on the first segment J (1) = [0, 0.4]. Let z̃∗(t) be one of

the trajectories z̃ijk(t), let z̃
(n)
∗ be the discrete trajectory corresponding to z̃∗(t), i.e., a solution of

system (2.1) with the initial condition z̃
(0)
∗ = z̃∗(0) ∈ K

(1)
δ , and let ζ

(n)
∗ be the numerical trajectory

corresponding to z̃
(n)
∗ . We put h= 2−16, T = 0.40, and N = [T/h] = 26214.

Using Estimations 1–5 and the method of proof by contradiction, the following Lemmas can be
proved in the same way as in [6]. Therefore, here we restrict ourselves to proving Lemma 3.

Lemma 1. For all n = 0, 1, . . . , N,

ζ
(n)
∗ ∈ Π0 and

∣∣∣ζ̃(n+1)
∗ − ζ̃

(n)
∗

∣∣∣ < 1.4 · 10−5. (3.7)

Since ζ
(n)
∗ is a numerical solution kept in the memory of a computer, the validity of the first

inclusion in (3.7) is verified by the computer, while the inequality in (3.7) is derived by means of
Estimation 1.

Lemma 2. The estimate ∣∣∣z̃(n)∗ − ζ̃
(n)
∗

∣∣∣ < 8.2 · 10−10 (3.8)

holds as long as z̃
(k)
∗ ∈ Π1, k = 0, 1, 2, . . . , n.

Estimate (3.8) can be easily obtained by using estimates (3.1) and substituting the values
T = 0.40 and h = 2−16 into the right hand side of (3.4) in Estimation 3.

Lemma 3. Assumption 2 holds.

P r o o f. By Lemma 2, we obtain
∣∣∣z̃(n)∗ − ζ̃

(n)
∗

∣∣∣ < 8.2 · 10−10,

when the inclusion z̃
(n)
∗ ∈ Π1 holds. We now show that this inclusion holds for all n = 0, 1, . . . , N .

We assume the contrary, let for some minimal n∗ ≥ 1, we have z̃
(n∗−1)
∗ ∈ Π1, but z̃

(n∗)
∗ /∈ Π1. Then

∣∣∣z̃(n∗)
∗ − ζ̃

(n∗)
∗

∣∣∣ <
∣∣∣z̃(n∗)

∗ − z̃
(n∗−1)
∗

∣∣∣+
∣∣∣z̃(n∗−1)

∗ − ζ̃
(n∗−1)
∗

∣∣∣+
∣∣∣ζ̃(n∗−1)

∗ − ζ̃
(n∗)
∗

∣∣∣ .

Since by the scheme (3.3) one has the estimation
∣∣∣z̃(n∗)

∗ − z̃
(n∗−1)
∗

∣∣∣ ≤ max
z∈Π1

|F (k1(z), k2(z))| < m0h < 1.3 · 10−5,

and by assumption, we have z̃
(n∗−1)
∗ ∈ Π1 so one can apply Lemma 2 and get the estimation∣∣∣z̃(n∗−1)

∗ − ζ̃
(n∗−1)
∗

∣∣∣ < 8.2 · 10−10. As for the estimation
∣∣∣ζ̃(n∗−1)

∗ − ζ̃
(n∗)
∗

∣∣∣ < 1.4 · 10−5, it follows from

Lemma 1.
Therefore, ∣∣∣z̃(n∗)

∗ − ζ̃
(n∗)
∗

∣∣∣ < 2.8 · 10−5. (3.9)

Since ζ̃
(n∗)
∗ ∈ Π0 and dist (Π0, ∂Π1) = 0.001, therefore, (3.9) implies that z̃

(n∗)
∗ ∈ Π1. This

contradicts the above assumption z̃
(n∗)
∗ /∈ Π1. Thus, the inclusion z̃

(n)
∗ ∈ Π1 holds for all

n = 0, 1, . . . , N , i.e., Assumption 2 holds. �
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Lemma 4. For all n = 0, 1, . . . , N,

z̃∗ (nh) ∈ Π2 and
∣∣∣z̃∗ (nh)− z̃

(n)
∗

∣∣∣ < 2.1 · 10−9.

Lemma 5. Let t ∈ J (1) and n = [t/h+ 1/2]. Then

z̃∗(t) ∈ Π3 and |z̃∗(t)− z̃∗(nh)| < 6.49 · 10−6.

Lemma 6. Let t ∈ J (1) and (u, ϑ,w) ∈ S(1). Then

zuϑw(t) ∈ Π4 and |zuϑw(t)− zijk(t)| < 2.46 · 10−5.

Lemmas 1–6 imply that Assumption 1 holds on the first segment J (1) and the following theorem
is true.

Theorem 2. Let t ∈ J (1). Then

zuvw(t) ∈ Π4 and
∣∣∣zuvw(t)− ζ̃

(n)
ijk

∣∣∣ < 3.11 · 10−5 = ε. (3.10)

The estimation (3.10) means that one can track any real trajectory zuvw(t) of system (2.1) by

means of the numerical trajectory ζ̃
(n)
ijk with accuracy ε.

Let z
(2)
0 = ζ̃

(N−1966)
000 , and let Σ(2) be a hyperplane with normal f

(
z
(2)
0

)
and passing through the

point z
(2)
0 .

Theorem 3. Each trajectory (2.1) intersects the hyperplane Σ(2) at some time
tuvw ∈ (T − 0.06, T ) = (0.34, 0.4).

The proof of this theorem is directly verified by a computer by showing that the points ζ̃
(N−3932)
ijk

and ζ̃
(N)
ijk lie in the half-spaces

Ω+ =
{
z
∣∣ 〈z − z

(2)
0 , f

(
z
(2)
0

)〉
> 0

}
, Ω− =

{
z
∣∣ 〈z − z

(2)
0 , f

(
z
(2)
0

)〉
< 0

}
,

respectively. Moreover, the distances between these points and Σ(2) are not less than ε (Fig. 1).
Therefore, every trajectory zuvw(t) crosses the plane Σ

(2) at some tuvw ∈ (0.34, 0.4) and by the
implicit function theorem it follows that the function tuvw is continuous in (u, v, w) ∈ S(1).

Thus, we obtain a map Φ
(2)
(1) of the parallelepiped S(1) onto the plane Σ(2), which relates each

point (u, v, w) ∈ S(1) to a point zuvw (tuvw) where zuvw(t) intersects the plane Σ(2). We denote

the set of these points by S(2). The continuity of the map Φ
(2)
(1) follows from the theorem on the

continuous dependence of solutions on the initial point.

3.3. Constructing Poincaré map

For the time segments J (m), m = 2, 22, we choose the values of h, T, and δ the same as for the
first segment. Therefore, the estimation (3.10) does not change, that is, ε remains unchanged.

On the hyperplane Σ(2), we introduce again the Cartesian coordinate system (u, v, w) with the

origin z
(2)
0 taking the basis on it the vectors defined by (3.2).

Let S
(2)
ε =

⋃
p∈S(2)

Bε(p) be the ε-neighborhood of the set S(2), where Bε(p) is a ball with

centre p and radius ε. We denote again the trajectory starting from the point (u, v, w) ∈ S
(2)
ε and
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the corresponding numerical trajectory by zuvw(t) and ζ̃
(n)
ijk , respectively, where i = [u/h + 1/2],

j = [v/h+ 1/2], and k = [w/h + 1/2].

For the segment J (2), the existence of a map Φ
(3)
(2) of the domain S

(2)
ε ⊂ Σ(2) to the plane Σ(3)

passing through the point z
(3)
0 = ζ̃

(N−1966)
00 and orthogonal to the vector f

(
z
(3)
0

)
is established

similar to the construction for the first segment.

Repeating a similar reasoning and calculations, we obtain 21 continuous mappings

Φ
(m+1)
(m) : S(m)

ε → Σ(m+1), m = 2, 3, . . . , 22.

The last segment J (23) = [8.14, 8.37] requires a special consideration. Consider an en-

semble of trajectories zuvw(t) with starting points in S
(23)
ε . Putting h= 2−16, T = 0.23, and

N = [T/h] = 15073, we find numerical trajectories ζ̃
(n)
ijk approximating the ensemble of trajectories

zuvw(t).

Then, for the time interval J (23), we prove the following statement.

Theorem 4. Let t ∈ J (23). Then

zuvw(t) ∈ Π4 and
∣∣zuvw(t)− ζ̃

(n)
ijk

∣∣ < 1.72 · 10−5 = ε. (3.11)

Theorem 5. Let Π+ and Π− be open half-spaces defined by the hyperplane Σ(1); more precisely,

Π+ =
{
z ∈ R4|

〈
z − z

(1)
0 , f

(
z
(1)
0

)〉
> 0

}
and Π− =

{
z ∈ R4|

〈
z − z

(1)
0 , f

(
z
(1)
0

)〉
< 0

}
.

Then ζ̃
(N−3932)
ijk ∈ Π− and ζ̃

(N)
ijk ∈ Π+ for all i, j, k.

Corollary 1. Every trajectory

zuvw(t) with (u, v, w) ∈ S(23)
ε

reaches the hyperplane Σ(1) at some time tuvw ∈ (8.34, 8.37).

Mapping a point (u, v, w) ∈ S
(23)
ε to the point zuvw(tuvw), we get a continuous mapping Φ

(1)
(23) :

S
(23)
ε → Σ(1). Next, we set

Φ = Φ
(1)
(23) ◦ Φ

(23)
(22) ◦ . . . ◦ Φ

(2)
(1).

As a result, we obtain the required Poincaré map (Fig. 2).

Let Sω = Φ
(
S(1)

)
and, for fixed i, j, k, let nijk be the number of the term of the sequence ζ̃

(n)
ijk

closest to the hyperplane Σ(1). We denote the set of all points ζ̃
(nijk)
ijk by Z̃. It can be easily checked

by computer that the following inequalities hold for every ζ̃
(nijk)
ijk =

(
ζ̃∗1 , ζ̃

∗

2 , ζ̃
∗

3

)
∈ Z̃:

−316.6 δ < ζ̃∗1 < 316.74 δ, −11.17 δ < ζ̃∗2 < 11.49 δ, −15.70 δ < ζ̃∗3 < 15.25 δ.

(The range of all projections of numerical trajectories ζ̃
(nijk)
ijk =

(
ζ̃∗1 , ζ̃

∗

2 , ζ̃
∗

3

)
to the hyperplane Σ(m),

m = 1, 2, . . . , 23, is provided in Table 1.)

It follows then from estimate (3.11) and the inequalities
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|z∗1 | <
∣∣∣z∗1 − ζ̃∗1

∣∣∣+
∣∣∣ζ̃∗1

∣∣∣ < ε+ 316.74 δ < 322 δ,

|z∗2 | <
∣∣∣z∗2 − ζ̃∗2

∣∣∣+
∣∣∣ζ̃∗2

∣∣∣ < ε+ 11.49 δ < 16 δ,

|z∗3 | <
∣∣∣z∗3 − ζ̃∗3

∣∣∣+
∣∣∣ζ̃∗3

∣∣∣ < ε+ 15.70 δ < 21 δ,

that (Fig. 3)

Sω ⊂ IntS(1),

where (z∗1 , z
∗

2 , z
∗

3) = zuvw(tuvw)− z
(1)
0 .

Therefore, it follows from Brouwer’s fixed point theorem [23] that the map Φ has a fixed point
z∗ ∈ S(1) that is Φ(z∗) = z∗ and therefore, the trajectory passing through this point will be closed.

Applying the DN-tracking method for each fixed value of β̃ ∈ (0.431, 1.173), one can prove the
following theorem.

Theorem 6. For β̃ ∈ (0.431, 1.173), system (2.1) has a closed trajectory.

4. Conclusion

In the present paper, a Brusselator model has been studied. The main contribution of the paper
is as follows:

(1) a new modified four-dimensional Brusselator model, having cyclical property, has been pro-
posed;

(2) the existence of a closed trajectory for this model has been established.

To prove the existence of a closed trajectory, the DN-tracking method has been applied.
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ijk onto the space OBXY with parallel projection

direction which is perpendicular to the normal f
(
z
(2)
0

)
.

( )

( ) ( ) ( )2 1 2

1
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( )

( ) ( ) ( )3 2 3

2
: S

e
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e
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e
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: S

e
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Figure 2. Some components of the Poincaré map. Scale u:v:w=1:5:5.
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Figure 3. Poincaré map Φ : S(1) → Σ(1) in axonometric and 2d-projections. Scale u:v:w=1:5:5.

Table 1. The range of all orthogonal projections of numerical trajectories ζ̃
(nijk)
ijk to the hyperplane Σ(m).

m min ζ̃∗1 max ζ̃∗1 min ζ̃∗2 max ζ̃∗2 min ζ̃∗3 max ζ̃∗3
1 −325δ 325δ −20δ 20δ −25δ 25δ

2 −346.69δ 347δ −28.58δ 28.56δ −29.28δ 29.39δ

3 −378.63δ 379.78δ −30.23δ 30.06δ −35.87δ 36.01δ

4 −437.25δ 440.32δ −33.60δ 33.39δ −44.64δ 44.70δ

5 −538.99δ 546.29δ −44.24δ 44.24δ −55.30δ 55.16δ

6 −714.57δ 729.62δ −70.09δ 70.86δ −63.22δ 62.94δ

7 −977.87δ 989.04δ −117.06δ 117.88δ −42.42δ 43.18δ

8 −1090.88δ 1087.21δ −122.66δ 122.04δ −38.73δ 38.60δ

9 −890.64δ 896.91δ −56.55δ 56.70δ −72.00δ 72.36δ

10 −704.54δ 705.84δ −14.71δ 14.53δ −56.05δ 56.24δ

11 −599.26δ 597.09δ −8.01δ 8.01δ −35.44δ 35.46δ

12 −552.71δ 549.30δ −14.02δ 13.90δ −17.81δ 17.87δ

13 −552.12δ 548.61δ −18.26δ 18.16δ −2.43δ 2.61δ

14 −600.14δ 597.67δ −20.19δ 20.00δ −12.66δ 12.99δ

15 −716.87δ 717.77δ −18.51δ 18.12δ −31.28δ 31.71δ

16 −928.67δ 932.88δ −7.67δ 7.77δ −55.90δ 56.48δ

17 −1066.81δ 1063.65δ −43.75δ 43.42δ −56.06δ 56.34δ

18 −821.69δ 837.41δ −54.46δ 54.83δ −17.07δ 16.16δ

19 −583.27δ 592.99δ −38.93δ 39.02δ −1.67δ 1.35δ

20 −450.01δ 454.21δ −27.18δ 27.05δ −0.84δ 0.69δ

21 −378.01δ 379.81δ −19.75δ 19.57δ −3.14δ 3.07δ

22 −340.45δ 341.26δ −15.07δ 14.90δ −7.40δ 7.38δ

23 −325.12δ 325.59δ −12.38δ 12.23δ −12.63δ 12.64δ
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Abstract: In this paper, we consider the anisotropic Lorentz space L∗

p̄,θ̄
(Im) of periodic functions of m

variables. The Besov space B
(0,α,τ)

p̄,θ̄
of functions with logarithmic smoothness is defined. The aim of the

paper is to find an exact order of the best approximation of functions from the class B
(0,α,τ)

p̄,θ̄
by trigonometric

polynomials under different relations between the parameters p̄, θ̄, and τ .

The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition

for a function f ∈ L∗

p̄,θ̄(1)
(Im) to belong to the space L∗

p̄,θ(2)
(Im) in the case 1< θ2 < θ

(1)
j , j = 1, . . . ,m, in terms

of the best approximation and prove its unimprovability on the class Eλ
p̄,θ̄

= {f ∈ L∗

p̄,θ̄
(Im) : En(f)p̄,θ̄ ≤ λn,

n = 0, 1, . . .}, where En(f)p̄,θ̄ is the best approximation of the function f ∈ L∗

p̄,θ̄
(Im) by trigonometric poly-

nomials of order n in each variable xj , j = 1, . . . ,m, and λ = {λn} is a sequence of positive numbers λn ↓ 0
as n → +∞. In the second section, we establish order-exact estimates for the best approximation of functions

from the class B
(0,α,τ)

p̄,θ̄(1)
in the space L∗

p̄,θ(2)
(Im).

Key words: Lorentz space, Nikol’skii–Besov class, Best approximation.

1. Introduction

Let x̄ = (x1, . . . , xm) ∈ R
m, Im = [0, 2π]m, p̄ = (p1, . . . , pm), and θ̄ = (θ1, . . . , θm), where

pj ∈ (1,∞) and θj ∈ [1,∞) for j = 1, 2, . . . ,m. Denote by L∗
p̄,θ̄

(Im) the Lorentz space of real-valued

functions f(x̄) that are 2π-periodic in each variable and

‖f‖∗p̄,θ̄ =

{

∫ 2π

0
t
θm
pm

−1
m

[

. . .
[

∫ 2π

0

(

f∗1,...,∗m(t1, . . . , tm)
)θ1t

θ1
p1

−1

1 dt1

]

θ2
θ1 . . .

]
θm

θm−1

dtm

}1/θm

< +∞,

where f∗1,...,∗m is a nonincreasing rearrangement of the function |f(x1, . . . , xm)| in each of the
variables xj whereas the other variables are fixed (see [8, 18]).

In the case p1 = · · · = pm = θ1 = · · · = θm = p, the Lorentz space L∗
p̄,θ̄

(Im) coincides with the

Lebesgue space Lp (I
m) with the norm

‖f‖p =

[
∫ 2π

0
. . .

∫ 2π

0
|f(x1, . . . , xm)|pdx1 . . . dxm

]1/p

,

1This work was supported by the Competitiveness Enhancement Program of the Ural Federal University
(Enactment of the Government of the Russian Federation of March 16, 2013 no. 211, agreement no. 02.A03.
21.0006 of August 27, 2013).
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where p ∈ [1,+∞).
Instead of L∗

p̄,θ̄
(Im), we will write L∗

p,θ(I
m) in the case p1 = · · · = pm = p and θ1 = · · · = θm = θ

and L∗
p̄,θ(2)

(Im) if p = (p1, . . . , pm) and θ1 = · · · = θm = θ(2).

Given a natural number M, consider the set

�M = {k̄ = (k1, . . . , km) ∈ Z
m : |kj | < M, j = 1, . . . ,m}.

Consider the multiple Dirichlet kernel

D�M
(x̄) =

∑

k̄∈�M

ei〈k̄,x̄〉, x̄ ∈ I
m,

and its convolution with a function f ∈ L∗
p̄,θ̄

(Im):

σs(f, x̄) =

∫

Im

f(ȳ)(D�2s
(x̄− ȳ)−D�2s−1 (x̄− ȳ))dȳ,

where s ∈ N0 = N ∪ {0} and N is the set of positive integers.
Let M ∈ N0, and let TM (x̄) =

∑

k̄∈�M

ak̄e
i〈k̄,x̄〉 be a trigonometric polynomial of order M in each

variable xj , j = 1, . . . ,m. Denote by F�M
the set of all such polynomials.

Let EM,...,M (f)p̄,θ̄ = inf
T∈F�M

||f −T ||∗
p̄,θ̄

be the best approximation of a function f ∈ L∗
p̄,θ̄

(Im) by

the set F�M
. Sometimes, we will use the notation EM (f)p̄,θ̄ instead of EM,...,M(f)p̄,θ̄. For a given

class F ⊂ L∗
p̄,θ̄

(Im), let EM (F )p̄,θ̄ = sup
f∈F

EM (f)p̄,θ̄.

Let α ≥ 0, γ ∈ (−∞,+∞), and 0 < τ < ∞. Denote by A
(α,γ,τ)

p̄,θ̄
the space of all functions

f ∈ L∗
p̄,θ̄

(Im) such that the quasi-norm (see [9, 20])

‖f‖
A
(α,γ,τ)

p̄,θ̄

=
[

∞
∑

n=1

n−1
(

nα(1 + log n)γEn(f)p̄,θ̄
)τ
]1/τ

is finite, where log a is the logarithm of the number a to the base 2.
If τ = ∞, then

‖f‖Aα,γ,τ

p̄,θ̄
= sup

n≥1
nα(1 + log n)γEn(f)p̄,θ̄ < ∞.

It is known that A
(α,γ,τ)

p̄,θ̄
is a quasi-Banach space (see [9, 10, 20]). It is called an approximate

space (see [11]).

In the anisotropic Lorentz space, we consider the space B
(0,α,τ)

p̄,θ̄
, 1 ≤ τ ≤ ∞, of all functions

f ∈ L∗
p̄,θ̄

(Im) representable in the form of series

∞
∑

n=0

Q22n (f, x̄), Q22n (f) ∈ F�
22

n (1.1)

and such that
[

∞
∑

n=0

(

2nα‖Q22n (f)‖
∗
p̄,θ̄

)τ
]1/τ

< +∞ (1.2)

for 1 ≤ τ < ∞ and
sup
n∈N0

2nα‖Q22n (f)‖
∗
p̄,θ̄ < ∞
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for τ = ∞. The infimum of expression (1.2) over all representations (1.1) defines a quasi-norm in
this space:

‖f‖
B

(0,α,τ)

p̄,θ̄

= inf
[

∞
∑

n=0

(

2nα‖Q22n (f)‖
∗
p̄,θ̄

)τ
]1/τ

.

The space B
(0,α,τ)

p̄,θ̄
is called the Besov space with logarithmic smoothness. In B

(0,α,τ)

p̄,θ̄
, we consider

the unit ball

B
(0,α,τ)

p̄,θ̄
=

{

f ∈ L∗
p̄,θ̄(I

m) : ‖f‖
B

(0,α,τ)

p̄,θ̄

≤ 1
}

.

It is known that f ∈ B
(0,γ+1/τ ,τ)

p̄,θ̄
if and only if f ∈ A

(0,γ,τ)

p̄,θ̄
(see [10]).

The main aim of the present paper is to obtain an exact order of the best approximation of the

function classes A
(0,γ,τ)

p̄,θ̄(1)
and B

(0,γ,τ)

p̄,θ̄(1)
in anisotropic Lorentz spaces.

In the one-dimensional case, sufficient conditions for a function f ∈ Lp(I
1) to belong to the space

Lq(I
1) for 1 ≤ p < q < ∞ in terms of the best approximation and the modulus of continuity were

established by P.L. Ul’ynov [30]. This study was continued by V.I. Kolyada [15], V.A. Andrienko [5],
N. Temirgaliev [27, 28], E.A. Storozhenko [26], M.F. Timan, P. Oswald, L. Leindler, S.V. Lapin,
B.V. Simonov, and others (see the references in [16]).

N. Temirgaliev established [28] a necessary and sufficient condition for a univariate function
f ∈ Lp(I

1) to belong to the Lorentz space Lq,θ(I
1) in terms of the modulus of continuity for

1 ≤ θ < p < ∞. L.A. Sherstneva studied [22] this problem in terms of the best approximation of a
function. Such problems in the Lorentz space were investigated in [1, 4, 23].

Problems of estimating various approximative characteristics of function classes are well known
and a survey of the results on this topic is given in [12, 29]. In particular, in the Lebesgue
space Lp(I

m), exact estimates of the best approximation of functions of the Besov class Br
p,θ̄(1)

were established by A.S. Romanyuk [21]. In the case θ
(1)
j = pj = p, j = 1, . . . ,m, estimates of

approximative characteristics of the class B
0,α

p̄,θ̄(1)
were obtained by S.A. Stasyuk [24, 25]. In [13],

the embedding and characterization problems of the Besov space with logarithmic smoothness in
the Lebesgue space Lp(I

m) were investigated.

Exact estimates of best approximations of functions from the Besov class in the Lorentz space
with a mixed norm were obtained in [2, 6, 7].

The present paper consists of the introduction and two sections. In Section 1, we establish

a sufficient condition for a function f ∈ L∗
p̄,θ̄

(Im) to belong to the space L∗
p̄,θ(2)

(Im), θ(2) < θ
(1)
j ,

j = 1, . . . ,m, and prove its accuracy on the class

Eλ
p̄,θ̄ =

{

f ∈ L∗
p̄,θ̄(I

m) : En(f)p̄,θ̄ ≤ λn, n = 0, 1, . . .
}

,

where λ = {λn} is a sequence of positive numbers λn ↓ 0 as n → +∞.

In the case pj = θj = p, j = 1, . . . ,m, V.I. Kolyada proved [15] a necessary and sufficient
condition for the embedding of classes Eλ

p in the space Lq(I
1), 1 ≤ p < q.

In Section 2, we establish order-exact estimates of the value En(B
(0,γ,τ)

p̄,θ̄(1)
)q̄,θ̄(2) under various

relations between coordinates of the parameters p̄, θ̄(1), q̄, θ̄(2), τ (see Theorems 5 and 6).

The notation A (y) ≍ B (y) means that there exists positive constants C1 and C2 such that
C1A (y) ≤ B (y) ≤ C2A (y). If B(y) ≤ C2A(y) or A(y) ≥ C1B(y), then we write B(y) << A(y)
and A(y) >> B(y), respectively.
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2. Conditions for embedding classes in the Lorentz space

Theorem 1 [19, Theorem 10]. Let 1 ≤ pj < +∞ and 1 ≤ θj < qj < +∞ for j = 1, . . . ,m, let
p̄ = (p1, . . . , pm) and q̄ = (q1, . . . , qm), and let θ̄ = (θ1, . . . , θm). Then a trigonometric polynomial

Tn̄(x̄) =

n1
∑

k1=−n1

. . .

nm
∑

km=−nm

bk̄e
i〈x̄,k̄〉

satsfies the following inequality :

‖Tn̄‖
∗
p̄,θ̄ ≤ C(p, q, θ)

m
∏

j=1

(ln(1 + nj))
1/θj−1/qj ‖Tn̄‖

∗
p̄,q̄.

Lemma 1. Let 1 < pj < ∞ and 1 < q2 < q
(1)
j < +∞ for j = 1, . . . ,m. Let {un} be a sequence

of non-negative measurable functions on the cube I
m = [0, 2π]m such that

(1)
‖un‖

∗
p̄,q̄(1)

≤ εn, εn+1 ≤ βεn, β ∈ (0, 1);

(2) there exists a sequence of positive numbers {∆n} such that

‖un‖
∗
p,θ ≤ C∆

m∑

j=1
(1/θj−1/q

(1)
j )

n εn, n = 1, 2, 3, . . . ,

for any θj ∈ (0, q
(1)
j ), j = 1, . . . ,m.

Then the inequality

‖f‖∗p,q2 ≤ C
{

∞
∑

n=1

∆

m∑

j=1
(1/q2−1/q

(1)
j )

n εq2n

}1/q2

holds for every function of the form f(x̄) =
∑∞

n=1 un(x̄).

This lemma is proved by V.I. Kolyada’s method (see [15, Proof of Lemma 4]) as in [3].

Remark 1. Lemma 1 was proved by L.A. Sherstneva [22, Lemma 13] in the one-dimensional

case and by the author [3] in the multi-dimensional case for q
(1)
1 = · · · = q

(1)
m .

Now, let us consider a condition for a function f ∈ L∗
p̄,θ̄(1)

(Im) to belong to the space L∗
p̄,θ(2)

(Im),

1 < θ(2) < θ
(1)
j < +∞, j = 1, . . . ,m.

Theorem 2. Let 1 < θ(2) < θ
(1)
j < +∞ and 1 < pj < ∞ for j = 1, . . . ,m, and let θ̄(1) =

(θ
(1)
1 , . . . , θ

(1)
m ). Assume that f ∈ L∗

p̄,θ̄(1)
(Im) and

∞
∑

n=2

(lnn)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1) < +∞. (2.1)

Then f ∈ L∗
p̄,θ(2)

(Im) and

‖f‖∗
p̄,θ(2)

<<
{

‖f‖∗
p̄,θ(1)

+
[

∞
∑

k=2

(ln(k + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

k
Eθ(2)

k,...,k(f)p̄,θ̄(1)
]1/θ(2)}

, (2.2)
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En,...,n(f)p̄,θ(2) <<
{

(ln(n+ 1))

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

En,...,n(f)p̄,θ̄(1)+

+
[

∞
∑

k=n+1

(ln(k + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

k
Eθ(2)

k,...,k(f)p̄,θ̄(1)
]1/θ(2)}

.

(2.3)

P r o o f. Since En,...,n(f)p̄,θ̄(1) ≡ εn ↓ 0 as n → +∞ for every function f ∈ L∗
p̄,θ̄(1)

(Im),

1 < pj, θ
(1)
j < +∞, j = 1, . . . ,m, there exists a numerical sequence {nν} such that (see [15, Sect. 2])

εnν+1 <
1

2
εnν , εnν+1−1 ≥

1

2
εnν , ν = 1, 2, . . . .

Let Tn(f, x̄) be a trigonometric polynomial of the best approximation of a function

f ∈ L∗
p̄,θ̄(1)

(Im), 1 < pj, θ
(1)
j < +∞, j = 1, . . . ,m. Consider the series

Tn1(f, x̄) +

∞
∑

ν=1

(Tnν+1(f, x̄)− Tnν (f, x̄)). (2.4)

Let us prove the convergence of this series in the norm of the space L∗
p̄,θ(2)

(Im). Suppose that

uν(x̄) = |Tnν+1(f, x̄)− Tnν (f, x̄)|, ν = 0, 1, . . . .

Then
‖uν‖

∗
p̄,θ̄(1)

≤ 2εν , ν = 0, 1, . . . ,

and, by Theorem 1,

‖uν‖
∗
p̄,τ̄ << (lnnν+1)

m∑

j=1
(1/τj−1/θ

(1)
j )

εν

for any τj ∈ (0, θ
(1)
j ), j = 1, . . . ,m. Hence, by Lemma 1, we obtain

∥

∥

∥

l
∑

ν=k+1

(Tnν+1(f)− Tnν (f))
∥

∥

∥

∗

p̄,θ(2)
≤

∥

∥

∥

l
∑

ν=k+1

uν

∥

∥

∥

∗

p̄,θ(2)
<<

<<
{

l
∑

ν=k+1

(ln nν+1)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j

)

εθ
(2)

ν

}1/θ(2)

.

(2.5)

Condition (2.1) implies that

∞
∑

ν=1

(ln nν+1)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

εθ
(2)

nν
< +∞. (2.6)

It follows from (2.5) and (2.6) that series (2.4) converges to a function g ∈ L∗
p̄,θ(2)

(Im) in the norm.

It is easy to see that g(x̄) = f(x̄) almost everywhere on I
m. Hence, f ∈ L∗

p̄,θ(2)
(Im). Setting k = 0

in (2.5), we get

‖Tnl+1
(f)‖∗

p̄,θ(2)
<<

[

‖f‖∗
p̄,θ̄(1)

+
l

∑

ν=1

(ln nν+1)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

εθ
(2)

ν

]1/θ(2)

<<
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<<

{

‖f‖∗
p̄,θ̄(1)

+

[ ∞
∑

n=2

(ln(n+ 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j

)−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1)

]1/θ(2)}

.

By tending l to +∞ in this inequality, we obtain

‖f‖∗
p̄,θ(2)

<<

{

‖f‖∗
p̄,θ̄(1)

+

[ ∞
∑

n=2

(ln(n + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1)

]1/θ(2)}

.

Thus, inequality (2.2) is proved.
Applying inequality (2.2) to the function f − Tn(f) ∈ L∗

p̄,θ(2)
(Im), it is easy to prove inequal-

ity (2.3). The proof of Theorem 2 is complete. �

Let us prove that condition (2.1) is exact on the classes Eλ
p̄,θ̄(1)

.

Theorem 3. Let 1 < pj < ∞ and 1 < θ(2) < θ
(1)
j < +∞ for j = 1, . . . ,m. The following

condition is necessary and sufficient for the inclusion Eλ
p̄,θ̄(1)

⊂ L∗
p̄,θ(2)

(Im):

∞
∑

n=2

(lnn)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j

)−1

n
λθ(2)

n < +∞. (2.7)

P r o o f. The sufficiency of condition (2.7) follows from Theorem 2. Let us prove the necessity.
Let Eλ

p̄,θ̄(1)
⊂ L∗

p̄,θ(2)
(Im). Assume that condition (2.7) is violated, i.e.,

∞
∑

n=2

(lnn)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n
λθ(2)

n = +∞. (2.8)

We choose a sequence of numbers {νk} with the following properties (see [15]):

λνk+1
<

1

2
λνk , λνk+1−1 ≥

1

2
λνk . (2.9)

Since the function (ln x)β/x with β ∈ R decreases to 0 as x → +∞, we have

νk+1
∑

n=νk+1

(lnn)
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n
≤

νk+1
∑

n=νk+1

(ln(n− νk + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n− νk
<<

<< (ln(νk+1 − νk + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

.

Thus, (2.8) implies that

∞
∑

k=1

(ln(νk+1 − νk + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

λθ(2)
νk

= +∞. (2.10)

Let us consider the function

f0(x̄) =

∞
∑

k=0

λνk(ln(νk+1 − νk + 1))
−

m∑

j=1
1/θ

(1)
j

τk(x̄),
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where

τk(x̄) =
m
∏

j=1

νk+1
∑

nj=νk+1

(nj − νk)
1
pj

−1
sinnjxj.

It is known that (see [22])

‖τk‖
∗
p̄,θ̄(1)

≍ (ln(νk+1 − νk + 1))

m∑

j=1
1/θ

(1)
j

, 1 < pj, θ
(1)
j < +∞, j = 1, . . . ,m. (2.11)

Using this relation and (2.9), we can verify that

‖f0‖
∗
p̄,θ̄(1)

≤

∞
∑

k=0

λνk(ln(νk+1 − νk + 1))
−

m∑

j=1
1/θ

(1)
j

‖τk‖
∗
p̄,θ̄(1)

≤ C

∞
∑

k=0

λνk < ∞.

Hence, f0 ∈ L∗
p̄,θ̄(1)

(Im), 1 < pj, θ
(1)
j < ∞, j = 1, . . . ,m.

Let a positive integer n satisfy the inequalities νl ≤ n < νl+1. Then, by the best approximation
property and according to relation (2.11) and inequality (2.9), we have

En(f0)p̄,θ̄(1) ≤ Eνl(f0)p̄,θ̄(1) ≤

∞
∑

k=l

λνk(ln(νk+1 − νk + 1))
−

m∑

j=1
1/θ

(1)
j

‖τk‖
∗
p̄,θ̄(1)

<<

<<

∞
∑

k=l

λνk << λνl << 2λνl+1−1 ≤ C0λn.

Hence, f1 = C−1
0 f0 ∈ Eλ

p̄,θ̄(1)
.

Let us show that f1 /∈ L∗
p̄,θ(2)

(Im), 1 < θ(2) < ∞. To this end, we consider the function

g0(x̄) =
∞
∑

k=0

(ln(νk+1 − νk + 1))

m∑

j=1

1−θ(2)

θ
(1)
j λθ(2)−1

νk
ξk(x̄),

where

ξk(x̄) =

s
∏

j=1

νk+1
∑

nj=νk+1

(nj − νk)
1
p′
j

−1
sinnjxj, p′j =

pj
pj − 1

, j = 1, . . . ,m.

It is clear that (see (2.11))

‖ξk‖
∗
p̄′ ,θ̄

≍ (ln(νk+1 − νk + 1))

m∑

j=1
1/θj

, 1 < pj < +∞, 1 < θj < ∞, j = 1, . . . ,m.

Further, in view of the orthogonality of the trigonometric system, for any number N , we have

BN ≡

∫

Im

f1(x̄)

N
∑

k=0

λθ(2)−1
νk

(ln(νk+1 − νk + 1))

m∑

j=1

1−θ(2)

θ
(1)
j ξk(x̄)dx̄ =

= C

N
∑

k=0

[ln(νk+1 − νk + 1)]
−θ(2)

m∑

j=1
1/θ

(1)
j

λθ(2)
νk

m
∏

j=1

νk+1
∑

nj=νk+1

1

nj − νk
>>

>>

N
∑

k=0

[ln(νk+1 − νk + 1)]
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

λθ(2)

νk
.

(2.12)
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Using the integral Hölder inequality, we obtain

BN << ‖f1‖
∗
p̄,θ(2)

∥

∥

∥

N
∑

k=0

(ln(νk+1 − νk + 1))

m∑

j=1

1−θ(2)

θ
(1)
j λθ(2)−1

νk
ξk

∥

∥

∥

∗

p̄′ ,θ(2)
′
, (2.13)

where

θ(2)
′

=
θ(2)

θ(2) − 1
.

We set uk(x̄) = (ln(νk+1 − νk + 1))

m∑

j=1

1−θ(2)

θ
(1)
j λθ(2)−1

νk
|ξk(x̄)|. Then (see (2.11))

‖uk‖
∗

p̄′, θ̄(1)

θ(2)−1

<< λθ(2)−1
νk

≡ βk,

‖uk‖
∗
p̄′,τ̄ << [ln(νk+1 − νk + 1)]

m∑

j=1
( 1
τj

− θ(2)−1

θ
(1)
j

)

βk, k = 0, 1, . . . .

Thus, all the conditions of Lemma 1 hold for the sequence of functions {uk(x̄)}. Therefore,

∥

∥

∥

N
∑

k=0

(ln(νk+1 − νk + 1))

m∑

j=1

1−θ(2)

θ
(1)
j λθ(2)−1

νk
ξk

∥

∥

∥

∗

p̄′ ,θ(2)′
<<

<<
{

N
∑

k=0

(ln(νk+1 − νk + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j

)

λθ(2)
νk

}1−1/θ(2)

.

(2.14)

Now, it follows from inequalities (2.12), (2.13), and (2.14) that

{

N
∑

k=0

(ln(νk+1 − νk + 1))
θ(2)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )

λθ(2)

νk

}1/θ(2)

<< ‖f1‖
∗
p̄,θ(2)

.

By (2.10), we find that f1 /∈ L∗
p̄,θ(2)

(Im), 1 < θ(2) < θ
(1)
j < +∞, j = 1, . . . ,m. This contradicts the

inclusion Eλ
p̄,θ̄(1)

⊂ L∗
p̄,θ(2)

(Im). The proof of Theorem 3 is complete. �

Remark 2. The results of L.A. Sherstneva [22] follow from Theorems 2 and 3 in the case m = 1.

3. Estimates of best approximations of functions with logarithmic smoothness

Now, let us prove estimates of the value EM (F )p̄,θ̄(2) for the classes F = B
(0,α,τ)

p̄,θ̄(1)
and F = A

(0,γ,τ)

p̄,θ̄(1)
.

Theorem 4. Let 1 < pj < ∞ and 1 ≤ θ(2) < θ
(1)
j < ∞ for j = 1, . . . ,m, and let 1 ≤ τ ≤ ∞. If

α >
m
∑

j=1
(1/θ(2) − 1/θ

(1)
j ), then B

(0,α,τ)

p̄,θ̄(1)
⊂ L∗

p̄,θ(2)
(Im) and

‖f‖∗
p̄,θ(2)

<< ‖f‖
B

(0,α,τ)

p̄,θ̄

.
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P r o o f. Let f ∈ B
(0,α,τ)

p̄,θ̄(1)
. Then, by the definition of the class, this function can be represented

in the form of the series
∞
∑

ν=0

Q22ν (f, x̄), Q22ν (f, x̄) ∈ F�
22

n ,

in the sense of convergence in the quasi-norm of the space L∗
p̄,θ̄(1)

(Im) and

[

∞
∑

ν=0

(

2να‖Q22ν (f)‖
∗
p̄,θ̄

)τ
]1/τ

< +∞.

If θ(2) < τ < ∞, then, using the Hölder inequality and taking into account that

α >
m
∑

j=1
(1/θ(2) − 1/θ

(1)
j ), we obtain

{

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
}1/θ(2)

≤

≤
{

∞
∑

ν=0

2ντα
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ{

∞
∑

ν=0

2
νθ(2)β

′

(
m∑

j=1
(1/θ(2)−1/θ

(1)
j )−α)} 1

θ(2)β
′

≤

≤ C
{

∞
∑

ν=0

2ντα
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ

,

(3.1)

where

β =
τ

θ(2)
, β

′

=
β

β − 1
.

If τ = ∞, then

{

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
}1/θ(2)

≤

≤ sup
ν∈N0

2να‖Q22ν (f)‖
∗
p̄,θ̄(1)

{

∞
∑

ν=0

2
νθ(2)(

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−α)}1/θ(2)

.

(3.2)

If τ ≤ θ(2), then, using the Jensen inequality (see [17, p. 125]), we obtain

{

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
}1/θ(2)

≤
{

∞
∑

ν=0

2ντα
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ

. (3.3)

Thus, (3.1)–(3.3) imply that the series

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
(3.4)

is convergent for every function f ∈ B
(0,α,τ)

p̄,θ̄(1)
.

Taking into account the monotonicity of the best approximation and the properties of the norm,
it is easy to verify that
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∞
∑

n=2

(lnn)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1) <<

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

Eθ(2)

22ν ,...,22ν (f)p̄,θ̄(1) <<

<<

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)(∥

∥

∥

∞
∑

l=ν

Q
22l

(f)
∥

∥

∥

∗

p̄,θ̄(1)

)θ(2)

<<

<<

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

∞
∑

l=ν

∥

∥Q
22l

(f)
∥

∥

∗

p̄,θ̄(1)

)θ(2)

.

(3.5)

Since θ(2) < θ
(1)
j , j = 1, . . . ,m, we have

n
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

<< 2
n

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

, n ∈ N0.

Therefore, according to [14, Lemma 2.2], we find from (3.5) that

∞
∑

n=2

(lnn)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1)<<

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j

)θ(2)
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
. (3.6)

Since the series (3.4) converges, it follows from (3.6) that

∞
∑

n=2

(ln n)

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)−1

n
Eθ(2)

n,...,n(f)p̄,θ̄(1) < ∞.

Hence, by Theorem 3, we have f ∈ L∗
p̄,θ(2)

(Im).

Let us estimate the quasi-norm ‖f‖∗
p̄,θ̄(1)

. By the quasi-norm property and the Hölder inequality,

we obtain

‖f‖∗
p̄,θ̄(1)

<<
∞
∑

ν=0

‖Q22ν (f)‖
∗
p̄,θ̄(1)

<<

<<
(

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
)1/θ(2)

.

(3.7)

Therefore, according to relations (2.2), (3.6), and (3.7), we have

‖f‖∗
p̄,θ̄(1)

<<
{

∞
∑

ν=0

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
}1/θ(2)

. (3.8)

Taking into account (3.1)–(3.3) and (3.8), we obtain

‖f‖∗
p̄,θ(2)

<<
{

∞
∑

ν=0

2ντ(γ+1/τ)
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ

(3.9)

for every function f ∈ B
(0,α,τ)

p̄,θ̄(1)
. The proof of Theorem 4 is complete. �
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Theorem 5. Let 1 < pj < ∞ and 1 ≤ θ(2) < θ
(1)
j < ∞ for j = 1, . . . ,m, and let 1 ≤ τ ≤ ∞. If

α >
m
∑

j=1
(1/θ(2) − 1/θ

(1)
j ), then

EM (B
(0,α,τ)

p̄,θ̄(1)
)p̄,θ̄(2) ≍ (log(M + 1))

−(α−
m∑

j=1
(1/θ(2)−1/θ

(1)
j ))

, M ∈ N.

P r o o f. Let f ∈ B
(0,α,τ)

p̄,θ̄(1)
. We have α >

m
∑

j=1
(1/θ(2) − 1/θ

(1)
j ); therefore, f ∈ L∗

p̄,θ(2)
(Im)

by Theorem 4. Take a positive integer l such that 22
l
≤ M < 22

l+1
. Then, using the best

approximation property and inequality (3.9), we have

EM (f)p̄,θ(2) ≤ E
22l

(f)p̄,θ(2) <<
{

∞
∑

ν=l

2
ν

m∑

j=1
(1/θ(2)−1/θ

(1)
j )θ(2)

(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)θ(2)
}1/θ(2)

. (3.10)

If θ(2) < τ, then by the Hölder inequality and in view of the fact that α >
m
∑

j=1
(1/θ(2) − 1/θ

(1)
j ),

(3.10) implies that (see formula (3.1))

EM (f)p̄,θ(2) ≤
{

∞
∑

ν=0

2ντα
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ

×

{ ∞
∑

ν=l

2
νθ(2)β

′

(
m∑

j=1
(1/θ(2)−1/θ

(1)
j )−α)

}
1

θ(2)β
′

<< 2
−l(α−

m∑

j=1
(1/θ(2)−1/θ

(1)
j ))

(3.11)

for every function f ∈ B
(0,α,τ)

p̄,θ̄(1)
in the case θ(2) < τ .

If τ ≤ θ(2), then, arguing as in the proof of formula (3.3), by means of the Jensen inequality,
we find from (3.10) that

EM (f)p̄,θ(2) ≤
{

∞
∑

ν=0

2ντα
(

‖Q22ν (f)‖
∗
p̄,θ̄(1)

)τ
}1/τ

2
−l(α−

m∑

j=1
(1/θ(2)−1/θ

(1)
j ))

. (3.12)

Now, taking into account that 22
l
≤ M < 22

l+1
, by formulas (3.11) and (3.12), we obtain

EM (f)p̄,θ(2) << (log(M + 1))
−(α−

m∑

j=1
(1/θ(2)−1/θ

(1)
j ))

for every function f ∈ B
(0,α,τ)

p̄,θ̄(1)
. Thus, the upper estimates are proved.

Let us prove the lower estimates. Consider the function

f2(x̄) = 2
−(n+1)(α+

m∑

j=1
1/θ

(1)
j ) 2n+2

∑

s=2n+1+1

∑

k̄∈�2s\�2s−1

m
∏

j=1

(kj − 2s−1 + 1)
1
pj

−1
ei〈k̄,x̄〉,

where x̄ ∈ I
m and n ∈ N0. It is well known that

∥

∥

∥

2n+2
∑

s=2n+1

σs(f2)
∥

∥

∥

∗

p̄,θ̄(1)
= 2

−(n+1)(α+
m∑

j=1
1/θ

(1)
j )∥

∥

∥

2n+2
∑

s=2n+1+1

∑

k̄∈�2s\�2s−1

m
∏

j=1

(kj−2s−1+1)
1
pj

−1
ei〈k̄,x̄〉

∥

∥

∥

∗

p̄,θ̄(1)
<<
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<< 2
−(n+1)(α+

m∑

j=1
1/θ

(1)
j

)

(log(22
n+2

− 22
n+1

))

m∑

j=1
1/θ

(1)
j

<< 2−(n+1)α.

Thus,

{

∞
∑

ν=0

2ντα
(
∥

∥

∥

2ν+1
∑

s=2ν

σs(f2)
∥

∥

∥

∗

p̄,θ̄(1)

)τ}1/τ
= 2(n+1)α

∥

∥

∥

2n+2
∑

s=2n+1

σs(f2)
∥

∥

∥

∗

p̄,θ̄(1)
≤ C1.

Hence, C−1
1 f2 ∈ B

(0,α,τ)

p̄,θ̄(1)
for 1 < θ(2) < ∞ and 1 ≤ τ < ∞. Next, by the definition of the best

approximation and the estimate

∥

∥

∥

2n+2
∑

s=2n+1+1

∑

k̄∈�2s\�2s−1

m
∏

j=1

(kj − 2s−1 + 1)
1
pj

−1
ei〈k̄,x̄〉

∥

∥

∥

∗

p̄,θ(2)
>> 2

n m

θ(2) ,

we have

E22n (f2)p̄,θ(2) = C−1
1 ‖f2‖

∗
p̄,θ(2)

=

= C−1
1 2

−(n+1)(α+
m∑

j=1
1/θ

(1)
j )∥

∥

∥

2n+2
∑

s=2n+1+1

∑

k̄∈�2s\�2s−1

m
∏

j=1

(kj − 2s−1 + 1)
1
pj

−1
ei〈k̄,x̄〉

∥

∥

∥

∗

p̄,θ(2)
>>

>> 2
−(n+1)(α−

m∑

j=1
(1/θ(2)−1/θ

(1)
j ))

.

Taking into account that 22
n
≤ M < 22

n+1
, we obtain

EM (f2)p̄,θ(2) >> (log(M + 1))
(α−

m∑

j=1
(1/θ(2)−1/θ

(1)
j

))

for 1 ≤ θ(2) < ∞ and 1 ≤ τ ≤ ∞. Thus, the proof of Theorem 5 is compete. �

Theorem 6. Let 1 < pj < ∞ and 1 ≤ θ(2) < θ
(1)
j < ∞ for j = 1, . . . ,m, and let 1 ≤ τ ≤ ∞.

If γ >
m
∑

j=1
(1/θ(2) − 1/θ

(1)
j )− 1/τ, then

EM (A
(0,γ,τ)

p̄,θ̄(1)
)p̄,θ̄(2) ≍ (log(M + 1))

−(γ+1/τ−
m∑

j=1
(1/θ(2)−1/θ

(1)
j

))

.

P r o o f. Since A
(0,γ,τ)

p̄,θ̄(1)
and B

(0,γ+1/τ,τ)

p̄,θ̄(1)
coincide, the statement of Theorem 6 follows from

Theorem 5. �

4. Conclusion

The best approximations of functions of the classes B
(0,α,τ)

p̄,θ̄(1)
and A

(0,γ,τ)

p̄,θ̄(1)
in the space L∗

p̄,θ(2)
(Im)

have logarithmic order.

Note that estimates of the quantities EM (B
(0,γ,τ)

p̄,θ̄(1)
)p̄,θ̄(2) and EM (A

(0,γ,τ)

p̄,θ̄(1)
)p̄,θ̄(2) are unknown in

the case θ
(1)
j = θ(2), j = 1, . . . ,m.
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Abstract: This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems
involving p(x)-Laplace type equation, namely

{

−div (a(|∇u|p(x))|∇u|p(x)−2∇u) = λf(x, u) in Ω,

n · a(|∇u|p(x))|∇u|p(x)−2∇u+ b(x)|u|p(x)−2u = g(x, u) on ∂Ω.

Our technical approach is based on variational methods, especially, the mountain pass theorem and the sym-
metric mountain pass theorem.

Keywords: p(x)-Laplacian, Mountain pass theorem, Multiple solutions, Critical point theory.

1. Introduction

In this paper we study the nonlinear elliptic boundary value problem with Robin conditions
{

−div (a(|∇u|p(x))|∇u|p(x)−2∇u) = λf(x, u) in Ω,

n · a(|∇u|p(x))|∇u|p(x)−2∇u+ b(x)|u|p(x)−2u = g(x, u) on ∂Ω,
(1.1)

where Ω is an open bounded subset of RN (N ≥ 2), with smooth boundary, n is the outer unit
normal vector on ∂Ω, b is a positive continuous function defined on R

N , p ∈ C+(Ω) with

1 < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x) < N

and p(x) < p∗(x) where

p∗(x) =





Np(x)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N

for any x ∈ Ω. It is clear that the equation in question is elliptic since it describes phenomena that
do not change from moment to moment, and that the operator

Lu = −div (a(|∇u|p(x))|∇u|p(x)−2∇u)

is an elliptic operator in divergence form.
Recently, the study of differential equations and variational problems involving p(x)-growth

conditions have been extensively investigated and received much attention because they can be
presented as models for many physical phenomena which arouse in the study of elastic mechan-
ics [32], electro-rheological fluid dynamics [27] and image processing [6], electrical resistivity and

https://doi.org/10.15826/umj.2020.1.003
mailto:belaouidelhassan@hotmail.fr
mailto:a.ourraoui@gmail.com
mailto:tsouli@hotmail.fr
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polycrystal plasticity [3, 4] and continuum mechanics [2] etc, for an overview of this subject, and
for more details we refer readers to [11] and [5, 10] and the references therein. The existence of
nontrivial solutions to nonlinear elliptic boundary value problems has been extensively studied by
many researchers [1, 7, 14, 15, 18, 21, 23, 24] and references therein.

It is known that the extension p(x)-Laplace operator possesses more complicated structure than
the p-Laplacian. For example, it is inhomogeneous and usually it does not have the so-called first
eigenvalue, since the infimum of its spectrum is zero.

However, to understand the role of the variable exponent, well, although most of the materials
can be accurately modeled with the help of the classical Lebesgue and Sobolev spaces Lp and
W 1,p, where p is a fixed constant, there are some nonhomogeneous materials, for which this is not
adequate, e.g. the rheological fluids mentioned above, which are characterized by their ability to
drastically change their mechanical properties under the influence of an exterior electromagnetic
field. Thus it is necessary for the exponent p to be nonstandard, therefore, the spaces with variable
exponents are required. As an introduction and a history coverage to the subject of variable
exponent problems, we advice the reader to see the monograph [12] and the articles [16, 20].

Note that, the p(x)-Laplace operator in (1.1) is a special case of the divergence form operator
−div (a(|∇u|p(x))|∇u|p(x)−2∇u) which appears in many nonlinear diffusion problems, in particular
in the mathematical modeling of non-Newtonian fluids. When

a(t) = 1 +
t√

1 + t2

we have the generalized Capillary operator (which is essential in applied fields like industrial,
biomedical and pharmaceutical) initiated by W. Ni and J. Serrin [22].

Inspired by the works in [25] and [19], we study the existence and multiplicity of nontrivial solu-
tions the problem (1.1), via the mountain pass theorem and the Rabinowitz’s symmetric mountain
pass theorem [26].

We assume the following conditions:

(A0) The function a : R
+ → R is continuous and the mapping Θ : R

N → R, given by
Θ(ξ) = A(|ξ|p(x)) is strictly convex, where A is the primitive of a, that is

A(t) =

∫ t

0
a(s)ds.

(A1) There exist two constants 0 < L < K such that L ≤ a(t) ≤ K for all t ≥ 0.

We assume that f, g : Ω × R → R are of Carathéodory functions, f(x, ·) = g(x, ·) = 0 and
satisfy:

(F0) for all (x, t) ∈ Ω× R |f(x, t)| ≤ f1(x)|t|r(x)−1, such that

1 ≤ r− := inf
Ω
r(x) ≤ r+ := sup

Ω

r(x) < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x),

where f1 is nonnegative, measurable function and f1 ∈ L
p(x)

p(x)−r(x) (Ω);

(F1) for all (x, t) ∈ Ω× R |f(x, t)| ≥ f2(x)|t|α(x)−1,

1 ≤ α− : inf
Ω
α(x) ≤ α+ := sup

Ω

α(x) < r−,

where f2 > 0 in some nonempty open set O ⊂ Ω;
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(G0) for all (x, t) ∈ ∂Ω× R, |g(x, t)| ≤ g1(x)|t|q(x)−1,

1 ≤ p+ < q− := inf
Ω
q(x) ≤ q+ := sup

Ω

q(x), q(x) < p∂(x),

where

p∂(x) = (p(x))∂ =





(N − 1)p(x)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N

and there exists a positive constants Cg such that 0 ≤ g1 ≤ Cg;

(G1) for all (x, t) ∈ ∂Ω× R lim
t→0

g(x, t)t

|t|p+−1
= 0.

(G2) there exists µ > p+ such that µG(x, t) ≤ g(x, t)t for all (x, t) ∈ ∂Ω× R, where

G(x, t) =

∫ t

0
g(x, s)ds.

The main result of this paper is as follow.

Theorem 1. Assume that (A0)–(A1), (F0)–(F1) and (G0)–(G2) hold. Then there exists
λ∗ > 0 such that for every λ ∈]0, λ∗[, the problem (1.1) admits at least one nontrivial solution.
In addition, if we assume the following conditions:

(G3) there is a nonempty open set U ⊂ ∂Ω with G(x, t) > 0 for all (x, t) ∈ U × R
+,

(G4) the functions f and g are even,

then the problem (1.1) has infinitely many solutions for every λ > 0.

The remainder of this paper is organized as follows, in Section 2 we introduce some technical
results and required hypotheses in order to solve our problem, in Section 3 we state some and prove
the main results of this work.

2. Preliminaries

In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) =
{
u : Ω → R measurable and

∫

Ω
|u(x)|p(x) dx < +∞

}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
σ > 0 :

∫

Ω

∣∣∣
u(x)

σ

∣∣∣
p(x)

dx ≤ 1
}
.

Remark 1. Variable exponent Lebesgue spaces resemble to classical Lebesgue spaces in many
respects, they are separable Banach spaces and the Hölder inequality holds. The inclusions be-
tween Lebesgue spaces are also naturally generalized, that is, if 0 < mes (Ω) < ∞ and p, q are
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variable exponents such that p(x) < q(x) a. e. in Ω, then there exists a continuous embedding
Lq(x)(Ω) →֒ Lp(x)(Ω).

The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}

equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 1 [16, 17]. The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable, uniformly convex,
reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where q(x) is the conjugate
function of p(x), i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have

∣∣∣
∫

Ω
u(x)v(x)dx

∣∣∣ ≤
( 1

p−
+

1

q−

)
|u|p(x)|v|q(x).

Moreover, if h1, h2, h3 : Ω → (1,∞) are Lipschitz continuous functions such that

1

h1
+

1

h2
+

1

h3
= 1,

then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω), w ∈ Lh3(x)(Ω), the following inequality holds (see [15,
Proposition 2.5]) ∫

Ω
|uvw|dx ≤

( 1

h−1
+

1

h−2
+

1

h−3

)
|u|h1(x)|v|h2(x)|w|h3(x).

Proposition 2 [13]. Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and
1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≤ 1 ⇒ |u|p+p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p−p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p−p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p+p(x)q(x).

In particular if p(x) = p is a constant, then

||u|p|q(x) = |u|ppq(x).

Proposition 3 [16, 17]. Assume that the boundary of Ω possesses the cone property and
p, r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) < p∗(x)) for all x ∈ Ω, then there is a continuous
(compact) embedding

W 1,p(x)(Ω) →֒ Lr(x)(Ω),

Proposition 4 [9]. For p ∈ C+(Ω) and such r ∈ C+(∂Ω) that r(x) ≤ p∂(x) (r(x) < p∂(x)) for
all x ∈ Ω, there is a continuous (compact) embedding

W 1,p(x)(Ω) →֒ Lr(x)(∂Ω).
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Proposition 5. [8, Theorem 2.1] For any u ∈W 1,p(x)(Ω), let

‖u‖∂ := |u|Lp(x)(∂Ω) + |∇u|Lp(x)(Ω).

Then ‖u‖∂ is a norm on W 1,p(x)(Ω) which is equivalent to

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Now, for any u ∈ X :=W 1,p(x)(Ω) define

‖u‖ := inf
{
σ > 0 :

∫

Ω

∣∣∣
∇u(x)
σ

∣∣∣
p(x)

dx+

∫

∂Ω
b(x)

∣∣∣
u(x)

σ

∣∣∣
p(x)

dσx ≤ 1
}
,

where b ∈ L∞(Ω) and dσx is the measure on the boundary ∂Ω. Then by Proposition 5, ‖ · ‖ is also
a norm on W 1,p(x)(Ω) which is equivalent to ‖ · ‖W 1,p(x)(Ω) and ‖ · ‖∂ , the proof of this statement
can be found in [8, p. 551]. Now, we introduce the modular ρ : X → R defined by

ρ(u) =

∫

Ω
|∇u|p(x)dx+

∫

∂Ω
b(x)|u(x)|p(x)dσx

for all u ∈ X. Here, we give some relations between the norm || · || and the modular ρ.

Proposition 6 [16]. For u ∈ X we have

(i) ‖u‖ < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(ii) If ‖u‖ < 1 ⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(iii) If ‖u‖ > 1 ⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .

Proposition 7 [29]. Suppose that f : Ω×R → R is a Carathéodory function and satisfies the
growth condition

|f(x, t)| ≤ c|t|α(x)/β(x) + h(x), for every x ∈ Ω, t ∈ R,

where α, β ∈ C+(Ω), c ≥ 0 is constant and h ∈ Lβ(x)(Ω). Then Nf (L
α(x)(Ω)) ⊆ Lβ(x)(Ω), where

Nf (u)(x) = f(x, u(x). Moreover, Nf is continuous from Lα(x)(Ω) into Lβ(x)(Ω) and maps bounded
set into bounded set.

As a consequence of Proposition 7, the Carathéodory function f defines an operator Nf which
is called the Nemytskii operator.

Definition 1. We say that u ∈ X is weak solution of (1.1) if
∫

Ω
a(|∇u|p(x))|∇u|p(x)−2∇u∇vdx+

∫

∂Ω
b(x)|u|p(x)−2uvdσx = λ

∫

Ω
f(x, u)vdx+

∫

∂Ω
g(x, u)vdσx

for all v ∈ X.

Now we introduce the Euler–Lagrange functional Iλ : X −→ R associated with problem (1.1)
defined by

Iλ(u) =

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx − λ

∫

Ω
F (x, u)dx −

∫

∂Ω
G(x, u)dσx,

where

F (x, t) :=

∫ t

0
f(x, s)ds.

Furthermore, the (weak) solutions of (1.1) are precisely the critical points of the functional Iλ.
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Lemma 1 [31] . Let

L(u) :=

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx.

Then the mapping L : X → X∗ is a strictly monotone, continuous bounded homeomorphism and is
of type (S+), namely assumptions un ⇀ u and lim sup

n→+∞
L(un)(un − u) ≤ 0, imply un → u.

By Proposition 7, we can see that the functional Iλ is well defined on X and Iλ ∈ C1(X,R)
with its Fréchet derivative is giving by

I
′

λ(u) · v =

∫

Ω
a(|∇u|p(x))|∇u|p(x)−2∇u∇vdx+

∫

∂Ω
b(x)|u|p(x)−2uvdσx

−λ
∫

Ω
f(x, u)vdx−

∫

∂Ω
g(x, u)vdσx

for all u, v ∈ X.

Let X be a real Banach space and let be a functional I ∈ C1(X,R). We say that I satisfies the
Palais-Smale condition on X ((PS)-condition, for short) if any sequence (un) ⊂ X with (I(un))
bounded and I ′(un) → 0 as n → ∞, possesses a convergent subsequence. By (PS)-sequence for
I we understand a sequence (un) ⊂ X which satisfies the conditions: (I(un)) is bounded and
I ′(un) → 0 as n→ ∞.

The main tools used in proving Theorem 1 are the well known mountain pass theorem and its
the symmetric mountain pass theorem.

Theorem 2 [26, Theorem 2.2]. Let X be a real Banach space and let I belong to C1(X,R)
satisfying the (PS)-condition. Suppose that I(0) = 0 and that the following conditions hold :

(I1) there exist ρ > 0 and ̺ > 0 such that I(u) ≥ ̺ for ‖u‖ = ρ;

(I2) there exists e ∈ X with ‖e‖ > ρ such that I(e) ≤ 0.

Let

Γ =
{
γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e

}
, c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)),

then, c is a critical value of I.

Theorem 3 [28, Theorem 2.1]. Let X be a real Banach space and let I belong to C1(X,R) be
even, satisfies (PS)-condition and I(0) = 0. If X = Y ⊕ Z with dimY <∞, and I satisfies

(I’1) there are constants ρ,> 0 such that I/∂Bρ∩Z ≥ 0

(I’2) there a finite dimensional subspace W ⊂ X, with dimY < dimW < ∞ and there is M > 0
such that max

u∈W
I(u) < M

(I’3) considering M > 0 given by (I’2), I satisfies (PS)c for 0 ≤ c ≤M .

Then I possesses at least dimW − dimY pairs of nontrivial critical points.
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3. Proof of Theorem 1

To prove Theorem 1 we recall some lemmas presented below.

Lemma 2. Assume that (A1), (F0) and (G2) hold. Then the functional Iλ satisfies the Palais–
Smale condition on X ((PS)-condition, for short) at any level d.

P r o o f. Let d ∈ R and let (un) ⊂ X be (PS) sequence for Iλ, then

Iλ(un) → d and I ′λ(un) → 0 as n→ ∞. (3.1)

First, we prove that sequence (un) is bounded in X. Suppose (un) unbounded, we may assume
‖un‖ → +∞ as n→ ∞.

By (2), (A1), (F0) and Proposition 6 we have

Iλ(un) =

∫

Ω

1

p(x)
A(|∇un|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|un|p(x)dσx

−λ
∫

Ω
F (x, un)dx−

∫

∂Ω
G(x, un)dσx

≥ L

p+

∫

Ω
|∇un|p(x)dx+

∫

∂Ω

1

p+
b(x)|un|p(x)dσx −

λ

r+

∫

Ω
f1(x)|un|r(x)dx−

∫

∂Ω
G(x, un)dσx

≥ min(L, 1)

p+
‖un‖p

− − λ

r+

∫

Ω
f1(x)|un|r(x)dx−

∫

∂Ω
G(x, un)dσx.

(3.2)

From (3.2), (F0) and Proposition 6 we obtain

1

µ
I
′

λ(un) · un =
1

µ

∫

Ω
a(|∇un|p(x))|∇un|p(x)dx+

1

µ

∫

∂Ω
b(x)|un|p(x)dσx

−λ
µ

∫

Ω
f(x, un)undx− 1

µ

∫

∂Ω
g(x, un)undσx

≥ min(L, 1)

µ
‖un‖p

− − λ

µ

∫

Ω
f1(x)|un|r(x)dx− 1

µ

∫

∂Ω
g(x, un)undσx.

(3.3)

Meanwhile, according to (F0), Proposition 4 and Proposition 2 it yields
∫

Ω
f1(x)|un|r(x)dx ≤

∫

Ω
|f1(x)||un|r(x)dx ≤ |f1|

L
p(x)

p(x)−r(x) (Ω)

∣∣∣|un|r(x)
∣∣∣
p(x)
r(x)

≤ |f1|
L

p(x)
p(x)−r(x) (Ω)

max
(
|un|r

−

p(x), |un|r
+

p(x)

)
≤ |f1|

L
p(x)

p(x)−r(x) (Ω)
max

(
Cr−‖un‖r

−

, Cr+‖un‖r
+
)
,

(3.4)

where Cr− and Cr+ are constants of compact embedding X →֒ Lp(x)(Ω). Using (3.1), (3.2), (3.3),
(3.4) and (G2) we obtain

d+ 1 + ‖un‖ ≥ Iλ(un)−
1

µ
I
′

λ(un).un ≥ min(L, 1)

p+
‖un‖p

− − λ

r+

∫

Ω
f1(x)|un|r(x)dx

−
∫

∂Ω
G(x, un)dσx−

min(L, 1)

µ
‖un‖p

−−λ
µ

∫

Ω
f1(x)|un|r(x)dx−

1

µ

∫

∂Ω
g(x, un)undσx

≥ min(L, 1)
( 1

p+
− 1

µ

)
‖un‖p

−−
( λ

r+
+
λ

µ

)∫

Ω
f1(x)|un|r(x)dx+

∫

∂Ω

( 1

µ
g(x, un)un−G(x, un)

)
dσx

≥ min(L, 1)
( 1

p+
− 1

µ

)
‖un‖p

− −
( λ

r+
+
λ

µ

)
|f1|

L
p(x)

p(x)−r(x) (Ω)
Cr+‖un‖r

+
,

(3.5)
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where d is defined in (3.1). Since p− ≥ r+ (un) is bounded.

Now, with standard arguments, we prove that any (PS)d sequence (un) in X has a convergent
subsequence. Indeed, the space X is a Banach reflexive space then there exists u ∈ X such that,
up to subsequence still denoted by (un) and by the Sobolev embedding, we obtain:

• un ⇀ u in X as n→ ∞;

• un(x) → u(x) a.e. in Ω as n→ ∞;

• un → u in Lp(x)(Ω) as n→ ∞;

• un → u in L
p(x)

p(x)−1 (Ω) as n→ ∞. �

Proposition 8. If un ⇀ u in X as n→ ∞, then

lim
n→∞

∫

Ω
f1(x)|un|r(x)−1(un − u)dx = 0, (3.6)

and

lim
n→∞

∫

∂Ω
g1(x)|un|q(x)−1(un − u)dσx = 0. (3.7)

P r o o f. To demonstrate (3.6), we use Propositions 1–4 we give

∫

Ω
f1(x)|un|r(x)−1(un − u)dx ≤

∫

Ω
|f1(x)||un|r(x)−1|un − u|dx

≤ 3C |f1|
L

p(x)
p(x)−r(x) (Ω)

max
(
|un|r

−−1
p(x) , |un|

r+−1
p(x)

)
|un − u|p(x) ,

where C is positive constant. By the compact embedding X →֒ Lp(x)(Ω) and the inequality
||un|p(x) − |u|p(x)| ≤ |un − u|p(x), we obtain |un − u|p(x) → 0 in Lp(x)(Ω) and |un|p(x) → |u|p(x).

Similar arguments establish (3.7).

Now, in virtue of (3.1) and Proposition 8, we have

lim sup
n→∞

∫

Ω
a(|∇un|p(x))|∇un|p(x)−2∇un(∇un −∇u)dx+

∫

∂Ω
b(x)|un|p(x)−2un(un − u)dσx

= lim sup
n→∞

I
′

λ(un) · un + lim sup
n→∞

λ

∫

Ω
f(x, un)(un − u)dx+ lim sup

n→∞

∫

∂Ω
g(x, un)(un − u)dσx = 0.

Finally, by Lemma 1 un → u in X.

To finish the proof of the Theorem 1, we check the geometrical conditions of mountain pass
Theorem 2 for Iλ. Indeed

(I1) since the embeddings X →֒ Li(x)(Ω) (i := p, r, q) and X →֒ Li(x)(∂Ω) (i := p, q) is are
compact, there exist positive constants Ci such that

|u|i(x) ≤ Ci‖u‖. (3.8)

From (G0)–(G1) it follows, for all ε > 0, there exists Cε > 0, such that

G(x, u) ≤ ε

p+
|u|p+ + Cε|u|q(x), for all (x, t) ∈ ∂Ω× R, (3.9)
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thus, for u ∈ X with ‖ u ‖≤ 1. By (A1), (3.2), (3.4), (3.8) and (3.9), we have

Iλ(u) ≥
min(L, 1)

p+
‖u‖p+ −

λCr |f1|Lp(x)/(p(x)−r(x))(Ω)

r−
‖un‖r

+ − εCεCp
p+

‖u‖p+ − CqCg‖u‖q
+

≥ ‖u‖p+
[
C1 − λC2‖u‖r

+−p+ −C3‖u‖q
+−p+

]
,

(3.10)

where

C1 =
min(L, 1)

p+
− εCεCp

p+
, C2 =

Cr |f1|Lp(x)/(p(x)−r(x))(Ω)

r−
, C3 = CqCg.

If ρ = ‖u‖, we obtain

Iλ(u) ≥ ρp
+

ψ(ρ)︷ ︸︸ ︷[
C1 − λC2ρ

r+−p+ − C3ρ
q+−p+

]
. (3.11)

A straightforward computation shows that the maximum of the function ψ is

ρm =

(
q+(p+ − r+)λC2

r+(q+ − r+)C3

)
.

Inserting this into equation (3.11), we find that the right side is zero for

λ∗ :=
C3

C2
ρq

+−r+

m − C1

C2
ρp

+−r+

m .

So, there exist ρ > 0 and ̺ > 0 such that Iλ(u) ≥ ̺ for ‖u‖ = ρ, from which the demonstration
of (I1) is completed.

Now, put

h(τ) = τ−µG(x, τt)−G(x, t) ∀t ≥ 1.

We have

h
′

(t) = t−µ−1 (g(x, tτ)tτ −G(x, tτ)) ≥ 0 ∀t ≥ 1

by (G2). Hence, h(τ) ≥ h(1) for all τ ≥ 1 that is,

G(x, τt) ≥ τµG(x, t) ∀(x, t) ∈ ∂Ω× R. (3.12)

Let u ∈ X, for t > 1, by (A0) and (3.12), we have

Iλ(tu) =

∫

Ω

1

p(x)
A(|∇tu|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|tu|p(x)dσx − λ

∫

Ω
F (x, tu)dx −

∫

∂Ω
G(x, tu)dσx

≤ tp
+

(∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx

)

+tr
+ λ

r+

∫

Ω
f1(x)|u|r(x)dx− C4t

µ

∫

∂Ω

[
ε

p+
|u|p+ + Cε|u|q(x)

]
dσx.

This shows that Iλ(tu) < 0.

Since Iλ(0) = 0, the mountain pass lemma implies the existence of a nontrivial weak solution u1
with Iλ(u1) ≥ ̺.

Hence problem (1.1) has at least one nontrivial weak solution in X.

To complete the proof of the Theorem 1, one must check the conditions of the Theorem 3. So
we need some lemmas which we recall below.
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Remark 2. [30] As the Sobolev space X is a reflexive and separable Banach space, there exist
(en)n∈N∗ ⊆ X and (fn)n∈N∗ ⊆ X∗ such that fn(em) = δnm for any n,m ∈ N

∗ and

X = span{en : n ∈ N∗}, X∗ = span{fn : n ∈ N∗}w
∗

.

For k ∈ N
∗ denote by Xk = span{ek}, Yk = ⊕k

j=1Xj , Zk = ⊕∞
k Xj.

Lemma 3. Assume that (A0)–(A1), (F0)–(F1) and (G0)−(G1) hold. Then there exists λ̃ > 0,
k ∈ N and ρ, θ > 0 such that Iλ/∂Bρ ∩Xk ≥ θ for all 0 < λ < λ̃.

P r o o f. Similarly to (3.10), we have

Iλ(u) ≥ ‖u‖p+
[
C1 − λC2‖u‖r

+−p+
]
− C3‖u‖q

+
.

Taking ρ = ‖u‖, we get

Iλ(u) ≥ ρp
+[
C1 − λC2ρ

r+−p+
]
− C3ρ

q+ .

Next, we take λ̃ = C1/C2 · ρp+−r+ > 0 so that

Iλ(u) ≥ ρp
+[
C1 − λC2ρ

r+−p+
]
−C3ρ

q+ > 0,

which shows that I verifies the condition (I’1) in Theorem 3. �

Finally, to show the condition (I’2) in Theorem 3, we use the following lemma.

Lemma 4. Assume that (A0)–(A1) and (G2)–(G3) hold. Then, given m ∈ N, there ex-
ist a subspace W of X and a constant Mm > 0, independent of λ, such that dimW = m and
max
u∈W

Iλ(u) < Mm.

P r o o f. Let O and U be defined respectively as in (F1) and in (G3). We can build the space
W , in the same way as in [28, Lemma 4.3]. So, we consider v1, . . . . . . , vm such that vi ∈ C∞

O (Ω),
supp vi ∩ supp vj = ∅, supp vi ∩O 6= ∅ and supp vi ∩U 6= ∅, where i = 1, . . . ,m, j = 1, . . . ,m, i 6= j.

By (2), we have

Iλ(u) =

∫

Ω

1

p(x)
A(|∇u|p(x))dx+

∫

∂Ω

1

p(x)
b(x)|u|p(x)dσx − λ

∫

Ω
F (x, u)dx−

∫

∂Ω
G(x, u)dσx

≤ max(1,K)

p−
max(‖u‖p− , ‖u‖p+)− λ

∫

Ω
F (x, u)dx−

∫

∂Ω
G(x, u)dσx,

where K is defined in (A0).
For u ∈W , since suppu ∩O 6= ∅ we get

Iλ(u) ≤
max(1,K)

p−
max(‖u‖p− , ‖u‖p+)−

∫

∂Ω
G(x, u)dσx = Ĩ(u).

Since
max

u∈W\{0}
Iλ(u) ≤ max

u∈W\{0}
Ĩ(u) = max

v∈∂B1(0)∩W\{0}
Ĩ(v).

For t > 0 and u ∈ ∂B1(0) ∩W\{0} and ε small enough, by (F1), (G2)–(G3) and (3.9), we obtain

Ĩ(tu) =
max(1,K)

p−
max(‖tu‖p− , ‖tu‖p+)−

∫

∂Ω
G(x, tu)dσx

≤ C5‖tu‖p
− − tµ

∫

∂Ω

(
ε

p+
|u|p+ + Cε|u|q(x)

)
dσx ≤ C5t

p−‖u‖p− −C6t
µ‖u‖q− ,
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where C5 = max(1,K)/p− and C6 is the constant of embedding X →֒ Lq(x)(∂Ω),

lim
t→+∞

Ĩ(tu) ≤ lim
t→+∞

[
C5t

p− − C6t
µ
]
. (3.13)

Since µ > p−, by (3.13) we get that there exist a subspace W of X and a constant Mm > 0,
independent of λ, such that dimW = m and max

u∈W
Iλ(u) < Mm. The proof of Lemma 4 is complete.�

According to Lemma 2, we also have that Iλ satisfies (I’3). Since Iλ(0) = 0 and Iλ is even, we
may apply Theorem 3 to conclude that Iλ has infinitely many nontrivial solutions.
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Abstract: In this article, we establish the existence of positive periodic solutions for second-order dynamic
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1. Introduction

Time scales theory was initiated by Stefan Hilger in 1988 as a means of unifying theories from
discrete analysis and continuous analysis. Difference equations are defined on discrete sets while
differential equations are defined on an interval of the set of real numbers. However, dynamic
equations on time scales are very important in the physical applications because they are either
difference equations, differential equations or a combination of both. This means that dynamic
equations are defined on discrete, connected or combination of both types of sets. Hence, the theory
of time scales provides an extension of difference analysis and differential analysis, see [6, 7, 15, 17]
and the references therein.

Delay dynamic equations arise in many applications of different fields of science and engineering.
For example, these equations appear in applied sciences, physics, chemistry, biology, medicine, etc.
In particular, qualitative analysis such as positivity, periodicity and stability of solutions of dynamic
equations on time scales has received the attention of many authors, see [1–17] and the references
therein.

Let T be a periodic time scale such that t0 ∈ T. In this paper, we are interested in the positivity,
periodicity and exponential stability of solutions of second-order dynamic equations. Inspired and
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motivated by the references in this paper, we consider the following second-order dynamic equation

x△∆ (t) + a (xσ)∆ (t) + q (t)xβ (t)− r (t)xα (t) = 0, t ≥ t0, (1.1)

with x∆(t0) + axσ(t0) = 0 and x(t0) = 1. Throughout this paper we assume that a ≥ 0,
q, r ∈ Crd([t0,∞) ∩ T,R), α, β ∈ (0,∞). To prove the positivity and periodicity of solutions of (1.1),
we convert (1.1) into an equivalent integral equation and then employ the Schauder fixed point the-
orem. The sufficient conditions for the exponential stability of positive solutions are also considered.
In the special case T = R, Dorociakova, Michalkova, Olach and Saga in [13] show the existence and
the exponential stability of positive solutions of (1.1). Then, the results presented in this paper
extend the main results in [13].

The rest of this work is organized as follows. In Section 2, we present some basic concepts
concerning the calculus on time scales that will be used to show our main results. We give some
properties of the exponential function on a time scale as well as the Schauder fixed point theorem.
We refer the reader to the monograph [18] for more details on the Schauder theorem. In Section 3,
we prove our main results for the existence of positive periodic solutions by using the Schauder
theorem, and we give an example to illustrate our existence results. In Section 4, we study the
exponential stability of a positive periodic solution of (1.1). In Section 5, we establish new sufficient
conditions for the existence and the exponential stability for a pipe-tank flow configuration.

2. Preliminaries

The theory of dynamic equations is a fairly new branch in mathematics (see [1–10, 14–17]).
Dynamic equations extend and unify the difference and differential equations. We assume that
most readers are familiar with the basic concepts of the dynamic equations on time scales and for
more details we refer to the books [6, 7, 17].

Definition 1 [6]. A time scale T is an arbitrary nonempty closed subset of R.

The definition of periodic time scales was introduced by Kaufmann and Raffoul [16]. The
following two definitions are found in [16].

Definition 2. A time scale T is said to be periodic provided there exists a T > 0 such that if
t ∈ T then t± T ∈ T. For T 6= R, the period of the time scale is the smallest positive T .

Example 1 [16]. The following time scales are periodic.

1. T =
⋃∞

i=−∞[2(i − 1)h, 2ih], h > 0 has period T = 2h.

2. T = hZ has period T = h.

3. T = R.

4. T = {t = k− qm : k ∈ Z, m ∈ N0} where 0 < q < 1 and N0 is the natural numbers with zero,
has period T = 1.

Remark 1 [16]. All periodic time scales are unbounded above and below.

Definition 3. Let T 6= R be a periodic time scale with period T . The function f : T → R

is said to be periodic with period ω provided there exists a natural number n such that ω = nT ,
f(t ± ω) = f(t) for all t ∈ T and ω is the smallest number such that f(t ± ω) = f(t). If T = R,
f is said to be periodic with period ω > 0 provided ω is the smallest positive number such that
f(t± ω) = f(t) for all t ∈ T.
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Definition 4 [6]. Let T be a time scale. The forward jump operator σ : T → T is defined by

σ (t) = inf {s ∈ T : s > t} for all t ∈ T,

while the graininess function µ : T → [0,∞) is defined by

µ(t) = σ(t)− t for all t ∈ T.

Remark 2 [16]. Let T be a periodic time scale with period T . Then, the forward jump operator
σ satisfies σ(t± nT ) = σ(t)± nT . Hence, µ(t± nT ) = σ(t± nT )− (t± nT ) = σ(t)− t = µ(t). So,
µ is a periodic function with period T .

Definition 5 [6]. We say that the function f : T → R is regulated if its right-sided limits exist
at all right-dense points in T and its left-sided limits exist at all left-dense points in T.

Definition 6 [6]. We say that the function f : T → R is rd-continuous if it is continuous at
every right-dense point t ∈ T and its left-sided limits exist, and is finite at every left-dense point
t ∈ T. We denote the set of rd-continuous functions f : T → R by

Crd = Crd(T) = Crd(T,R).

We denote the set of differentiable functions f : T → R and whose derivative is rd-continuous by

C1
rd = C1

rd(T) = C1
rd(T,R).

Definition 7 [6]. The delta derivative f∆ (t) of a function f : T → R at a point
t ∈ T

k = T\ {supT} exists provided that for any given ε > 0, there exists a neighborhood U of t
such that

∣

∣(f(σ(t))− f(s))− f∆(t) (σ(t)− s)
∣

∣ < ε |σ(t)− s| for all s ∈ U.

We say that the function f∆ : Tk → R is the delta derivative of f on T
k.

Definition 8 [6]. A function p : T → R is said to be regressive if 1+µ(t)p(t) 6= 0 for all t ∈ T.
We denote the set of all rd-continuous and regressive functions p : T → R by R = R(T,R). We
define the set R+ of all rd-continuous and positively regressive functions by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

Theorem 1 [6]. Suppose f : T → R is a regulated function. Then there exists a function F

which is pre-differentiable with region of differentiation D such that

F∆ (t) = f (t) for all t ∈ D.

Definition 9 [6]. Suppose f : T → R is a regulated function. We say that the function F as in
Theorem 1 is a pre-antiderivative of f . The indefinite integral of a regulated function f is defined
by

∫

f (t)∆t = F (t) +C,

where F is a pre-antiderivative of f and C is an arbitrary constant. The Cauchy integral is defined
by

∫ t

s
f (t)∆t = F (t)− F (s) for all t, s ∈ T.

We say that a function F : T → R is an antiderivative of f : T → R if

F∆ (t) = f (t) for all t ∈ T
k.
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Theorem 2 [6]. Every rd-continuous function has an antiderivative.

Definition 10 [6]. For p ∈ R, we define the generalized exponential function ep as the unique
solution of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

We give an explicit formula for ep(t, s) by

ep(t, s) = exp

(
∫ t

s
ξµ(v)(p(v))∆v

)

∀s, t ∈ T,

where

ξµ(p) =







log(1 + µp)

µ
if µ 6= 0,

p if µ = 0,

with log is the principal logarithm function.

Lemma 1 [6]. For p, q ∈ R, we define the functions p⊕ q and ⊖p by

(p⊕ q) (t) = p (t) + q (t) + µ (t) p (t) q (t) ∀t ∈ T
k,

and

⊖p(t) = −
p(t)

1 + µ(t)p(t)
∀t ∈ T

k,

which are elements of R.

Lemma 2 [6]. Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii)
1

ep(t, s)
= e⊖p(t, s),

(iv) ep(t, s) =
1

ep(s, t)
= e⊖p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)

(

1

ep(·, s)

)∆

= −
p(t)

eσp (·, s)
.

Lemma 3 [1]. If p ∈ R+, then

0 < ep(t, s) ≤ exp

(
∫ t

s
p(v)∆v

)

∀t ∈ T.

The following Schauder fixed point theorem plays important role to prove the existence results
in the next section.

Theorem 3 [18, Schauder’s fixed point theorem]. Suppose that Ω is a bounded closed convex
nonempty subset of a Banach space X. Let S : Ω → Ω be a completely continuous mapping. Then S

has a fixed point in Ω.
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3. Positive periodic solutions

Next theorem guarantee the existence of positive ω-periodic solutions of (1.1).

Theorem 4. Assume that there exist positive constants m and M , and a rd-continuous func-
tion k ∈ Crd([t0,∞) ∩ T,R) such that

a− k ∈ R+,

0 < m ≤ e⊖(a−k)(t, t0) ≤ M, t ≥ t0, (3.1)
∫ t+ω

t
ξµ(s) [⊖ (a− k(s))]∆s = 0, t ≥ t0, (3.2)

and

k(t)e⊖(a−k)(σ(t), t0) =

∫ t

t0

[

r(s) exp
(

α

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v
)

−q(s) exp
(

β

∫ s

t0

ξµ(v)[⊖(a− k(v))]∆v
)]

∆s, t ≥ t0.

(3.3)

Then (1.1) has a positive ω-periodic solution.

P r o o f. Let X = BCrd([t0,∞) ∩ T,R) be the Banach space of all bounded rd-continuous
functions endowed with the supremum norm ‖x‖ = supt≥t0 |x(t)|. Consider the bounded closed
convex nonempty subset Ω of X as follows

Ω =
{

x ∈ X : x(t+ ω) = x(t), t ≥ t0, m ≤ x(t) ≤ M, t ≥ t0,

1

xσ(t)

∫ t

t0

[

r (s)xα (s)− q (s)xβ (s)
]

∆s = k(t), t ≥ t0

}

,

and define the operator S : Ω → X as follows

(Sx)(t) = exp

(
∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v)xα (v)− q (v)xβ (v)
]

∆v
)]

∆s

)

,

for t ≥ t0. We will prove that SΩ ⊂ Ω. By using (3.1), for every x ∈ Ω and t ≥ t0 we obtain

(Sx)(t) = exp

(
∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

= e⊖(a−k)(t, t0) ≤ M.

Also for x ∈ Ω and t ≥ t0 we have

(Sx)(t) = exp

(
∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v)xβ (v)
]

∆v
)]

∆s

)

= e⊖(a−k)(t, t0) ≥ m.
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From (3.3), for every x ∈ Ω and t ≥ t0 we obtain

k(t)(Sx)σ(t) = k(t) exp

(
∫ σ(t)

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

= k(t) exp
(

∫ σ(t)

t0

ξµ(s) [⊖ (a− k(s))]∆s
)

= k(t)e⊖(a−k)(σ (t) , t0)

=

∫ t

t0

[

r (s) exp
(

α

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v
)

− q (s) exp
(

β

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v
)]

∆s

=

∫ t

t0

[

r (s) (Sx)α (s)− q (s) (Sx)β (s)
]

∆s.

Finally we will prove that for x ∈ Ω, t ≥ t0 the function Sx is ω-periodic. By using (3.2), for x ∈ Ω
and t ≥ t0 we get

(Sx)(t+ ω) = exp

(
∫ t+ω

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

= exp

(
∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

× exp

(
∫ t+ω

t
ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v)xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

= (Sx)(t) exp
(

∫ t+ω

t
ξµ(s)

[

⊖ (a− k(s))
]

∆s
)

= (Sx)(t).

So Sx is ω-periodic on [t0,∞) ∩ T. Hence, SΩ ⊂ Ω.
Now, we need to prove that the mapping S is completely continuous. So we will show that the

mapping S is continuous. Let xi ∈ Ω be such that xi −→ x ∈ Ω as i −→ ∞. For t ≥ t0, we have

|(Sxi)(t)− (Sx)(t)| =

∣

∣

∣

∣

exp
(

∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσi (s)

∫ s

t0

[

r (v) xαi (v)− q (v) xβi (v)
]

∆v
)]

∆s
)

− exp
(

∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s
)

∣

∣

∣

∣

.

By applying the Lebesgue dominated convergence theorem we obtain that

lim
i−→∞

‖Sxi − Sx‖ = 0.

Therefore S is continuous.
Next, we are going to prove that SΩ is relatively compact by applying the Arzela–Ascoli the-

orem. The uniform boundedness of SΩ follows from the definition of Ω. For t ≥ t0 and x ∈ Ω we
have

∣

∣(Sx)∆(t)
∣

∣ =
∣

∣

∣
−

(

a−
1

xσ(t)

∫ t

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)
∣

∣

∣

× exp

(
∫ σ(t)

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s

)

=
∣

∣

∣
⊖

(

a−
1

xσ(t)

∫ t

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)∣

∣

∣

× exp
(

∫ t

t0

ξµ(s)

[

⊖
(

a−
1

xσ(s)

∫ s

t0

[

r (v) xα (v)− q (v) xβ (v)
]

∆v
)]

∆s
)

= |⊖ (a− k(t))| e⊖(a−k)(t, t0) ≤ M1, M1 > 0,
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which implies that the family SΩ is equicontinuous. By using the Arzela–Ascoli theorem SΩ is
relatively compact. Therefore, S is completely continuous. By Theorem 3 there is an x0 ∈ Ω such
that Sx0 = x0. We see that x0 is a positive ω-periodic solution of (1.1). The proof is complete. �

To illustrate the applications of Theorem 4 we give the following example.

Example 2. Consider the dynamic equation on T = πZ then µ(t) = π,

x△∆ (t) + a (xσ)∆ (t) + q (t)xβ (t)− r (t)xα (t) = 0, t ≥ t0. (3.4)

We take t0 ∈ T which

a =
ecos t0 − 1

π
≥ 0, k(t) = a−

ecos t − 1

π
, ω = 4π, α, β ∈ (0,∞) .

Then for the conditions (3.1), (3.2) and ω = 4π we obtain

1 + µ (t) (a− k(t)) = ecos t > 0, t ≥ t0, then a− k ∈ R+,

∫ t+ω

t
ξµ(s) [⊖ (a− k(s))]∆s =

∫ t+4π

t

1

µ(s)
log

[

1 + µ(s) (⊖ (a− k(s)))
]

∆s

=

∫ t+4π

t

1

π
log

[ − (a− k(s))

1 + µ(s) (a− k(s))
µ(s) + 1

]

∆s = −

∫ t+4π

t

1

π
log

[

1 + µ(t) (a− k(s))
]

∆s

= −

∫ t+4π

t

1

π
cos (s)∆s =

1

2
cos(s)

∣

∣

∣

t+4π

t
= 0, t ≥ t0,

and

e⊖(a−k)(t, t0) = exp

∫ t

t0

ξµ(s)
[

⊖ (a− k(s))
]

∆

= exp

∫ t

t0

1

µ(s)
log

[

1 + µ(s) (⊖ (a− k(s)))
]

∆s = e(cos t−cos t0)/2, t ≥ t0.

We take m = e−1and M = e, then

0 < m ≤ e⊖(a−k)(t, t0) ≤ M, t ≥ t0.

Also, we put

r (t) =
e

1

2
cos t − e−

1

2
cos t

π
e−

α
2
(cos t−cos t0)

(

a+
1

π

)

e−
1

2
cos t0 ,

and

q (t) =
e−

1

2
cos t − e

1

2
cos t

π2
e−

β

2
(cos t−cos t0)e−

1

2
cos t0 ,

then

k(t)e⊖(a−k)(σ (t) , t0) =
(

a−
ecos t − 1

π

)

exp

∫ σ(t)

t0

ξµ(s) [⊖ (a− k(s))]∆s

=
(

a+
1

π

)

e−
1

2
(cos(t)+cos t0) −

1

π
e

1

2
(cos(t)−cos t0), t ≥ t0,
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and
∫ t

t0

r (s) exp
(

α

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v
)

− q (s) exp
(

β

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v
)

∆s

=

∫ t

t0

[

e
1

2
cos s − e−

1

2
cos s

π

(

a+
1

π

)

e−
1

2
cos t0 −

e−
1

2
cos s − e

1

2
cos s

π2
e−

1

2
cos t0

]

∆s

=
(

a+
1

π

)

e−
1

2
(cos t+cos t0) −

1

π
e

1

2
(cos t−cos t0), t ≥ t0.

All conditions of Theorem 4 are satisfied. Thus (3.4) has a positive ω = 4π-periodic solution

x(t) = e⊖(a−k)(t, t0) = e
1

2
(cos t−cos t0), t ≥ t0,

with x(t0) = 1 and

x∆(t0) + axσ(t0) = e−
1

2
cos t0

(

e−
1

2
cos t0 − e

1

2
cos t0

π

)

+ ae− cos t0 = 0.

4. Exponential stability of positive periodic solutions

In this section, we will prove the exponential stability of a positive ω-periodic solution of (1.1).
Let x1 be the positive ω-periodic solution of (1.1) with the initial condition x1 (t0) = 1 and
x∆1 (t0) + axσ1 (t0) = 0. Let x be the another positive ω-periodic solution of (1.1) with the initial
condition x (t0) = c1 > 0, c1 6= 1 and x∆ (t0) + axσ (t0) = 0. Let

y(t) = x (t)− x1 (t) , t ≥ t0.

After integration of (1.1), we obtain

∫ t

t0

x△∆ (s)∆s+ a

∫ t

t0

(xσ)∆ (s)∆s+

∫ t

t0

[

q (s)xβ (s)− r (s)xα (s)
]

∆s = 0,

so

x∆ (t)− x∆ (t0) + axσ (t)− axσ (t0) =

∫ t

t0

[

r (s)xα (s)− q (s)xβ (s)
]

∆s.

Then

x∆ (t) + axσ (t) =

∫ t

t0

[

r (s) xα (s)− q (s)xβ (s)
]

∆s.

In a similar way one can easily show that

x∆1 (t) + axσ1 (t) =

∫ t

t0

[

r (s) xα1 (s)− q (s)xβ1 (s)
]

∆s.

Therefore

y∆(t) = x∆ (t)− x∆1 (t) = −a [xσ (t)− xσ1 (t)]

+

∫ t

t0

[

r (s) (xα (s)− xα1 (s))− q (s)
(

xβ (s)− x
β
1 (s)

)]

∆s.

This implies

y∆(t) = −ayσ(t) +

∫ t

t0

[

r (s) (xα (s)− xα1 (s))− q (s)
(

xβ (s)− x
β
1 (s)

)]

∆s.
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By using the mean value theorem, we get

y∆(t) = −ayσ(t) +

∫ t

t0

[

r(s)αxα−1
∗ (s)

(

x(s)− x1(s)
)

− q(s)βxβ−1
0 (s)

(

x(s)− x1(s)
)

]

∆s

= −ayσ(t) +

∫ t

t0

[

r (s)αxα−1
∗ (s)− q (s)βxβ−1

0 (s)
]

y(s)∆s, t ≥ t0,

(4.1)

for x∗, x0 ∈ [x, x1] or x∗, x0 ∈ [x1, x].
For m ≤ x (t) ≤ M , we suppose that the function

f (t, x (t)) = −axσ (t) +

∫ t

t0

[

r (s)xα (s)− q (s)xβ (s)
]

∆s, t ≥ t0,

is Lipschitzian in second argument.

Definition 11. Assume that x1 is the positive ω-periodic solution of (1.1). If there exist
positive constants Kx1

and λ for every positive ω-periodic solution x of (1.1) such that

0 < m∗ ≤ x (t) ≤ M∗, m∗ ≤ m, M∗ ≥ M, x∆ (t0) + axσ (t0)− x∆1 (t0)− axσ1 (t0) = 0

and
|x (t)− x1 (t)| < Kx1

e⊖λ (t, 0) ∀t > t0,

then x1 is said to be exponentially stable.

In the next theorem, we prove the exponential stability of the positive periodic solution x1
of (1.1).

Theorem 5. Assume that q, r ∈ Crd([t0,∞) ∩ T, (t0,∞)) and there exist positive constants m

and M , and a function k ∈ Crd([t0,∞)∩T,R) such that (3.1)–(3.3) hold. Let a > 0, 0 < α < β < 1
and there exist constants m∗,M∗ ∈ (0,∞) such that m∗ ≤ m, M∗ ≥ M and

αmα−1
∗ r (t)− βMβ−1

∗ q (t) ≤ 0 for t ≥ t0.

Then (1.1) has a positive ω-periodic solution which is exponentially stable.

P r o o f. Conditions (3.1)–(3.3) imply that (1.1) has a positive ω-periodic solution x1. Let x
be a positive ω-periodic solution of (1.1) such that m∗ ≤ x(t) ≤ M∗,

x∆ (t0) + axσ (t0)− x∆1 (t0)− axσ1 (t0) = 0.

We prove that there exists λ ∈ (0,∞) such that

|x (t)− x1 (t)| < Kx1
e⊖λ (t, 0) , t ≥ t0,

where Kx1
= eλ (t0, 0) |y(t0)|+ 1.

We define the Lyapunov function

L(t) = |y(t)| eλ (t, 0) , t ≥ t0, λ ∈ (0, a) .

For t > t0, we assume that L(t) < Kx1
. On the other hand there exists t∗ ≥ t0 such that

L(t∗) = Kx1
and L(t) < Kx1

for t ∈ [t0, t∗). By calculation of the upper left delta derivative of L(t)
along the solution of (4.1), we get

(L(t))∆
−

≤ −a |yσ(t)| eλ (t, 0) + eλ (t, 0)

∫ t

t0

[

r (s)αxα−1
∗ (s)− q (s)βxβ−1

0 (s)
]

|y(s)|∆s

+λ |yσ(t)| eλ (t, 0) , t ≥ t0.
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For t = t∗ we have

0≤ (L(t∗))
∆−

≤ (λ− a) |yσ(t∗)| eλ (t∗, 0) +eλ (t∗, 0)

∫ t∗

t0

[

r (s)αxα−1
∗ (s)−q (s)βxβ−1

0 (s)
]

|y(s)|∆s

≤ (λ− a) |yσ(t∗)| eλ (t∗, 0) + eλ (t∗, 0)

∫ t∗

t0

[

αmα−1
∗ r (s)− βMβ−1

∗ q (s)
]

|y(s)|∆s

≤ (λ− a) |yσ(t∗)| eλ (t∗, 0) .

If y(t) > 0, t ≥ t0, then from (4.1) it follows that, for t ≥ t0, the function y is decreasing.
If y(t) < 0, t ≥ t0, then y is increasing for t ≥ t0. We conclude that |y(t)| , t ≥ t0 has decreasing
character. Then we obtain

0 ≤ (L(t∗))
∆−

≤ (λ− a) |y(t∗)| eλ (t∗, 0) ≤ (λ− a)Kx1
< 0,

which is a contradiction. Hence, we get

|y(t)| eλ (t, 0) < Kx1
for t ≥ t0 and some λ ∈ (0, a) .

The proof is complete. �

5. Application in a pipe-tank configuration

In [11], Cid et al. reformulated the problem of fluid motion in the pipe into the following
periodic boundary value problem







u′′(t) + au′(t) =
1

u(t)
(e(t) − b(u′(t)2)− c, t ∈ [0, ω] ,

u(0) = u(ω), u′(0) = u′(ω),

(5.1)

where a ≥ 0, b > 1, c > 0 and e is ω-periodic continuous on R. By using the change of variables
u = x1/(b+1), the singular problem (5.1) can be transformed to the following regular problem

{

x′′ (t) + ax′ (t) + q (t)xβ (t)− r (t) xα (t) = 0, t ∈ [0, ω] ,

x(0) = x(ω), x′(0) = x′(ω),

where

r(t) = (b+ 1)e(t), q(t) = (b+ 1)c, α =
b− 1

b+ 1
, β =

b

b+ 1
,

with 0 < α < β < 1.
We will give new sufficient conditions ensuring the existence and the exponential stability of

positive ω-periodic solutions of the following dynamic equation

x△∆ (t) + a (xσ)∆ (t) + (b+ 1)
[

cxβ (t)− e (t) xα (t)
]

= 0, t ≥ t0. (5.2)

With respect to Theorems 4 and 5, we obtain the following theorem.

Theorem 6. Assume that a > 0, 0 < α < β < 1 and there exist positive constants m and M ,
and a function k ∈ Crd([t0,∞) ∩ T,R) such that (3.1) and (3.2) hold and

k(t)e⊖(a−k)(σ (t) , t0) = (b+ 1)

∫ t

t0

e (s) exp

(

α

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v

)

−c exp

(

β

∫ s

t0

ξµ(v) [⊖ (a− k(v))]∆v

)

∆s, t ≥ t0.

(5.3)

Then (5.2) has a positive ω-periodic solution.
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Theorem 7. Assume that e ∈ Crd([t0,∞)∩T, (t0,∞)), a > 0, 0 < α < β < 1, c > 0 and there
exist positive constants m and M , and a function k ∈ Crd([t0,∞)∩T,R) such that (3.1), (3.2) and
(5.3) hold. Let, in addition, there exist constants m∗,M∗ ∈ (0,∞) such that m∗ ≤ m, M∗ ≥ M and

αmα−1
∗ e (t)− βMβ−1

∗ c ≤ 0 for t ≥ t0.

Then (5.2) has a positive ω-periodic solution which is exponentially stable.

6. Conclusion

In this paper, we provided the existence and exponential stability of positive periodic solutions
with sufficient conditions for second-order dynamic equations on time scales. The main tools
of this paper are the fixed point method and the Lyapunov method. However, by introducing
new fixed mappings and suitable Lyapunov functionals, we get new existence and exponential
stability conditions. An example illustrating our results is presented. The obtained results have
a contribution to the related literature, and they improve and extend the results in [13] from the
case of second-order differential equations to that case with second-order dynamic equations on
time scales. It seems that the results of this paper can be extended to cover the case of delay
second-order dynamic equations.
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Abstract: This work aims to introduce and to study asymptotic almost automorphy in the context of
Sobolev–Schwartz distributions. Applications to linear ordinary differential equation and neutral difference
differential equations are also given.

Keywords: Asymptotically almost automorphic functions, Asymptotically almost automorphic distribu-
tions, Neutral difference differential equations.

1. Introduction

The paper aims to study asymptotic almost automorphy in the context of functions and
Sobolev–Schwartz distributions, it is well known that the concept of almost automorphy is strictly
more general than the almost periodicity studied in a full generality by H. Bohr, see [4] and [8].
The concept of asymptotic almost periodicity as a perturbation of almost periodic functions by
functions that vanish at infinity belongs to M. Fréchet in [9], one of the main motives of which is
the introduction of this concept in obtaining the existence of an almost periodic solution to differ-
ential equations if they admit an asymptotic almost periodic solution. In the same vein as Fréchet
motivation, we study the existence of solutions of linear neutral difference differential equations
with variable coefficients in the framework of asymptotically almost automorphic distributions.
Almost periodicity in the framework of distributions extending the classical Bohr and Stepanov
almost periodicity [16] is considered by L. Schwartz [13]. The paper [7] deals with asymptotic
almost periodicity of distributions.

In [1] and [3], S. Bochner defined explicitly almost automorphic functions, where some basic
properties have been established. He studied linear difference differential equations in the framework
of almost automorphic functions in [2]. Almost automorphy of primitives and asymptotically almost
automorphic functions are also considered, see [12, 18].

We first investigated the almost automorphy in the settings of distributions and generalized
functions respectively in [6] and [5], then we addressed the issue of asymptotic almost automorphy
in these contexts, see the communication [17].

The paper is organized as follows: the second section studies asymptotically almost automorphic
functions following an appropriate definition, essential properties of these functions are proved;
the third section deals with smooth asymptotically almost automorphic functions. The fourth
section is dedicated to asymptotically almost automorphic distributions; we give their definition,

https://doi.org/10.15826/umj.2020.1.005
mailto:ch.bouzar@gmail.com
mailto:fatima.tchouar@gmail.com


Asymptotic Almost Automorphy of Functions and Distributions 55

characterizations and some of their properties. The last section is an application to linear neutral
difference differential equations of asymptotically almost automorphic distributions.

2. Asymptotically almost automorphic functions

It is worth noting that the definition of an asymptotically almost automorphic function depends
on the choice of authors, but in general the essential idea of the decomposition in the definition
of an asymptotically almost automorphic function is preserved. The differences in their definitions
lie in the domain of definition of the considered functions, their regularity and finally in the choice
of the interval of decomposition. We consider functions defined, continuous and bounded on the
whole space of real numbers R and the decomposition on the closed interval [0,+∞[ . So, we have
to precise some results on asymptotically almost automorphic functions. Let Cb denotes the space
of bounded and continuous complex-valued functions defined on R, endowed with the norm ‖·‖∞
of uniform convergence on R, it is well-known that (Cb, ‖·‖∞) is a Banach algebra. Let ω ∈ R and
f, ϕ functions, we recall that the translation operator τω is defined by τωf (·) = f (·+ ω) , and ϕ̌
by ϕ̌(x) = ϕ(−x). Denote J := [0,+∞[ .

Definition 1. The space C+,0 is the set of all bounded and continuous complex-valued functions
defined on R and vanishing at +∞.

We give some properties of the space C+,0 which are proved in a straight way.

Proposition 1. The following is true:

(1) The space C+,0 is a Banach subalgebra of Cb.

(2) τωC+,0 ⊂ C+,0, ∀ω ∈ R.

(3) C+,0 × Cb ⊂ C+,0.

(4) C+,0 ∗ L
1 ⊂ C+,0.

(5) Let h ∈ C+,0, if h
′ exists and is uniformly continuous on J, then there exists a function

H ∈ C+,0 such that H = h′ on J.

(6) There exists H ∈ C+,0 a primitive of h on J if and only if
+∞
∫

0

h (t) dt < ∞ and
x
∫

0

h (t) dt is

bounded on J.

Remark 1. In (5) if h′ exists and is uniformly continuous on R, then H = h′ on R.

Remark 2. If h is a locally integrable function, we denote by
+∞
∫

0

h (t) dt the improper integral,

and
+∞
∫

0

h (t) dt <∞ means
+∞
∫

0

h (t) dt is finite.

Recall some properties of almost automorphic functions, see [1, 3, 12, 18].

Definition 2. A complex-valued function g defined and continuous on R is called almost au-
tomorphic if for any sequence (sm)m∈N ⊂ R, one can extract a subsequence (smk

)k such that

g̃ (x) := lim
k→+∞

g (x+ smk
) exists for every x ∈ R,
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and

lim
k→+∞

g̃(x− smk
) = g(x) for every x ∈ R.

The space of almost automorphic functions on R is denoted by Caa.

Remark 3. The function g̃ is not necessary continuous but g̃ ∈ L∞(R).

Proposition 2. The following is true:

(1) The space Caa is a Banach subalgebra of Cb.

(2) τωCaa ⊂ Caa, ∀ω ∈ R.

(3) Caa ∗ L
1 ⊂ Caa.

(4) Caa ∩ C+,0 = {0} .

(5) A primitive of an almost automorphic function is almost automorphic if and only if it is
bounded.

We give now the definition of an asymptotically almost automorphic function.

Definition 3. We say that a function f ∈ Cb is asymptotically almost automorphic, if there
exist g ∈ Caa and h ∈ C+,0 such that f = g+h on J. The space of asymptotically almost automorphic
functions is denoted by Caaa.

Example 1. Caa ⊂ Caaa and C+,0 ⊂ Caaa.

It can be seen easly that the decomposition of an asymptotically almost automorphic function
is unique on J, so if f ∈ Caaa and f = g+h on J, where g ∈ Caa and h ∈ C+,0, the function g is said
the principal term of f and the function h is the corrective term of f, we denote them respectively
by faa and fcor. Then the notation f = (faa + fcor) ∈ Caaa means that faa ∈ Caa, fcor ∈ C+,0 and
f = faa + fcor on J.

Proposition 3. The following is true:

(1) τωCaaa ⊂ Caaa, ∀ω ∈ R+.

(2) Caaa × Caa ⊂ Caaa.

(3) Caaa ∗ L
1 ⊂ Caaa.

(4) Let f ∈ Caaa and φ is a continuous function on C, then φ ◦ f ∈ Caaa.

(5) If f = (faa + fcor) ∈ Caaa, then ‖faa‖∞ ≤ supx∈J |f(x)|. In particular, for f ∈ Caa and
ω ∈ R, ‖f‖∞ = supx≥ω |f(x)|.

(6) Let (fm)m∈N = (fm,aa + fm,cor)m ⊂ Caaa converges uniformly on J to a function f, then
there exists φ = (g + h) ∈ Caaa, such that φ = f on J, g ∈ Caa is the uniform limit on R of
(fm,aa)m and h ∈ C+,0 is the uniform limit on J of (fm,cor)m.
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P r o o f. The proofs of (1) and (2) are easy.

(3) Let ψ ∈ L1 and f = (faa + fcor) ∈ Caaa. Since f = faa + (f − faa), where (f − faa) ∈ C+,0,
it follows from Proposition 2–(3) and Proposition 1–(4) that f ∗ ψ ∈ Caaa. Now we show explicitly
the principal part and the corrective part of f ∗ ψ. For x ∈ J, we have

(f ∗ ψ) (x) =

∫

R

f (y)ψ (x− y) dy =

0
∫

−∞

f (y)ψ (x− y) dy +

+∞
∫

0

(faa (y) + fcor (y))ψ (x− y) dy,

= (faa ∗ ψ) (x) + (fcor ∗ ψ) (x) +

0
∫

−∞

(f − faa − fcor) (y)ψ (x− y) dy.

By Proposition 2–(3), (faa ∗ ψ) ∈ Caa and by Proposition 1–(4), (fcor ∗ ψ) ∈ C+,0. On the other
hand, for x ∈ R,

0
∫

−∞

(f − faa − fcor) (y)ψ (x− y) dy =

∫

R

(f − faa − fcor) (x− y)χ]x,+∞[ (y)ψ (y) dy.

It is easy to see that the latter function is continuous and bounded on R and by the dominated
convergence theorem it vanishes at infinity. Then f ∗ψ = (Ψaa +Ψcor) ∈ Caaa, where Ψaa := faa∗ψ

and Ψcor := fcor ∗ ψ +
0
∫

−∞

(f − faa − fcor) (y)ψ (.− y) dy.

(4) Let f = (faa + fcor) ∈ Caaa and φ be a continuous function on C, then it is well-known that
φ (f) ∈ Cb and also φ (faa) ∈ Caa. On the other hand, it is easy to see that the function φ (f)−φ (faa)
defined on R belongs to C+,0. Consequently we have φ (f) = (φ (f)aa + φ (f)cor) ∈ Caaa, where
φ (f)aa = φ (faa) and φ (f)cor = φ (f)− φ (faa) .

(5) Let f = (faa + fcor) ∈ Caaa and (smk
)k a subsequence of (sm)m∈N ⊂ J which tends to

infinity. Let x ∈ R and k0 ∈ Z+ such that the sequence (x+ smk
)k≥k0 ⊂ J tends to infinity, then

for k ≥ k0, we have

|faa (x+ smk
)| ≤ |f (x+ smk

)|+ |fcor (x+ smk
)| ≤ sup

x∈J
|f (x)|+ |fcor (x+ smk

)|

so ∀x ∈ R,
|f̃aa(x)| = lim

k→+∞
|faa(x+ smk

)| ≤ sup
x∈J

|f(x)|.

It follows then
|faa(x)| = lim

k→+∞
|f̃aa(x− smk

)| ≤ sup
x∈J

|f(x)|, ∀x ∈ R.

Consequently, we obtain the results.

(6) Let (fm)m = (fm,aa + fm,cor)m ⊂ Caaa converges uniformly to f on J, by (5) we have

‖fn,aa − fm,aa‖∞ ≤ sup
x∈J

|fn(x)− fm(x)|,

hence (fm,aa)m∈N is a Cauchy sequence in the Banach space Caa, i.e. (fm,aa) converges uniformly
on R to a function g ∈ Caa. Let’s define the function h by

h(x) =

{

(f − g)(x), x ≥ 0,
(f − g)(0), x < 0.
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Then h ∈ Cb and (fm,cor)m converges uniformly on J to h, i.e. lim
x→+∞

h (x) = 0 hence h ∈ C+,0.

Define φ = g + h on R, then φ ∈ Caaa and φ = f on J. �

The space (Caaa, ‖·‖∞) is complete and it is a consequence of point (6) .

Corollary 1. The space (Caaa, ‖·‖∞) is a Banach subalgebra of Cb.

We have the following results on the derivative and the primitive.

Proposition 4. The following is true:

(1) Let f = (faa + fcor) ∈ Caaa be such that f ′ exists and is uniformly continuous on J, then
there exists φ = (g + h) ∈ Caaa, such that φ = f ′ on J, (faa)

′ = g on R and (fcor)
′ = h on J.

(2) Let f = (faa+fcor) ∈ Caaa be such that f is uniformly continuous on J, then there exists F ∈

Caaa being a primitive of f on J if and only if
x
∫

0

faa (t) dt is bounded on R,
x
∫

0

fcor (t) dt is

bounded on J, and
+∞
∫

0

fcor (t) dt <∞.

P r o o f. (1) Let (σm)m∈N ⊂ J converging to zero and define the sequence (φm)m∈N ⊂ Caaa by

φm (x) =
f (x+ σm)− f (x)

σm
, x ∈ R

=

1
∫

0

f ′(x+ θσm)dθ, x ∈ J.

then the sequence (φm)m converges uniformly to f ′ on J and for x ∈ J,

φm (x) = φm,aa (x) + φm,cor (x) ,

where

φm,aa (x) :=
faa (x+ σm)− faa (x)

σm
, φm,cor (x) :=

fcor (x+ σm)− fcor (x)

σm
.

By (1), there exists φ = (g + h) ∈ Caaa, such that φ = f ′ on J, g ∈ Caa is the uniform limit of
(φm,aa)m on R and h ∈ C+,0 is the uniform limit of (φm,cor)m on J. Hence (faa)

′ := lim
m→+∞

φm,aa = g

on R and (fcor)
′ := lim

m→+∞
φm,cor = h on J.

(2) If F = (Faa + Fcor) ∈ Caaa is a primitive of f on J, then F ′ = f is uniformly continuous on J.
By (2), (Faa)

′ ∈ Caa, there exists h ∈ C+,0 such that (Fcor)
′ = h on J and F ′ = (Faa)

′+(Fcor)
′ on J.

Consequently, by Proposition 1–(6) and Proposition 2–(5), we obtain the result. Conversely, as
+∞
∫

0

fcor (t) dt < ∞ and
x
∫

0

fcor (t) dt is bounded on J, by Proposition 1–(6) , there exits H ∈ C+,0

which is a primitive on J of fcor and as
x
∫

0

faa (t) dt is bounded on R, by Proposition 2–(5), there

exits G ∈ Caa which is a primitive on R of faa, so F := G+H is a primitive on J of f. �

Corollary 2. Let f = (faa + fcor) ∈ Caaa such that f ′ exists and is uniformly continuous on R,
then f ′ = (g + h) ∈ Caaa, where (faa)

′ = g on R and (fcor)
′ = h on J.
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3. Smooth asymptotically almost automorphic functions

Let E (I) be the space of infinitely derivable functions on I = R or J , and p ∈ [1,+∞] , the
space

DLp (I) :=
{

ϕ ∈ E (I) : ∀j ∈ Z+, ϕ
(j) ∈ Lp (I)

}

endowed with the topology defined by the family of seminorms

|ϕ|k,p,I :=
∑

j≤k

‖ϕ(i)‖Lp(I), k ∈ Z+,

is a Fréchet subalgebra of E (I) . The spaces DLp (I) studied in [13] are connected with the classical
Sobolev spacesWm,p (I) , see [15]. We denote B (I) := DL∞ (I) . Let Ḃ be the closure in B := B (R) of
the space D of smooth functions with compact support.

Remark 4. By the definition ϕ ∈ B (J) requires that lim
x→

>
0
ϕ(j)(x) exists ∀j ∈ Z+.

Let B+,0 be the space of smooth functions vanishing at infinity, i.e.

B+,0 :=
{

ϕ ∈ E (R) : ∀j ∈ Z+, ϕ
(j) ∈ C+,0

}

.

We endow B+,0 with the topology induced by B.

Proposition 5. The following is true:

(1) The space B+,0 is a Fréchet subalgebra of B.

(2) τωB+,0 ⊂ B+,0, ∀ω ∈ R.

(3) B+,0 × B ⊂ B+,0.

(4) B+,0 ∗ L
1 ⊂ B+,0.

(5) B+,0 = C+,0 ∩ B.

(6) There exists H ∈ B+,0 which is a primitive on J of h ∈ B+,0 if and only if
x
∫

0

h (t) dt is

bounded on J and
+∞
∫

0

h (t) dt <∞.

P r o o f. (1) It is easy to see that B+,0 is an algebra and since B is complete, it suffices to show

that B+,0 is closed. Let (hm)m∈N be a sequence of B+,0 that converges to h ∈ B, i.e. ∀i ∈ Z+, (h
(i)
m )m

converges uniformly on R to h(i). By Proposition 1–(1), h(i) ∈ C+,0, ∀i ∈ Z+, i.e. h ∈ B+,0.

(2) This inclusion is obvious.

(3) If ϕ ∈ B and h ∈ B+,0, then by Leibniz’s formula and Proposition 1–(3), ∀i ∈ Z+,
(hϕ)(i) ∈ C+,0.

(4) Let ψ ∈ L1 and h ∈ B+,0, then by Proposition 1–(4), ∀i ∈ Z+, (h ∗ ψ)(i) = h(i) ∗ ψ ∈ C+,0.

(5) It is clear that B+,0 ⊂ C+,0 ∩B. Conversely, if h ∈ C+,0 ∩ B, then h′ is uniformly continuous
on R, so by Remark 2, h′ ∈ C+,0. By repeating this to all derivatives, we obtain that h ∈ B+,0.

(6) The necessity is a consequence of Proposition 1–(6). To prove the sufficiency we need
the following preliminary result on extension operators, it can be obtained from [14]: there exist
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two sequences of real numbers (al)l∈Z+ and (bl)l∈Z+ such that bl ≤ 0,∀l ∈ Z+, and the operator
E : B (J) → B (R) defined by

Ef(x) :=











f(x) if x ≥ 0,

+∞
∑

l=0

alf(blx) if x < 0

is linear and continuous. Suppose that
x
∫

0

h (t) dt is bounded on J and
+∞
∫

0

h (t) dt < ∞. By

Proposition 1–(6), there exits E ∈ C+,0 such that E′ = h on J, so E is a smooth function on J
such that ∀i ∈ Z+, E

(i) is bounded on J, i.e. E ∈ B (J) . Due to the extension result there ex-
ists a functionH ∈ B such that H = E on J. SoH ∈ B∩C+,0 = B+,0 and it is a primitive of h on J. �

Recall the definition and some properties of the space of smooth almost automorphic functions,
see [6] for details.

Baa :=
{

ϕ ∈ E : ∀j ∈ Z+, ϕ
(j) ∈ Caa

}

.

Proposition 6. The following is true:

(1) Baa is a Fréchet subalgebra of B.

(2) τωBaa ⊂ Baa, ∀ω ∈ R.

(3) Baa ∗ L
1 ⊂ Baa.

(4) Baa = Caa ∩ B.

(5) Let f ∈ Baa and F is its primitive on R, then F ∈ Baa if and only if F is bounded.

We now introduce smooth asymptotically almost automorphic functions.

Definition 4. The space of smooth asymptotically almost automorphic functions is denoted
and defined by

Baaa :=
{

ϕ ∈ E : ∀j ∈ Z+, ϕ
(j) ∈ Caaa

}

.

Example 2. Baa ⊂ Baaa and B+,0 ⊂ Baaa.

We endow Baaa with the topology induced by B. The following proposition is proved in the
same way as Proposition 5 by using results of Propositions 3 and 4.

Proposition 7. The following is true:

(1) The space Baaa is a Fréchet subalgebra of B.

(2) τωBaaa ⊂ Baaa, ∀ω ∈ R.

(3) Baaa × Baa ⊂ Baaa.

(4) Baaa ∗ L
1 ⊂ Baaa.

(5) Baaa = Caaa ∩ B.
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(6) There exists F ∈ Baaa being a primitive on J of f ∈ Baaa if and only if
x
∫

0

faa (t) dt is bounded

on R,
x
∫

0

fcor (t) dt is bounded on J,
+∞
∫

0

fcor (t) dt <∞.

Remark 5. Baaa ( Caaa ∩ E .

We have the following result needed in the sequel.

Proposition 8. Let f ∈ Baaa, i.e. f = faa+ fcor and for i ∈ N, f (i) = faa,i+ fcor,i on J. Then
faa,i = (faa)

(i) on R and fcor,i = (fcor)
(i) on J.

P r o o f. If f ∈ Baaa, then f ′ is uniformly continuous on R and by Proposition 4–(2), we
have f ′ = (faa)

′ + h on J, where (faa)
′ ∈ Caa, h ∈ C+,0 and (fcor)

′ = h on J. By hypothesis,
f ′ = faa,1 + fcor,1 on J and since the decomposition of an asymptotically almost automorphic
function is unique, then (faa)

′ = faa,1 on R and (fcor)
′ = fcor,1 on J. By repeating this to all

derivative, we obtain the desired result. �

In order to prove the main result on linear neutral difference differential equations in the frame-
work of asymptotically almost automorphic distributions, we need the following characterization
of the space Baa.

Proposition 9. Let g ∈ E , the following statements are equivalent :

(1) g ∈ Baa.

(2) For every sequence (ρm)m∈N ⊂ R there exist a subsequence (ρmk
)k and g̃ ∈ B such that for

all x ∈ R and i ∈ Z+, we have

g̃(i) (x) = lim
k→+∞

g(i) (x+ ρmk
) and lim

k→+∞
g̃(i) (x− ρmk

) = g(i) (x) . (3.1)

P r o o f. (1) ⇒ (2) Let g ∈ Baa, so ∀i ∈ Z+, ∀(ρm)m∈N ⊂ R, ∃(ρmi,k
)k ⊂ (ρm)m, ∃(g̃i)i ⊂ L∞

such that ∀x ∈ R,

lim
k→+∞

g(i)(x+ ρmi,k
) =: g̃i(x) and lim

k→+∞
g̃i(x− ρmi,k

) = g(i)(x).

There exist subsequences (ρmn,k
)k, n ∈ Z+, of the sequence (ρm)m such that

∀i ≤ n, lim
k→+∞

g(i)(x+ ρmn,k
) = g̃i(x), ∀x ∈ R. (3.2)

Indeed, the proof is done by induction, if g ∈ Caa it is clear that (3.2) holds for n = 0. Now, let
n ∈ N such that (3.2) holds. As g(n+1) ∈ Caa, there exists a subsequence (ρm(n+1),k

)k of (ρmn,k
)k

and g̃n+1 ∈ L
∞ such that ∀x ∈ R,

g̃n+1(x) := lim
k→+∞

g(n+1)(x+ ρm(n+1),k
).

Furthermore, as ∀i ≤ n, ∀x ∈ R, the subsequence (g(i)(x + ρm(n+1),k
))k is extracted from

(g(i)(x+ ρmn,k
))k then

lim
k→+∞

g(i)(x+ ρm(n+1),k
) = g̃i(x), ∀x ∈ R.
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By construction, ∀k, i,∈ Z+, mi,k ≤ m(i+1),k and since k 7−→ m(i+1),k is strictly increasing
from N to N, then in particular we have mi,i ≤ m(i+1),i < m(i+1),(i+1), ∀i ∈ Z+. This gives that
the map k 7−→ mk,k is strictly increasing from N to N. The sequence (ρmk,k

)k, which we denote by
(ρmk

)k, is extracted from the subsequences (ρmi,k
)k, i ∈ Z+, which is in fact extracted from the

sequence (ρm)m. Consequently,

lim
k→+∞

g(i)(x+ ρmk
) = g̃i(x) exists ∀x ∈ R, ∀i ∈ Z+.

With the same steps we have that

lim
k→+∞

g̃i(x− ρmk
) = g(i)(x), ∀x ∈ R, ∀i ∈ Z+.

Let (σn)n∈N ⊂ J converging to zero and consider the sequence of functions (φn,k)n,k∈N defined
on R by the equality

φn,k(·) =
g(·+ ρmk

+ σn)− g(· + ρmk
)

σn
=

∫ 1

0
g′(·+ ρmk

+ θσn)dθ.

Since g ∈ Baa ⊂ B, then g′ is bounded and uniformly continuous on R, so

lim
k→+∞

lim
n→+∞

∫ 1

0
g′(·+ ρmk

+ θσn)dθ = lim
n→+∞

lim
k→+∞

∫ 1

0
g′(·+ ρmk

+ θσn)dθ.

Consequently, ∀x ∈ R, lim
k→+∞

lim
n→+∞

φn,k(x) = lim
n→+∞

lim
k→+∞

φn,k(x) which gives that ∀x ∈ R,

g̃1(x) = lim
k→+∞

lim
n→+∞

φn,k(x) = lim
n→+∞

lim
k→+∞

φn,k(x) := g̃′0(x).

By iterating to all derivatives, we obtain that g̃0 ∈ E and g̃
(i)
0 = g̃i ∈ L∞,∀i ∈ Z+, i.e. g̃0 ∈ B such

that relations (3.1) hold.
(2) ⇒ (1) is obvious. �

4. Asymptotically almost automorphic distributions

The space of Lp−distributions, denoted by D′
Lp , is the topological dual of DLq , where

1/p + 1/q = 1. The topological dual of Ḃ is denoted by D′
L1 . The space of bounded distribu-

tions D′
L∞ is denoted by B′. The translate τωT, ω ∈ R, of a distribution T ∈ D′ is defined by

〈τωT, ϕ〉 = 〈T, τ−ωϕ〉 , ∀ϕ ∈ D.

Definition 5. By B′
+,0 we denote the space of distributions Q ∈ B′ vanishing at infinity, i.e.

satisfying
lim

ω→+∞
〈τωQ,ϕ〉 = 0, ∀ϕ ∈ D.

We have the following characterizations of B′
+,0 , see [7].

Theorem 1. Let Q ∈ B′, the following assertions are equivalent:

(1) Q ∈ B′
+,0.

(2) Q ∗ ϕ ∈ C+,0, ∀ϕ ∈ D.
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(3) ∃k ∈ Z+ and hj ∈ C+,0, 0 ≤ j ≤ k, such that Q =
k
∑

j=0
h
(j)
j .

We study some properties of the space B′
+,0.

Proposition 10. The following is true:

(1) If Q ∈ B′
+,0, then Q

(i) ∈ B′
+,0, ∀i ∈ Z+.

(2) τωB
′
+,0 ⊂ B′

+,0, ∀ω ∈ R.

(3) B′
+,0 × B ⊂ B′

+,0.

(4) B′
+,0 ∗ D

′
L1 ⊂ B′

+,0.

(5) Let Q ∈ B′, then Q ∈ B′
+,0 if and only if there exists a sequence (ϕm)m∈N ⊂ B+,0 converging

to Q in B′.

P r o o f. (1) and (2) are obvious.

(3) Let ϕ ∈ B and Q ∈ B′
+,0, then by Theorem 1–(3), there exist (hi)i≤k ⊂ C+,0, such that

Q =
k
∑

i=0
h
(i)
i . So

ϕQ =

k
∑

i=0

ϕh
(i)
i =

k
∑

i=0

i
∑

j=0

(−1)j
(

i

j

)

(ϕ(j)hi)
(i−j).

By Proposition 1–(3), ϕ(j)hi ∈ C+,0, hence ϕQ ∈ B′
+,0.

(4) Let Q ∈ B′
+,0, then there exists (hi)i≤k ⊂ C+,0 such that Q =

k
∑

i=0
h
(i)
i , and let S ∈ D′

L1 ,

by [13, Theorem XXV , Section 8, Chapter VI], there exist (ψj)j≤m ⊂ L1 such that S =
m
∑

j=0
ψ
(j)
j .

Thus

(Q ∗ S) =

k
∑

i=0

m
∑

j=0

(hi ∗ ψj)
(i+j) .

By Proposition 1–(4), hi ∗ ψj ∈ C+,0, hence Q ∗ S ∈ B′
+,0.

(5) Let φm)m∈N ⊂ B+,0 such that lim
m→+∞

φm = Q in B′. For a fixed ϕ ∈ D, the set

U : = {τ−xϕ̌ : x ∈ R}

is bounded in DL1 , so

sup
x∈R

|(φm ∗ ϕ) (x)− (Q ∗ ϕ) (x)| = sup
x∈R

|〈φm −Q, τ−xϕ̌〉| ,

= sup
ψ∈U

|〈φm −Q,ψ〉| −→
m→+∞

0,

i.e. (φm ∗ ϕ)m∈N ⊂ C+,0 is uniformly convergent to (Q ∗ ϕ) . By Proposition 1–(1),
Q ∗ ϕ ∈ C+,0, ∀ϕ ∈ D, and by Theorem 1, we obtain Q ∈ B′

+,0.
Conversely, let Q ∈ B′

+,0 and take a sequence of positive test functions (θm)m∈N such that

supp θm ⊂

[

0,
1

m

]

and

∫

R

θm (x) dx = 1.
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Define φm := θm ∗Q ∈ B+,0 , we have

〈φm −Q,ϕ〉 =
〈

Q, θ̌m ∗ ϕ− ϕ
〉

,

and there exist l ∈ Z+, C > 0 such that

∣

∣

〈

Q, θ̌m ∗ ϕ− ϕ
〉∣

∣ ≤ C
∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
, ∀ϕ ∈ DL1 .

By Minkowski’s inequality and the mean value theorem we obtain for t ∈ ]0, 1[ ,

∥

∥(θ̌m ∗ ϕ)(i) − ϕ(i)
∥

∥

L1 ≤

1/m
∫

0

θ̌m(y)

(
∫

R

|y|
∣

∣ϕ(i+1)(x+ ty)
∣

∣dx

)

dy

≤

1/m
∫

0

|y|θ̌m(y)

(
∫

R

∣

∣ϕ(i+1)(z)
∣

∣dz

)

dy ≤
1

m

∥

∥ϕ(i+1)
∥

∥

L1‖θ̌m‖L1 ,

so
∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
≤

1

m
|ϕ|l+1,1 , ∀ϕ ∈ DL1 .

Let U be a bounded set of DL1 and ϕ ∈ U, then ∃M > 0 such that

sup
ϕ∈U

∣

∣θ̌m ∗ ϕ− ϕ
∣

∣

l,1
≤
M

m
−→

m→+∞
0,

which gives θm → Q in B′. �

We recall the definition, characterizations and some properties of almost automorphic distribu-
tions, see [6].

Definition 6. A distribution T ∈ B′ is said almost automorphic if it satisfies one of the
following equivalent conditions:

(1) T ∗ ϕ ∈ Caa, ∀ϕ ∈ D.

(2) ∃k ∈ Z+ and gj ∈ Caa, 0 ≤ j ≤ k, such that T =
k
∑

i=0
g
(i)
i .

(3) For every sequence (sm)m∈N ⊂ R, there is a subsequence (smk
)k such that

S := lim
k→+∞

τsmk
T exists in D′,

and

lim
k→+∞

τ−smk
S = T in D′.

(4) There exists a sequence (ϕm)m∈N ⊂ Baa converging to T in B′.

We denote by B′
aa the space of almost automorphic distributions defined on R.

Proposition 11. The following is true:

(1) If T ∈ B′
aa, then T

(i) ∈ B′
aa, ∀i ∈ Z+.
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(2) τωB
′
aa ⊂ B′

aa, ∀ω ∈ R.

(3) B′
aa × Baa ⊂ B′

aa.

(4) B′
aa ∗ D

′
L1 ⊂ B′

aa.

(5) B′
aa ∩ B′

+,0 = {0} .

We now give the definition of asymptotically almost automorphic distributions.

Definition 7. A distribution T ∈ B′ is said asymptotically almost automorphic if there exist
P ∈ B′

aa and Q ∈ B′
+,0 such that T = P +Q on J. We denote by B′

aaa the space of asymptotically
almost automorphic distributions.

Remark 6. The equality T = P +Q on J means that ∀ϕ ∈ D+, 〈T, ϕ〉 = 〈P,ϕ〉+ 〈Q,ϕ〉 , where
D+ := {ϕ ∈ D : suppϕ ⊂ J} .

Proposition 12. The decomposition of an asymptotically almost automorphic distribution is
unique on J.

P r o o f. Let P1, P2 ∈ B′
aa and Q1, Q2 ∈ B′

+,0 such that T = P1 +Q1 = P2 +Q2 on J, then we
obtain that P1 − P2 ∈ B′

+,0, by Proposition 11–(5), P1 − P2 = 0. Hence Q1 = Q2 on J. �

Notation 1. If T ∈ B′
aaa and T = P+Q on J, we call P the principal term and R the corrective

term of T and we denote them respectively by Taa and Tcor. This is summarized by the notation
T = (Taa + Tcor) ∈ B′

aaa.

Example 3.

1. Caaa ⊂ B′
aaa.

2. B′
aa ⊂ B′

aaa.

3. B′
+,0 ⊂ B′

aaa.

4. B′
aap  B′

aaa, where B′
aap is the space of asymptotically almost periodic distributions of [7].

The following results characterize asymptotically almost automorphic distributions.

Theorem 2. Let T ∈ B′, the following assertions are equivalent :

(1) T ∈ B′
aaa.

(2) ∃ (θm)m∈N ⊂ Baaa such that lim
n→+∞

θm = T in B′.

(3) T ∗ ϕ ∈ Caaa, ∀ϕ ∈ D.

(4) ∃k ∈ Z+ and fj ∈ Caaa, 0 ≤ j ≤ k, such that T =
k
∑

j=0
f
(j)
j .
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P r o o f. (1) ⇒ (2) Let T ∈ B′
aaa, by definition T = Taa + Tcor on J. By the characterization

of B′
aa there exists (ϕm)m∈N ⊂ Baa such that lim

m→+∞
ϕm = Taa in B′. It is easy to prove that

T − Taa ∈ B′
+,0, so by Proposition 10–(5) there exists (ψm)m∈N ⊂ B+,0 such that lim

m→+∞
ψm =

T −Taa in B′. Set θm := ϕm+ψm,m ∈ N, then (θm)m∈N ⊂ Baaa and we have T − θm = (T −Taa)−
ψm + (Taa − ϕm). Hence we obtain lim

n→+∞
θm = T in B′.

(2) ⇒ (3) As in the proof of Proposition 10-(5), if (φm)m∈N ⊂ Baaa is such that lim
m→+∞

φm = T

in B′, then for ∀ϕ ∈ D we have

sup
x∈R

|(φm ∗ ϕ) (x)− (T ∗ ϕ) (x)| = sup
x∈R

|〈φm − T, τ−xϕ̌〉| −→
m→+∞

0.

That is (φm ∗ ϕ)m∈N ⊂ Caaa converges uniformly on R to (T ∗ ϕ) , it follows that T ∗ ϕ ∈ Caaa,
∀ϕ ∈ D.

(3) ⇒ (4) For n ∈ Z+, consider the function

En (x) =







xn−1

(n− 1)!
, x ≥ 0.

0, x < 0.

Then En ∈ Cn−2, suppEn ⊂ J and E
(n)
n = δ. Take a function γ ∈ D such that γ = 1 in the

neighborhood of 0, a direct calculus gives (γEn)
(n) = δ + ζn, where

ζn =

n−1
∑

k=0

(

n

k

)

γ(n−k) E(k)
n ∈ D.

As T ∈ B′, we have

T = (γEn ∗ T )
(n) − T ∗ ζn,

where T ∗ ζn ∈ Caaa. It remains to show that γEn ∗ T ∈ Caaa for a suitable n. There exist m ∈ Z+

and C > 0 such that

|〈T, ψ〉| ≤ C |ψ|m,1 , ∀ψ ∈ DL1 .

Take n = m+ 2, then γEm+2 ∈ Dm
L1 , where

Dm
L1 :=

{

ϕ ∈ Cm : ∀j ≤ m, ϕ(j) ∈ L1
}

endowed with the norm | · |m,1.

We have D →֒ DL1 →֒ Dm
L1 and there exists a sequence (θk)k∈N ⊂ D such that (θk)k converges to

γEm+2 with respect to the norm | · |m,1, so

|(T ∗ θk) (x)− (T ∗ γEm+2) (x)| =
∣

∣

〈

T, τ−xθ̌k − τ−x
(

γ̌Ěm+2

)〉
∣

∣ ,

≤ C
∣

∣τ−xθ̌k − τ−x
(

γ̌Ěm+2

)
∣

∣

m,1
,

≤ C |θk − γEm+2|m,1 ,

consequently,

sup
x∈R

|(T ∗ θk) (x)− (T ∗ γEm+2) (x)| ≤ C |θk − γEm+2|m,1 −→
k→+∞

0.

i.e. the sequence of functions (T ∗ θk)k∈N ⊂ Caaa converges uniformly on R to T ∗ γEm+2, hence
T ∗ γEm+2 ∈ Caaa.
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(4) ⇒ (1) Let T =
k
∑

j=0
f
(j)
j , where fj ∈ Caaa, j = 0, ..., k, so

T =

k
∑

j=0

f
(j)
j,aa +

k
∑

j=0

f
(j)
j,cor on J.

Then by Theorem 1 and Definition 6, P =
k
∑

j=0
f
(j)
j,aa ∈ B′

aa and Q =
k
∑

j=0
f
(j)
j,cor ∈ B′

+,0. Therefore

T = P +Q on J, i.e. T ∈ B′
aaa. �

Remark 7. Connected with this theorem, let us quote the preprint [10]. The authors thank the
referee for pointing out the recent work [11].

We have the following properties of B′
aaa.

Proposition 13. The following is true:

(1) If T ∈ B′
aaa, then ∀i ∈ Z+, T

(i) =
(

T
(i)
aa + T

(i)
cor

)

∈ B′
aaa.

(2) τωB
′
aaa ⊂ B′

aaa, ∀ω ∈ R+.

(3) B′
aaa × Baa ⊂ B′

aaa.

(4) B′
aaa ∗ D

′
L1 ⊂ B′

aaa.

P r o o f. The proof of the assertions (1)–(3) follows from the definition, the uniqueness of the
decomposition and the same properties satisfied by the space B′

aa.

(4) Let T ∈ B′
aaa, by the previous Theorem, there exist (fi)i≤k ⊂ Caaa such that T =

k
∑

i=0
f
(i)
i .

Let S ∈ D′
L1 , by [13, Theorem XXV, Section 8, Chapter VI], there exists (ψj)j≤m ⊂ L1 such that

S =
m
∑

j=0
ψ
(j)
j . Thus

(T ∗ S) =

k
∑

i=0

m
∑

j=0

(fi ∗ ψj)
(i+j) .

By Proposition 7–(4), fi ∗ ψj ∈ Caaa. By [13, Theorem XXVI, Section 8, Chapter VI] we have
B′ ∗ D′

L1 ⊂ B′, hence S ∗ T ∈ B′
aaa. �

5. Linear neutral difference differential equations

A linear neutral difference differential equation is an equation

Lωu :=

p
∑

i=0

q
∑

j=0

aij
di

dxi
τωj

u+K ∗ u = f,

where (aij)i≤p, j≤q ⊂ Baa, K ∈ L1 and ω = (ωj)j≤q ⊂ R
q
+.

By the properties of the space B′
aaa it is clear that LωB

′
aaa ⊂ B′

aaa. To prove the main result of
this section we need the following result.
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Lemma 1. Let T ∈ B′, g, g̃ ∈ B and (sm)m∈N a sequence of real numbers such that

T̃ := lim
m→+∞

τsmT in D′, (5.1)

and
g̃(j) (x) = lim

n→+∞
τsmg

(j) (x) , ∀x ∈ R, ∀j ∈ Z+, (5.2)

then
lim

n→+∞
τsm (gT ) = g̃T̃ in D′.

P r o o f. Let (sm)m∈N , T ∈ B′ and g, g̃ ∈ B such that (5.1) and (5.2) hold. As T ∈ B′, ∃C > 0,
∃l ∈ Z+, such that

|〈T, ψ〉| ≤ C |ψ|l,1 , ∀ψ ∈ DL1 .

So ∀ϕ ∈ D,
∣

∣

〈

τsm(gT )− g̃T̃ , ϕ
〉∣

∣ =
∣

∣ 〈T, gτ−smϕ〉 −
〈

T̃ , g̃ϕ
〉∣

∣,

=
∣

∣ 〈τsmT, ϕτsmg〉 −
〈

T̃ , g̃ϕ
〉
∣

∣,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉
∣

∣+
∣

∣

〈

τsmT, (τsmg − g̃)ϕ
〉
∣

∣,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉∣

∣+ C
∣

∣(τsmg − g̃)ϕ
∣

∣

l,1
,

≤
∣

∣

〈

τsmT − T̃ , g̃ϕ
〉∣

∣+ C

l
∑

i=0

∥

∥ ((τsmg − g̃)ϕ)(i)
∥

∥

L1 .

The lemma is proved due to (5.1) and the following estimate

∥

∥

(

(τsmg − g̃)ϕ
)(i)∥

∥

L1 ≤
i

∑

j=0

(

i

j

)
∫

R

∣

∣g(j)(x+ sm)− g̃(j)(x)
∣

∣

∣

∣ϕ(i−j)(x)
∣

∣dx −→
m→∞

0,

which is due to the dominated convergence theorem. �

The main result of this section is the following.

Theorem 3. Let S ∈ B′
aaa, the equation LωT = S has a solution T ∈ B′

aaa on J if and only if
there exist V ∈ B′

aa and W ∈ B′
+,0, such that

LωV = Saa on R (5.3)

and
LωW = Scor on J. (5.4)

P r o o f. Suppose that equations (5.3) and (5.4) are satisfied, then

Lω (V +W ) = LωV + LωW = Saa + Scor = S on J.

So T = V +W ∈ B′
aaa is a solution on J of LωT = S.

Conversely, let T ∈ B′
aaa be a solution on J of the equation LωT = S and let (sm)m∈N be a

sequence of real numbers which converges to +∞. As Saa, Taa ∈ B′
aa and Scor, Tcor ∈ B′

+,0, and by
Proposition 9, there is a subsequence (smk

)k of (sm) converging to +∞ and functions ãij ∈ B such
that ∀x ∈ R, ∀i ≤ p, ∀j ≤ q, we have

lim
k→+∞

τsmk
aij (x) = ãij (x) exists and lim

k→+∞
τ−smk

ãij (x) = aij (x) , (5.5)
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and the following limits exist in D′,

lim
k→+∞

τsmk
Taa = V and lim

k→+∞
τ−smk

V = Taa, (5.6)

lim
k→+∞

τsmk
Saa = P and lim

k→+∞
τ−smk

P =Saa,

lim
k→+∞

τsmk
Tcor = 0 and lim

k→+∞
τsmk

Scor = 0. (5.7)

Let ϕ ∈ D, we have

〈

τsmk
(LωT ), ϕ

〉

=

p
∑

i=0

q
∑

j=0

(−1)i
〈

T, τ−ωj
(aijτ−smk

ϕ)(i)
〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=

p
∑

i=0

q
∑

j=0

(−1)i
〈

τsmk
T, τ−ωj

(ϕτsmk
aij)

(i)
〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=

p
∑

i=0

q
∑

j=0

〈

τsmk
aijτωj

(τsmk
T )(i), ϕ

〉

+
〈

K ∗ τsmk
T, ϕ

〉

,

=
〈

Lω,k(τsmk
T ), ϕ

〉

,

where

Lω,k =

p
∑

i=0

q
∑

j=0

τsmk
aij

di

dxi
τωj

+K ∗ .

On [−smk
,+∞[ we have τsmk

S = τsmk
LωT, i.e.

τsmk
Saa + τsmk

Scor = τsmk
(LωTaa) + τsmk

(LωTcor) =
(

Lω,kτsmk
Taa

)

+
(

Lω,kτsmk
Tcor

)

,

By (5.5), (5.6), (5.7) and Lemma 1, the limits

lim
k→+∞

(

τsmk
Saa + τsmk

Scor
)

= lim
k→+∞

(

Lω,kτsmk
Taa

)

+ lim
k→+∞

(

Lω,kτsmk
Tcor

)

,

give
P = L̃ωV on R,

where

L̃ω=

p
∑

i=0

q
∑

j=0

ãij
di

dxi
τωj

+K ∗ .

Consequently by (5.6) we obtain

lim
k→+∞

τ−smk
P = lim

k→+∞

(

L̃ω,kτ−smk
V
)

on R,

where

L̃ω,k=

p
∑

i=0

q
∑

j=0

τ−smk
ãij

di

dxi
τωj

+K∗,

which gives
Saa = LωTaa on R.

Finally, the equation Saa + Scor = LωTaa + LωTcor on J implies

Scor = LωTcor on J,
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hence the conclusion is true. �

Remark 8. The proof of the theorem appeals to Lemma 1 and particulary to Proposition 9
characterisating the introduced space of smooth asymptotically almost automorphic functions.

Remark 9. The result of the theorem remains valid if we consider systems. Other problems
can be tackled within the space of asymptotically almost automorphic distributions.

The following result concerns primitives.

Corollary 3. Let S ∈ B′
aaa, the following propositions are equivalent :

(1) T ∈ B′
aaa is a primitive of S on J .

(2) There exist V ∈ B′
aa a primitive on R of Saa and W ∈ B′

+,0 a primitive of Scor on J such
that

T = V +W on J.
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Abstract: The reachable sets of nonlinear systems are usually quite complicated. They, as a rule, are
non-convex and arranged to have rather complex behavior. In this paper, the asymptotic behavior of reachable
sets of nonlinear control-affine systems on small time intervals is studied. We assume that the initial state of
the system is fixed, and the control is bounded in the L2-norm. The subject of the study is the applicability
of the linearization method for a sufficiently small length of the time interval. We provide sufficient conditions
under which the reachable set of a nonlinear system is convex and asymptotically equal to the reachable set
of a linearized system. The concept of asymptotic equality is defined in terms of the Banach-Mazur metric
in the space of sets. The conditions depend on the behavior of the controllability Gramian of the linearized
system — the smallest eigenvalue of the Gramian should not tend to zero too quickly when the length of the
time interval tends to zero. The indicated asymptotic behavior occurs for a reasonably wide class of second-
order nonlinear control systems but can be violated for systems of higher dimension. The results of numerical
simulation illustrate the theoretical conclusions of the paper.

Key words: Nonlinear control systems, Small-time reachable sets, Asymptotics, Integral constraints, Lin-
earization.

1. Introduction

The paper explores the properties of reachable sets of control-affine nonlinear systems with
integral constraints over small time intervals. The geometric structure of reachable sets plays an
important role in control theory, in particular, in solving problems of control synthesis. Small-
time reachable sets under pointwise (geometric) constraints on control were studied by C. Lobry,
H. Sussmann, A. J.Krener, H. Schattler, and C. I. Byrnes (see, for example, [12, 19]). In general,
the reachable sets of nonlinear systems are not convex and may have a quite complicated structure
[1, 3, 11, 13–15, 20, 21]. When some of the parameters of a control system are small (initial
deviations from the equilibrium position, disturbances at the input of the system, etc.), the behavior
of the system can often be judged by the action of its linear approximation. Here we find out under
what conditions this linearization approach is applicable when constructing reachable sets on small
time intervals. Will these sets be close to reachable sets of a linearized system? In this paper,
we study reachable sets for control-affine systems on small time intervals with integral quadratic
constraints on the controls. Reachable sets of nonlinear systems with integral constraints were
studied in [5–7, 16]. If a system is linear, its reachable set is an ellipsoid in the state space.
Therefore, an ellipsoid is the reachable set of a linearized system. To establish the proximity
of the reachable sets of original and linearized systems, it is necessary first to find out in which

1This work is supported by the Research and Education Center of IMM UB of RAS in the framework
of the Ural Mathematical Center (project “Set-Valued Dynamics in Control and Estimation Problems for
Dynamical Systems with Uncertainty”).

https://doi.org/10.15826/umj.2020.1.006
mailto:gmi@imm.uran.ru
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cases the reachable set of the original nonlinear system is convex. B. Polyak [17] proved that a
nonlinear image of a small ball in a Hilbert space is convex under some regularity assumptions on
the mapping. Using this result, he showed that reachable sets of a nonlinear control system are
convex if constraints on the control are given by a ball of a sufficiently small radius in L2 and the
linearized system is controllable [16]. Using a time change, we reduce the problem of constructing
the reachable set of a system on a small time interval to a similar problem on a unit interval.
With this replacement, the integral constraints are given by a ball of small radius, and we apply
Theorem 1 from [17] to propose sufficient conditions for the convexity of small-time reachable sets.
The application of these conditions requires a study of the asymptotic behavior of the controllability
Gramian of the linearized system depending on a small parameter.

Another question is how to evaluate the degree of proximity of reachable sets for small lengths
of time intervals. These sets contract to a single-point set as the interval length tends to zero,
so the Hausdorff metric is not enough for this purpose. Here we use the concept of asymptotic
equality of sets introduced in [4] and based on the Banach–Mazur metric.

The paper is arranged as follows. In Section 1, we introduce the concept of asymptotic equality
of sets using the Banach–Mazur metric. We prove several auxiliary statements concerning the
connection of this concept with the properties of support functions. In Section 2, we consider
relations between the images of a Hilbert ball under nonlinear mapping depending on a small
parameter and under its linear approximation. Further, we apply these results to the study of the
asymptotic behavior of the reachable sets of nonlinear systems with integral control constraints.
We formulate sufficient conditions for the asymptotic equality of reachable sets of nonlinear and
linearized systems. These conditions depend on the asymptotic behavior of the controllability
Gramian of the linearized system. The asymptotic behavior of the smallest eigenvalue of the
controllability Gramian for a time-invariant linear control system with a single input is studied
in Section 3. In Section 4, we apply the obtained asymptotics to the study of reachable sets
for affine-control nonlinear systems on a small time interval. We give two examples of nonlinear
two-dimensional systems and present the results of numerical simulations.

2. Asymptotic equality of sets

Let X,Y ⊂ R
n be convex compact sets. We assume that the zero vector is an interior point

of each of these sets. The Banach–Mazur distance ρ(X,Y ) between X and Y is defined by the
equality

ρ(X,Y ) := log
(

r(X,Y ) · r(Y,X)
)

, r(X,Y ) = inf
{

t ≥ 1 : tX ⊃ Y
}

.

For convex closed sets X and Y , the inclusion tX ⊃ Y holds if and only if

tδ(y|X) ≥ δ(y|Y ), ∀y ∈ R
n, ‖y‖ = 1,

where δ(y|X) is the support function of the set X:

δ(y|X) := sup
{

(y, x) : x ∈ X
}

, y ∈ R
n.

Hence, we have the formula

r(X,Y ) = max

{

1, sup
‖y‖=1

δ(y|X)

δ(y|Y )

}

. (2.1)

Note that, due to the condition 0 ∈ intY , the inequality δ(y|Y ) > 0 holds for ‖y‖ 6= 0.
Suppose further that the sets under consideration depend on a small positive parameter ε,

X = X(ε) and Y = Y (ε) are convex compact sets, and the zero vector is an interior point of each
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of these sets for 0 < ε ≤ ε0. We also assume that the multivalued mappings X(ε) and Y (ε) are
bounded. The sets X(ε) and Y (ε) are called asymptotically equal [4] if ρ(X(ε), Y (ε)) → 0 as ε → 0.

We use the notation

∆XY (y, ε) :=
δ(y|X(ε))

δ(y|Y (ε))
, ∆Y X(y, ε) :=

δ(y|Y (ε))

δ(y|X(ε))
.

Formula (2.1) implies the following statement.

Lemma 1. In order to ρ(X(ε), Y (ε)) → 0 as ε → 0, it is necessary and sufficient that

lim
ε→0

∆XY (y, ε) = 1 uniformly in y, ‖y‖ = 1. (2.2)

P r o o f. It follows from (2.2) that limε→0 sup‖y‖=1 ∆XY (y, ε) = 1. Since ∆XY (y, ε) ·
∆Y X(y, ε) = 1, we have limε→0 sup‖y‖=1 ∆Y X(y, ε) = 1. From formula (2.1), we find that
r(X(ε), Y (ε)) → 1 and r(Y (ε),X(ε)) → 1; therefore, ρ(X(ε), Y (ε)) → 0 as ε → 0.

To prove the necessity of condition (2.2), suppose, on the contrary, that this condition is vio-
lated. Then there exist 1 > σ > 0 and a sequence εk → 0 such that the following relations are valid
for an infinite number of the sequence terms:

sup
‖y‖=1

∆XY (y, εk) ≥ 1 + σ or sup
‖y‖=1

∆XY (y, εk) ≤ 1− σ.

In the former case, we have r(X(εk), Y (εk)) ≥ 1+σ and, therefore, ρ(X(εk), Y (εk)) ≥ log(1+σ) > 0.
In the latter case, we obtain

∆XY (y, εk) ≤ 1− σ, ∀y, ‖y‖ = 1,

and hence

sup
‖y‖=1

∆Y X(y, εk) ≥
1

1− σ
.

This implies that

ρ(X(εk), Y (εk)) ≥ log
(

1 +
σ

1− σ

)

> 0

for an infinite number of the sequence terms εk. This contradicts the convergence of ρ(X(εk), Y (εk))
to zero. �

The condition ρ(X(ε), Y (ε)) → 0 implies that h(X(ε), Y (ε)) → 0 as ε → 0, where h denotes
the Hausdorff distance between the sets. Indeed, by Lemma 1, relation (2.2) holds in this case.
Therefore, for any σ > 0, there exists ε̄ such that the inequalities

∆XY (y, ε) ≤ 1 + σ, ∆Y X(y, ε) ≤ 1 + σ

hold for all y ∈ R
n, ‖y‖ = 1, 0 < ε ≤ ε̄. These inequalities imply the estimate

h(X(ε), Y (ε)) = sup
‖y‖=1

∣

∣δ(y|X(ε)) − δ(y|Y (ε))
∣

∣ ≤ σmax
{

sup
‖y‖=1

δ(y|Y (ε)), sup
‖y‖=1

δ(y|X(ε))
}

,

which means that h(X(ε), Y (ε)) → 0 as ε → 0.
The converse is not true, as the following example shows. Let

X(ε) =
{

x ∈ R
2 : |x1| ≤ ε, |x2| ≤ ε

}

, Y (ε) =
{

x ∈ R
2 : x21 + x22 ≤ ε2

}

.

Then h(X(ε), Y (ε)) = (
√
2 − 1)ε → 0 and ρ(X(ε), Y (ε)) = log

√
2 > 0. Nevertheless, under the

additional assumption about the rate of convergence of the Hausdorff distance between the sets,
we prove in Theorem 1 that ρ(X(ε), Y (ε)) → 0 as ε → 0.

For A ⊂ R
n, define δmin(A) := inf‖y‖=1 δ(y|A).
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Theorem 1. The following conditions are sufficient for ρ(X(ε), Y (ε)) → 0 as ε → 0:

lim
ε→0

h(X(ε), Y (ε)) = 0, lim
ε→0

h(X(ε), Y (ε))

δmin(Y (ε))
= 0.

P r o o f. Let h(ε) = h(X(ε), Y (ε)) and δ(ε) = δmin(Y (ε)). From the equality

h(ε) = h(X(ε), Y (ε)) = sup
‖y‖=1

∣

∣δ(y|X(ε)) − δ(y|Y (ε))
∣

∣,

it follows that
−h(ε) ≤ δ(y|X(ε)) − δ(y|Y (ε)) ≤ h(ε)

for all y ∈ R
n, ‖y‖ = 1. Dividing these inequalities by a positive value δ(y|Y (ε)), we get

∣

∣

∣

∣

sup
‖y‖=1

δ(y|X(ε))

δ(y|Y (ε))
− 1

∣

∣

∣

∣

≤ sup
‖y‖=1

h(ε)

δ(y|Y (ε))
≤ h(ε)

δ(ε)
.

Dividing these inequalities by δ(y|X(ε)) and taking into account that, in view of the conditions of
the theorem, δmin(ε)− h(ε) > 0 for sufficiently small ε, we get

∣

∣

∣

∣

sup
‖y‖=1

δ(y|Y (ε))

δ(y|X(ε))
− 1

∣

∣

∣

∣

≤ sup
‖y‖=1

h(ε)

δ(y|X(ε))
≤ h(ε)

δ(ε) − h(ε)
.

From these inequalities, we obtain relations (2.2) and hence, by Lemma 1, ρ(X(ε), Y (ε)) → 0 as
ε → 0. �

Note that the definition of ρ(X,Y ) is symmetrical with respect to the sets X and Y . Therefore,
in the statement of the theorem, δmin(Y (ε)) can be replaced by δmin(X(ε)).

3. Small-time reachable sets of nonlinear systems

3.1. Auxiliary results

Let X and Y be Banach spaces. Denote by BX(a, µ0) ⊂ X the ball of radius µ0 centered at a.
Consider a mapping Fε : BX(a, µ0) → Y depending on a parameter ε, 0 < ε < ε0.

Assumption 1. The mapping Fε(x) has a Fréchet derivative with respect to x, which satisfies
the Lipschitz condition on BX(a, µ0)

∥

∥F
′

ε(x1)− F
′

ε(x2)
∥

∥ ≤ L(ε)‖x1 − x2‖, x1, x2 ∈ BX(a, µ0), ε ∈ (0, ε0], (3.1)

where L(ε) is a function bounded on (0, ε0].

Let a function µ(ε) map (0, ε0] to (0, µ0]. Assume that µ(ε) → 0 as ε → 0. Denote by Gε the image
of the ball BX(a, µ(ε)) under the mapping Fε:

Gε := {Fε(x) : x ∈ BX(a, µ(ε))}.

Theorem 2. Suppose that condition (3.1) holds. Then

h
(

(coGε − Fε(a)), µ(ε)F
′

ε(a)BX(0, 1)
)

≤ L(ε)µ2(ε),

where h is the Hausdorff distance between sets and coG denotes the convex hull of the set G.



The Limits of Applicability of the Linearization Method 75

P r o o f. The proof follows from the proof of Theorem 1 in [10]. �

Let X and Y be real Hilbert spaces. Suppose that a mapping F : X ⊃ BX(a, µ0) → Y is
differentiable and its Frechét derivative F ′ satisfies the Lipschitz condition with constant L. Let
a mapping F be regular at the point a, i.e., let the operator F ′(a) : X → Y be a surjection. The
latter property implies the existence of a positive number γ such that ‖F ′(a)∗y‖ ≥ γ‖y‖ for all
y ∈ Y , which is equivalent to the inequality

(

F ′(a)F ′(a)∗y, y
)

≥ ν‖y‖2

for all y ∈ Y , where ν = γ2 is the smallest eigenvalue of the self-adjoint operator F ′(a)F ′(a)∗. Here
(·, ·) is the bilinear form for the duality between Y and the space Y ∗ conjugate to Y , F ′(a)∗ stands
for the operator adjoint to a bounded linear operator F ′(a). In [17, Theorem 1], it is shown that,
if the inequality

µ ≤ min

{

µ0,

√
ν

2L

}

(3.2)

holds, then the image of the ball BX(a, µ), i.e., the set G = {F (x) : x ∈ BX(a, µ)}, is convex.
In what follows, we assume that X is a Hilbert space and Y = R

n is a finite-dimensional
Euclidean space. Consider the family of operators Fε assuming that each mapping Fε is regular at
the point a. Denote by ν(ε) the smallest eigenvalue of the operator (matrix)

Wε := F ′
ε(a)F

′
ε(a)

∗.

Note that in this case the set Eε := F ′
ε(a)BX(0, 1) is a finite-dimensional ellipsoid defined by the

relation
Eε =

{

x ∈ R
n : x⊤W−1

ε x ≤ 1
}

,

and
√

ν(ε) is the length of its smallest semiaxis. Theorem 2 implies the following statement.

Corollary 1. Suppose that µ(ε) ≤
√

ν(ε)/(2L(ε)). Then the set Gε is convex and

h
(

Gε, Fε(a) + µ(ε)Eε

)

≤ L(ε)µ2(ε).

P r o o f. The convexity of Gε follows from inequality (3.2). Hence, under the conditions of
the corollary, Gε = coGε. Using Theorem 2, we get

h
(

Gε, Fε(a) + µ(ε)Eε

)

= h
(

(coGε − Fε(a)), µ(ε)F
′

ε(a)BX(0, 1)
)

≤ L(ε)µ2(ε).

�

Corollary 2. Suppose that µ(ε)L(ε)/
√

ν(ε) → 0 as ε → 0. Then the set Gε is convex for
sufficiently small ε and

ρ
(

Gε − Fε(a), µ(ε)Eε

)

→ 0 as ε → 0.

P r o o f. Since µ(ε)L(ε)/
√

ν(ε) → 0, we have µ(ε)L(ε)/
√

ν(ε) ≤ 1/2 for all sufficiently small ε.
For these ε, we have µ(ε) ≤

√

ν(ε)/(2L(ε)), hence, Gε is convex. Consider two convex compact
sets depending on ε:

X(ε) = Gε − Fε(a), Y (ε) = µ(ε)Eε.

Calculating the value δ(ε) = δmin(Y (ε)) (see Theorem 1), we get

δ(y|Y (ε)) = µ(ε)
√

y⊤Wεy, δ(ε) = min
‖y‖=1

δ(y|Y (ε)) = µ(ε)
√

ν(ε).
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Since δ(ε) > 0 for ε > 0, we have 0 ∈ intY (ε). It follows from Lyusternik’s theorem [2] that
Fε(a) ∈ intGε for ε > 0. Thus, the zero vector is an interior point of X(ε) and Y (ε) for all
sufficiently small positive ε.

In view of the inequality h(X(ε), Y (ε)) ≤ L(ε)µ(ε)2, we have

h(X(ε), Y (ε))

δ(ε)
≤ L(ε)µ(ε)2

µ(ε)
√

ν(ε)
=

µ(ε)L(ε)
√

ν(ε)
→ 0 as ε → 0.

By Theorem 1, we find that ρ(X(ε), Y (ε)) → 0. �

Thereby, the set Gε − Fε(a) is asymptotically equal to µ(ε)Eε. This means that the image
of the ball B(a, µ(ε)) under the nonlinear transformation Fε is close in shape to the ellipsoid
Fε(a)+µ(ε)Eε. The latter is the result of transforming the ball by means of a linear approximation
of Fε at the point a.

3.2. Small-time reachable sets

Consider a nonlinear control-affine system

ẋ(t) = f1(x(t)) + f2(x(t))u(t), 0 ≤ t ≤ ε ≤ ε̄, x(0) = x0, (3.3)

where x ∈ R
n and u ∈ R

r are state and control inputs, respectively, and ε̄ > 0. The initial state
x0 is assumed to be fixed. Denote by L2[0, ε̄] the Hilbert space of square integrable functions
[0, ε̄] → R

r. Constraints on controls are given in the form

u(·) ∈ B(0, µ),

where B(0, µ) :=
{

u(·) ∈ L2[0, ε̄] : (u(·), u(·)) ≤ µ2
}

is a ball of radius µ > 0 centered at zero and

(u(·), u(·)) = ‖u(·))‖2
L2 [0,ε̄]

=

∫ ε̄

0
u⊤(t)u(t)dt.

Suppose that, for any u(·) ∈ B(0, µ), there exists a unique solution x(t, u(·)) of system (3.3),
this solution is defined on [0, ε̄], and all trajectories starting from x0 and corresponding to the
controls from the ball B(0, µ) belong to a compact set D. Assume also that the functions f1 and
f2 have Lipschitz continuous derivatives on D.

Let G(ε, µ) be the reachable set of system (3.3) at time ε ∈ [0, ε̄] under integral constraints

G(ε, µ) :=
{

x ∈ R
n : ∃u(·) ∈ B(0, µ), x = x(ε, u(·))

}

.

Since ‖u(·)‖L2 [0,ε] ≤ ‖u(·)‖L2 [0,ε̄], the set G(ε, µ) can be written as follows:

G(ε, µ) =
{

x ∈ R
n : ∃u(·), ‖u(·)‖L2 [0,ε] ≤ µ, x = x(ε, u(·))

}

.

We study the behavior of reachable sets G(ε, µ) under the assumption that ε is a small number.
Using a time change, we reduce the problem of describing reachable sets on the time interval [0, ε] to
a similar problem on the interval [0, 1] for another system whose equations and integral constraints
on the control depend on ε.

Representing t in the form t = ετ , we set y(τ) = x(ετ) and v(τ) = εu(ετ). Then

ẏ(τ) = εf1(y(τ)) + f2(y(τ))v(τ), 0 ≤ τ ≤ 1, y(0) = x0, (3.4)
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with the following constraint on the new control v(·):
∫ 1

0
v⊤(t)v(t)dt ≤ (µ

√
ε)2. (3.5)

The trajectories of system (3.4), (3.5) belong to the compact set D if ε ≤ ε̄.
Define µ(ε) := µ

√
ε. Let G̃(1, µ) be the reachable set of system (3.4):

G̃(1, µ) := {y ∈ R
n : ∃v(·) ∈ B(0, µ) ⊂ L2[0, 1], y = y(1, v(·))}.

Hereinafter, we use the same notation B(0, µ) for balls in the spaces L2[0, b] with different b.
Besides, for simplicity, we omit the time interval in the notation of the space L2 if this does not
cause misunderstanding.

Define a family of mappings Fε : L2[0, 1] → R
n by the equality Fε(v(·)) = yε(1, v(·)), where

yε(t, v(·)) is the solution of system (3.4) corresponding to v(·). Since y(1, v(·)) = x(t1, u(·)), we
have the equality

G̃(1, µ(ε)) = G(ε, µ) =
{

Fε(v(·)) : v(·) ∈ B(0, µ(ε))
}

.

The mapping Fε(v(·)) is differentiable; its derivative is defined as follows [10]:

F ′
ε(v(·))∆v(·) = ∆y(1,∆v(·)),

where ∆y(τ) is the solution of system (3.4) linearized along the trajectory
(

y(τ, v(·)), v(·)
)

∆̇y(τ) = εA(τ)∆y(τ) +B(τ)∆v(τ), τ ∈ [0, 1], ∆y(0) = 0. (3.6)

Here

A(τ) =
∂f1
∂x

(y(τ)) +
r

∑

i=1

∂f i
2

∂x
(y(τ))vi(τ), B(τ) = f2(y(τ)).

The following statement is true.

Proposition 1. [8, 9] The mapping F ′
ε(v(·)) is Lipschitz continuous on B(0, µ(ε)) with the

constant L(ε) = L0 + L1ε (L0, L1 ≥ 0). If all elements of the matrix f2 in the equation of the
system are independent of the state (i.e., f2(x) = f2 is a constant matrix ), then L0 = 0.

We can use Corollary 2 proved above to describe the reachable sets on small time intervals. In
this case, a = 0 ∈ L2 is the zero control and the derivative F ′

ε(0) is defined by equation (3.6)
corresponding to system (3.4) linearized along the trajectory (y(τ, 0), 0). Here y(τ, 0) is a solution
of (3.4) with v(τ) ≡ 0, τ ∈ [0, 1]. In this case,

A(τ) =
∂f1
∂x

(y(τ)), B(τ) = f2(y(τ)).

Consider a linear control system

ż(τ) = εA(τ)z(τ) +B(τ)u(τ), τ ∈ [0, 1], (3.7)

with continuous matrices A(τ) and B(τ).

Definition 1. The symmetric matrix Wε(τ) defined by the equality

Wε(τ) =

∫ τ

0
Xε(τ, s)B(s)B⊤(s)X⊤

ε (τ, s)ds, (3.8)

where Xε(τ, s) is the fundamental Cauchy matrix of system (3.7) (Ẋε(τ, s) = εA(τ)Xε(τ, s),
X(s, s) = I) is called the controllability Gramian of the control system (3.7).



78 Mikhail I. Gusev

Differentiating equality (3.8), it is easy to see that Wε(t) is a solution of the linear differential
equation

Ẇε(τ) = εA(τ)Wε(τ) + εWε(τ)A
⊤(τ) +B(τ)B⊤(τ), Wε(0) = 0.

The system is completely controllable on the interval [0, 1] if and only if Wε(1) is positive definite.
It is known (see, for example, [14, 16]) that, in this case, the reachable set under the constraint

∫ 1

0
u⊤(τ)u(τ)dτ ≤ µ2

is an ellipsoid defined as the set of solutions of the inequality x⊤W−1
ε (1)x ≤ µ2.

From the above, we can conclude that the matrix Wε = F ′
ε(0)F

′
ε(0)

∗ coincides with the con-
trollability Gramian Wε(1) of system (3.6) and the ellipsoid µ(ε)Eε = Ĝ(ε, µ) is the reachable set
at time 1 of system (3.6) under constraint (3.5). Note that Fε(0) equals to x(ε, 0). Taking into
account that µ(ε) = µ

√
ε, we arrive at the following statement.

Theorem 3. Let ν(ε) be the smallest eigenvalue of the controllability Gramian W−1
ε (1) of the

linearized system (3.6). Suppose that L(ε)
√
ε/
√

ν(ε) → 0 as ε → 0. Then the reachable set G(ε, µ)
is convex for sufficiently small ε and

ρ(G(ε, µ) − x(ε, 0), Ĝ(ε, µ)) → 0 as ε → 0,

where Ĝ(ε, µ) is the reachable set of the linearized system (3.6).

Using the reverse time change, it is easy to show that Ĝ(ε, µ)) is the reachable set at time ε for
the linearized system (3.3). Thus, Theorem 3 states that, under proper asymptotic behavior of the
smallest eigenvalue of the controllability Gramian, the small-time reachable set is asymptotically
equal to the reachable set of the linearized system. The asymptotic behavior of the Gramian for
the case of linear autonomous systems is studied in the next section.

4. Time-invariant systems on a small time interval

4.1. Asymptotics of the smallest eigenvalue of the controllability Gramian

Consider a linear time-invariant control system

ẋ(t) = εAx(t) +Bu(t), t ∈ [0, 1], (4.1)

where x ∈ R
n, u ∈ R

r, and ε > 0 is a small parameter. If the pair (A,B) is completely controllable,
then (εA,B) is also controllable for all ε 6= 0. In this case, the smallest eigenvalue of the controlla-
bility Gramian ν(ε) = ν(Wε(1)) is positive for all ε > 0. In this section, we study the asymptotic
behavior of ν(ε) for small ε.

Consider the controllability Gramian Wε(t) of system (4.1). The matrix Wε(t), t > 0, is positive
definite for every ε 6= 0 if and only if the pair (A,B) is completely controllable. Let us look for
Wε(t) as the sum of series in powers of ε:

Wε(t) = V0(t) + εV1(t) + ε2V2(t) + · · · , Vk(0) = 0, k = 0, 1, . . . . (4.2)

Differentiating (4.2) and equating coefficients at equal powers of ε, we get

V̇0(t) = BB⊤, V̇k(t) = AVk−1(t) + Vk−1(t)A
⊤, k = 1, 2, . . . . (4.3)
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Integrating equations (4.3), we get

V0(t) = tU0, Vi(t) =
ti+1

(i+ 1)!
AUi, i = 1, 2, . . . ,

where
U0 = BB⊤, Ui = AUi−1 + Ui−1A

⊤, k = 1, 2, . . . .

Thus, for Wε = Wε(1), we have

Wε =

∞
∑

k=0

εk

(k + 1)!
Uk. (4.4)

In view of the estimate ‖Uk‖ ≤ 2‖A‖‖Uk−1‖ ≤ 2k‖A‖k‖U0‖, series (4.4) and (4.2) are majorized
by the converging series

∞
∑

k=0

(2ε‖A‖)k
(k + 1)!

‖U0‖.

Here ‖A‖ is the spectral matrix norm induced by the Euclidean vector norm. As a result, we find
that the matrix Wε = Wε(1) is represented as the sum of series (4.4) uniformly convergent on every
bounded subset of R.

Note that all matrices Uk in (4.4) are symmetric but not necessarily positive semi-definite.
For U0, we obviously have ν(U0) ≥ 0. If ν(U0) > 0, then there exists α > 0 such that ν(Wε) ≥ α
for sufficiently small ε. Further, we assume that ν(U0) = 0, hence ν(Wε) → 0 as ε → 0.

Definition 2. [18] A pair (A,B) is linearly equivalent to a pair (A1, B1) if there exists a
nonsingular matrix S such that A1 = SAS−1 and B1 = SB.

Linear equivalent pairs generate equations of the same control system in different coordinate sys-
tems. A pair (A,B) is controllable iff (A1, B1) is controllable. The asymptotic behavior of the
controllability Gramians of linear equivalent pairs is the same.

Proposition 2. [9, Lemma 1] Let (A,B) and (A1, B1) be linearly equivalent pairs, and let
Wε and W 1

ε be the corresponding controllability Gramians. There exist α > 0 and β > 0 such that

αν(Wε) ≤ ν(W 1
ε ) ≤ βν(Wε)

for all ε.

Consider systems with single control. In this case, A is an n×nmatrix and B is an n-dimensional
column-vector.

Theorem 4. [9, Theorem 1] Assume that a system is completely controllable. If n = 2, then
there exist α > 0 and β > 0 such that the following inequality holds for all sufficiently small ε > 0:

αε2 ≤ ν(Wε) ≤ βε2.

If n ≥ 3, then there exists β > 0 such that

0 < ν(Wε) ≤ βε2n−2

for all sufficiently small ε > 0.

The proof of this theorem is based on reducing the control system to the Frobenius form.
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4.2. Small-time reachable sets of time-invariant systems

Consider an autonomous control system with a single input

ẋ(t) = f(x(t)) +Bu(t), x(0) = x0, 0 ≤ t ≤ ε, (4.5)

where x ∈ R
n, u ∈ R, f : Rn → R

n is a continuously differential mapping, B is an n × 1 matrix
(a column-vector), and x0 is a fixed initial state, with control variables subjected to the quadratic
integral constraints

∫ ε

0
u2(t)dt ≤ µ2.

Suppose, as above, that there exists a compact set D ⊂ R
n containing all trajectories of

system (4.5) and that f(x) has a Lipschitz continuous derivative on this set.

Denote by A(t) =
∂f

∂x
(x(t, 0)) the matrix of the system linearized along the trajectory x(t, 0)

corresponding to the zero control. Suppose that f(x0) = 0. In this case, x(t, 0) ≡ 0 and, hence,

A(t) =
∂f

∂x
(x(t, 0)) =

∂f

∂x
(x0) = A

is a constant matrix. Let Wε be the controllability Gramian of the pair (εA,B) on the interval
[0, 1], and let ν(ε) be the smallest eigenvalue of Wε. If the pair (A,B) is controllable, then, by
Theorem 4, ν(ε) ≥ αε2 if n = 2 and ν(Wε) ≤ βε4 if n ≥ 3 for some α, β > 0.

From Theorem 3 we obtain the following statement.

Corollary 3. Let n = 2, and let system (4.5) linearized at the point x0 be completely control-
lable. Then the reachable set G(ε, µ) is convex for all sufficiently small ε and asymptotically equal
to the reachable set of the linearized system.

P r o o f. In the conditions of the theorem, we have L(ε) = L1ε (see Proposition 1) and
ν(ε) ≥ αε2. This implies that L(ε)

√
ε/
√

ν(ε) ≤ (L1/
√
α)

√
ε → 0 as ε → 0. �

Note than the sufficient conditions for the convexity of G(ε) are not satisfied for a system with
a single input for n ≥ 3.

4.3. Examples

As an illustrative example, consider the Duffing oscillator

ẋ1 = x2, ẋ2 = −x1 − 10x31 + u, 0 ≤ t ≤ ε (4.6)

which describes the motion of a nonlinear stiff spring on impact of an external force u, with integral
constraints

∫ ε

0
u2(t)dt ≤ µ2

and zero initial state x1(0) = 0, x2(0) = 0.
Consider the Lyapunov-type function

V (x) = V (x1, x2) =
5

2
x41 +

1

2
x21 +

1

2
x22.

Differentiating V (x(t)) along an arbitrary trajectory of the system and applying an analog of
Grownwall’s Lemma [23], we find that all trajectories of system (4.6) belong to the compact set
D = {x ∈ R

2 : V (x) ≤ µ2ε} (see [22]).
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Figure 1. Reachable sets of Duffing oscillator

System (4.6) linearized along x(t) ≡ 0 after a time change

ẋ1 = εx2, ẋ2 = −x1 + u, x(0) = (0, 0), 0 ≤ τ ≤ 1,

is completely controllable. From Corollary 3 it follows that, for small ε, the reachable sets G(ε) in
this example are convex sets close in shape to ellipsoids.

The results of the numerical simulation are shown in the figure that follows. These results
are obtained with the use of an algorithm based on Pontryagin’s maximum principle for boundary
trajectories.

Fig. 1 shows the results of numerical simulation for this example. Its left-hand side exhibits
the plot of the boundaries of the reachable set at times ε = 0.5, 0.7, 0.9, 1.2, and 1.5, respectively.
A larger set in the figure corresponds to a larger value of ε. This plot indicates that the reachable
sets for smaller values of ε are convex and look like ellipsoids. The right-hand side of the figure
corresponds to smaller ε. Here the boundaries of reachable sets of the nonlinear system are shown
in blue and of the linearized system in red. Note that the reachable sets contract to zero as ε → 0.
In order to make the picture more informative, we multiply each of the sets by a scaling factor s(ε)
depending on ε. The resulting ellipsoids tend to a degenerate ellipsoid (vertical segment) as ε → 0.

As another example, consider a bilinear system

{

ẋ1 = x2u1 − x1u2,
ẋ2 = −x1u1 − x2u2,

with initial state given by the equalities x1(0) = 1 and x2(0) = 0. It is known that, under control
constraints in the form

|u1(t)| ≤ 1, |u2(t)| ≤ 1, 0 ≤ t ≤ ε,

the reachable set G(ε) is non-convex for any ε > 0 [18]. Consider further the integral constraints
on the control

∫ ε

0

(

u21(t) + u22(t)
)

dt ≤ 1.

All trajectories of the system belong to a compact set on the plane. This fact could be easily proved
by using the transition to the polar coordinates. The matrices A and B of the system linearized
along the trajectory x(t) ≡ (1, 0) have the following form:

A =

(

0 0
0 0

)

, B =

(

0 −1
−1 0

)

.
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The system is completely controllable and the controllability Gramian Wε is independent of ε:

Wε = BB⊤ =

(

1 0
0 1

)

.

Since ν(Wε) = ν(ε) and the Lipschitz constant L(ε) is independent of ε, we have

L(ε)
√
ε/
√

ν(ε) → 0

as ε → 0. Consequently, the reachable sets G(ε) are convex for sufficiently small ε and asymptoti-
cally equal to ellipsoids (see also [10]).
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Abstract: In this paper, we investigate the problem of optimal control for an ill-posed wave equation
without using the extra hypothesis of Slater i.e. the set of admissible controls has a non-empty interior. Firstly,
by a controllability approach, we make the ill-posed wave equation a well-posed equation with some incomplete
data initial condition. The missing data requires us to use the no-regret control notion introduced by Lions to
control distributed systems with incomplete data. After approximating the no-regret control by a low-regret
control sequence, we characterize the optimal control by a singular optimality system.

Keywords: Ill-posed wave equation, No-regret control, Incomplete data, Carleman estimates, Null-
controllability.

1. Introduction

The first systematic study of optimal control of ill-posed problems was by J.L. Lions in his
book “Control of distributed singular systems” [11], exactly when he focused on an ill-posed heat
equation (backward heat equation). In his study, he required the set of admissible controls Uad

to have a non-empty interior. This condition is the so-called Slater hypothesis. Regrettably, a
difficulty starts when we need to use some sets like the positive cone

(
L2

)+
, which has an empty

interior, as a set of admissible controls, where the hypothesis of Slater doesn’t hold. To avoid such
kind of obstacle, we propose to take a different approach to the regularization approach proposed in
[3] and [5], to get an optimality system characterizing the optimal control without requiring Slater
extra-hypothesis, it’s the controllability approach.

The aim of our work is to generalize existing results [3, 5] where we seek to get an optimality
system characterizing the optimal control for an ill-posed wave equation [4, 5], to reach our goal, we
start by assuming that when taking the control in some dense space of L2 (Q), the problem becomes
well-posed. Then, by null-controllability of the well-posed wave equation, we seek to retrieve the
second order time condition in the ill-posed equation. Hence, we get an optimal control problem
for a controlled wave equation with incomplete data where we apply the no-regret control method
introduced by Lions [12] (the original idea was introduced by Savage in [15]) for optimal control
problems with incomplete data.

On the contrary of [5], this work leads us to characterize the optimal control by an optimality
system which has a simpler form than the one given in [5], this will be very beneficial in a numerical
analysis viewpoint.

1This work was supported by the Directorate-General for Scientific Research and Technological Develop-
ment (DGRSDT).
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A few studies have been published in the context of optimal control of PDEs with missing data
after that by Lions himself [13].

Later, many papers are published such as [14] and [9] where authors studied an age-structured
population dynamics of incomplete data. In [1], authors applied the notion of no-regret control on
a fractional wave equation with incomplete data. Afterward, a control coupled systems and a wave
equation both with incomplete data were treated in [6] and [7] respectively, extended recently to
more general and abstract systems in [8] .

Actually, the method of no-regret control consists of taking only controls v such that

J (v, g) ≤ J (0, g) ,

(J is the cost function) for every missing data g, where we guarantee the belonging of the optimal
control to this set of controls. To avoid the difficulty of characterizing the no-regret control, we
should relax the definition by making a quadratic perturbation in no-regret control definition, i.e.

J (v, g) ≤ J (0, g) + γ ‖g‖2 , γ > 0.

In this way, we define a sequence of low-regret controls expected to be converging to the no-
regret control.

The recent paper is organized as follows: in the next section we present some preliminaries for
the main problem, in the third section we prove existence and uniqueness for the controllability
problem, in the fourth we introduce the optimal control problem with missing data, in the fifth,
we give an optimality system for the optimal control problem, and we finish with a conclusion.

2. Preliminaries

Let Ω ⊂ RN be an open bounded domain with smooth boundary Γ, Γ0 is a non-empty subset
of Γ, denote Q = Ω× (0, T ), Σ = Γ× (0, T ), Σ0 = Γ0 × (0, T ) and T > 0. Consider the following
wave equation given by: 




y′′ −△y = v
y (x, 0) = 0, y (x, T ) = 0
y (x, t) = 0

in Q,
in Ω,
on Σ,

(2.1)

where v is a distributed control in

Uρ
ad =

{
v ∈ L2

ρ (Q) : v ≥ 0 almost everywhere in Q
}
,

it’s the closed convex cone
(
L2
ρ (Q)

)+
, where

L2
ρ (Q) =

{
w ∈ L2 (Q) such that ρw ∈ L2 (Q)

}

and ρ is a positive function defined on Q such that 1/ρ is bounded in Q. It’s well known that (2.1)
is ill-posed [5].

On the other hand, let’s consider a null controllability problem for the following wave equation:





y′′ −△y = v
y (x, 0) = 0, y′ (x, 0) = g

y (x, t) =

{
θ
0

in Q,
in Ω,
on Σ0,
on Σ�Σ0,

(2.2)

where g ∈ L2 (Ω) is a missing initial condition.



86 Abdelhak Hafdallah

The following geometric and time conditions hold:

∃x0 /∈ Ω such that {x ∈ ∂Ω : (x− x0) .ν (x) ≥ 0} ⊂ Γ0, (2.3)

T > 2 sup
x∈Ω

|x− x0|, (2.4)

and ν (x) denotes the external unit normal vector at x.
Note that for every (v, g; θ) ∈ Uρ

ad × L2 (Ω) × L2 (Σ0), the system (2.2)–(2.4) has a unique
solution y (v, g; θ) = y (v, g; θ) (x, t) in some sense (see [10, Ch. 4, p. 325]).

Actually, we want to find a function θ ∈ L2 (Γ0 × (0, T )) such that for every v ∈ Uρ
ad and every

missing initial condition g ∈ L2 (Ω) the solution of (2.2) verifies the following null controllability
property

y(x, T ) = y′(x, T ) = 0. (2.5)

In this way, by the controllability of (2.2) we retrieve the initial condition y′ (x, 0) in (2.1) but
with an unknown value and (2.1) becomes a well-posed equation with missing data.

After this, we want to find a control function v in Uρ
ad solution to the following optimal control

problem
inf

v∈Uρ
ad

Jρ (v, g) such that Jρ (v, g) = ‖y (v, g) − yd‖2ρ +N ‖v‖2ρ , (2.6)

where yd is a target function in L2 (Q), N > 0 all are given.
Now, let’s prove the existence of a solution for the null-controllability problem (2.2)–(2.5).

3. Existence for the null-controllability problem (2.2)–(2.5)

Before treating the controllability problem (2.2)–(2.5) we announce the following theorem giv-
ing a so-called Carleman inequality type, which will be the main tool to solve the controllability
problem.

Theorem 1. Denote the operator L = ∂2/∂t2 −∆ in distribution sense, under the geometric
and time conditions (2.3)–(2.4) there exists a C2 weighted positive function ρ defined on Q such
that 1/ρ is bounded in Q and C = C (Ω, T,Γ0, ρ) > 0 such that:

∫ T

0

∫

Ω

1

ρ2
|q|2 dxdt ≤ C

[∫ T

0

∫

Ω

1

ρ2
|Lq|2 dxdt+

∫ T

0

∫

Γ0

1

ρ2

∣∣∣
∂q

∂ν

∣∣∣
2
dΓdt

]
(3.1)

for every

q ∈ V =
{
ϕ ∈ L2

(
0, T ;H1

0 (Ω)
)
: Lϕ ∈ L2 (Q) ,

∂ϕ

∂ν

∣∣∣
Σ0

∈ L2 (Σ0)
}
,

where

L2
(
0, T ;H1

0 (Ω)
)
=

{
ϕ : [0, T ] → H1

0 (Ω) measurable such that

∫ T

0
‖ϕ (t)‖2H1

0
(Ω) dt < ∞

}
.

P r o o f. It leads from a Carleman inequality, it can be found in [2, Theorem 1.1].
The inequality (3.1) allows us to introduce the following real inner product:

a (r, s) =

∫ T

0

∫

Ω

1

ρ2
Lr · Ls dxdt+

∫ T

0

∫

Γ0

1

ρ2
∂r

∂ν

∂s

∂ν
dΓdt (3.2)

on V the Hilbert space completion of V, with its associated norm ‖ · ‖a =
√

a (·, ·). �
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Remark 1. We can characterize the structure of V as a subspace of a weighted Sobolev space.
Indeed, let Hρ(Q) be the weighted Hilbert space defined by

Hρ(Q) =
{
v ∈ L2 (Q) such that:

∫ T

0

∫

Ω

1

ρ2
|v|2 dxdt < ∞

}
,

endowed with the natural norm

‖ · ‖Hρ(Q) =

(∫ T

0

∫

Ω

1

ρ2
| · |2dxdt

)1/2

.

This shows that V is embedded continuously in Hρ(Q) as:

∃C > 0 : ‖v‖Hρ(Q) ≤ C ‖v‖a for every v ∈ V.

By the boundedness of 1/ρ2 on Q, we also see that L2 (Q) is continuously embedded in Hρ(Q).

Proposition 1. Fix (v, g) ∈ Uρ
ad × L2 (Ω). Define on V the linear form

l(v,g) (s) =

∫ T

0

∫

Ω
vsdxdt+

∫

Ω
gs (0) dx,

then there exists a unique solution p̃ (v, g) ∈ V to the following variational equation:

a (r, s) = l(v,g) (s) , ∀s ∈ V. (3.3)

Also, we have

∃C > 0 : ‖p̃ (v, g)‖a ≤ C
(
‖vρ‖L2(Q) + ‖g‖L2(Ω)

)
. (3.4)

Moreover, if we choose

y (v, g) =
1

ρ2
Lp̃ (v, g) , θ (v, g) =

1

ρ2
∂p̃ (v, g)

∂ν

∣∣∣
Σ0

, (3.5)

the pair {y (v, g) , θ (v, g)} is a solution of the null controllability problem (2.2)–(2.5).

P r o o f. The result is obtained by application of the Lax–Milgram theorem with using Carle-
man inequality (3.1) to prove that the inner product (3.2) is coercive. Using (3.3) and integration
by parts we get the null controllability property (2.5). �

4. Optimal control of the controlled wave equation with incomplete data

In this principal section, we focus on the following controlled wave equation missing initial
condition 




y′′ −△y = v
y (x, 0) = 0 , y′ (x, 0) = g

y =

{
θ (v, g)
0

in Q,
in Ω,
on Σ0,
on Σ�Σ0,

(4.1)

with

y (x, T ) = 0, y′ (x, T ) = 0, (4.2)

where θ (v, g) is given by (3.5).
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We solve the optimal control problem (4.1), (4.2), (2.6) regardless of the values of the missing
initial condition g, where L2

ρ (Q) endowed with the inner product (·, ·)ρ = (ρ·, ρ·)L2(Q) and the

associated norm ‖ · ‖ρ =
√
(·, ·)ρ.

In order to ensure the existence of the optimal control for (4.1), (4.2), (2.6) we need an extra
hypothesis of Slater (see [11, Ch. 4, Remark 1.4]) which requires that

Uρ
ad has a non-empty interior. (4.3)

Unfortunately, the extra hypothesis (4.3) is not fulfilled by Uρ
ad because it’s well known

that
(
L2 (Q)

)+
has an empty interior.

However, we propose an approach where there is no need to (4.3), it’s the method of no-regret
control which was introduced by J.L. Lions in [12], to solve optimal control problems with some
incomplete data.

First of all, let’s give a definition of the no-regret control for the controlled system with missing
data (4.1), (4.2), (2.6).

Definition 1 [12]. We say that u ∈ Uρ
ad is a no-regret control for (4.1), (4.2), (2.6) if u is the

solution of:

inf
v∈Uρ

ad

(
sup

g∈L2(Ω)

(
Jρ (v, g) − Jρ (0, g)

) )
. (4.4)

In the following lemma, we try to rewrite the main quantity in the last definition to isolate the
missing data in some way.

Lemma 1. Let M be an operator defined from L2 (Ω) to L2 (Σ0) by Mg =
∂p̃

∂ν
(0, g), where

p̃ (v, g) is the unique solution to (3.3). Then, M is a linear bounded operator on L2 (Ω), and we
have

Jρ (v, g) − Jρ (0, g) = Jρ (v, 0) − Jρ (0, 0) + 2 (S (v) , g)L2(Ω) , (4.5)

where S is also a linear bounded operator from Uρ
ad to L2 (Ω) given by

S (v) = p̃ (v, 0) (0)−M∗ (θ (v, 0)) .

P r o o f. It’s clear thatM is linear, alsoM is bounded. In fact, we know that p̃ (v, 0) solves (3.3)
for every s ∈ V , we choose an s such that





Ls = 0 in Q,
s (x, 0) = g, s′ (x, 0) = 0 in Ω,

∂s

∂ν
=





∂p̃ (0, g)

∂ν
0

on Σ0,

on Σ�Σ0

to get

inf
Σ0

1

ρ2

∫ T

0

∫

Γ0

∣∣∣
∂p̃ (0, g)

∂ν

∣∣∣
2
dΓdt ≤

∫ T

0

∫

Γ0

1

ρ2

∣∣∣
∂p̃ (0, g)

∂ν

∣∣∣
2
dΓdt = ‖g‖2L2(Ω) .

From linearity in (3.3), we get y (v, g) = y (v, 0) + y (0, g) + y (0, 0), and by a simple calculation
we get

Jρ (v, g) − Jρ (0, g) = Jρ (v, 0) − Jρ (0, 0) + 2 (y (v, 0) , y (0, g))ρ .
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Use Green formula to prove

(y (v, 0) , y (0, g))ρ = (Lp̃ (v, 0) , y (0, g))L2(Q)

= (p̃ (v, 0) , Ly (0, g))L2(Q) −
(∂p̃ (v, 0)

∂ν
, θ (0, g)

)
L2(Σ0)

+ (g, p̃ (v, 0) (0))L2(Ω)

= (p̃ (v, 0) (0) , g)L2(Ω) −
(∂p̃ (v, 0)

∂ν
,
1

ρ2
∂p̃

∂ν
(0, g)

)
L2(Σ0)

= (p̃ (v, 0) (0) , g)L2(Ω) − (M∗ (θ (v, 0)) , g)L2(Ω) .

We know that θ (v, 0) : Uρ
ad → L2 (Σ0) solves (3.4), choose s = p̃ (v, 0) and use (4.2) to find

inf
Σ0

1

ρ2

∫ T

0

∫

Γ0

∣∣∣
∂p̃ (v, 0)

∂ν

∣∣∣
2
dΓdt ≤

∫ T

0

∫

Γ0

1

ρ2

∣∣∣
∂p̃ (v, 0)

∂ν

∣∣∣
2
dΓdt ≤

∫ T

0

∫

Ω
vp̃ (v, 0) dxdt

≤ ‖v‖ρ ‖p̃ (v, 0)‖Hρ(Q) ≤ C ‖v‖2ρ ,

which proves that θ (v, 0) is bounded. Moreover, the map p̃ (v, 0) (0) : Uρ
ad → L2 (Ω) is contin-

uous. In fact, by a Carleman estimate given in [2, Corollary 2.8], under the same condition of
Theorem 1 there exists a C2 weighted positive function ρ on Q such that 1/ρ is bounded in Q and
C = C (Ω, T,Γ0, ρ) > 0 such that:

∫

Ω

1

ρ (0)2
|q (0)|2 dxdt ≤ C

[ ∫ T

0

∫

Ω

1

ρ2
|Lq|2 dxdt+

∫ T

0

∫

Γ0

1

ρ2

∣∣∣∣
∂q

∂ν

∣∣∣∣
2

dΓdt

]

for every q ∈ V. Choose q = p̃ (v, 0) to find

∫

Ω

1

ρ (0)2
|p̃ (v, 0) (0)|2 dxdt ≤ C

[ ∫ T

0

∫

Ω

1

ρ2
|Lp̃ (v, 0)|2 dxdt+ ‖θ (v, 0)‖2L2(Σ0)

]
≤ C ‖v‖2ρ .

Finally, S is also a linear bounded operator. �

Unfortunately, we encounter a big difficulty when characterizing the no-regret control where we
need to know the structure of the set

{
v ∈ Uρ

ad : (S (v) , g)L2(Ω) = 0 for every g in L2 (Ω)
}
,

which is difficult to do, this requires on us to relax no-regret control definition by making some
quadratic perturbation, then, we announce:

Definition 2 [12]. We say that uγ ∈ Uρ
ad is a low-regret control for (4.1), (4.2), (2.6) if uγ is

the solution of the problem:

inf
v∈Uρ

ad

(
sup
g

∈ L2(Ω)
(
Jρ(v, g) − Jρ(0, g) − γ‖g‖2L2(Ω)

))
, γ > 0.

From (4.5), we get for all v ∈ Uρ
ad

sup
g∈L2(Ω)

(
Jρ (v, g)− Jρ (0, g) − γ ‖g‖2L2(Ω)

)

= Jρ (v, 0) − Jρ (0, 0) + sup
g∈L2(Ω)

(
2 (S (v) , g)L2(Ω) − γ ‖g‖2L2(Ω)

)

= Jρ (v, 0) − Jρ (0, 0) +
1

γ
‖S (v)‖2L2(Ω) .
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Thus, our optimal control problem is transformed into a standard optimal control problem
(i.e. a problem with complete data) given by

inf
v∈Uρ

ad

J γ
ρ (v) , (4.6)

where

J γ
ρ (v) = Jρ (v, 0) − Jρ (0, 0) +

1

γ
‖S (v)‖2L2(Ω) . (4.7)

Lemma 2. The problem (4.1), (4.2), (2.6), (4.6), (4.7) has a unique solution uγ ∈ Uρ
ad.

P r o o f. We have for every v ∈ Uρ
ad : J γ

ρ (v) ≥ −Jρ (0, 0) = −‖yd‖2ρ then dγ = inf
v∈Uρ

ad

J γ
ρ (v)

exists. Let (vγn) be a minimizing sequence such that dγ = lim
n→∞

J γ
ρ (vγn). We know that

J γ
ρ (vγn) = Jρ (v

γ
n, 0) − Jρ (0, 0) +

1

γ
‖S (vγn)‖2L2(Ω) ≤ dγ + 1.

This implies the following bounds

‖vγn‖ρ ≤ Cγ , ‖y (vγn, 0)‖ρ ≤ Cγ ,
1√
γ
‖S (vγn)‖L2(Ω) ≤ Cγ ,

where Cγ is a positive constant independent of n. Then, there exists uγ such that vγn ⇀ uγ weakly
in Uρ

ad (closed), also y (vγn, 0) ⇀ y (uγ , 0) weakly in L2
ρ (Q) because of continuity w.r.t. the data.

Since S is bounded, then

S (vγn) ⇀ S (uγ) weakly in L2 (Ω) ,

with
J γ
ρ (uγ) ≤ lim inf

n→∞
J γ
ρ (vγn)

and we conclude that
J γ
ρ (uγ) = inf

v∈Uρ
ad

J γ
ρ (v) .

Since J γ
ρ (v) is strictly convex, uγ is unique. �

It still remains to obtain an optimality system giving a characterization for low-regret control
uγ as follows

Theorem 2. The low-regret control uγ ∈ Uρ
ad which is a solution to (4.1), (4.2), (2.6), (4.6),

(4.7) is characterized by the following optimality system




Lyγ = uγ ; Lpγ = yγ − yd
yγ (x, 0) = 0, y′γ (x, 0) = 0, pγ (x, 0) = 0, p′γ (x, 0) = 0,

yγ (x, T ) = 0, y′γ (x, T ) = 0; pγ (x, T ) = 0, p′γ (x, T ) = 0

yγ =

{
θ (uγ , 0)
0

; pγ =

{
λγ ,
0,

in Q,

in Ω,
on Σ0,
on Σ�Σ0,

(4.8)

where γ > 0, yγ = y (uγ , 0) and pγ = p (uγ), with the following variational inequality

(
T ∗ (Lpγ) +Nuγ +

1

γ
S∗S (uγ) , v − uγ

)
ρ
≥ 0 ∀ v ∈ Uρ

ad, (4.9)

where T : v → y (v, 0) from Uρ
ad to L2

ρ (Q) is a linear bounded operator.
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P r o o f. A first order necessary condition of Euler–Lagrange [10] for (4.6), (4.7) gives for
every v ∈ Uρ

ad

(y (uγ , 0)− yd, y (v − uγ , 0))ρ +N (uγ , v − uγ)ρ +
1

γ
(S (uγ) , S (v − uγ))L2(Ω) ≥ 0. (4.10)

Denote yγ = y (uγ , 0) and let σγ = σ (uγ) be the unique solution of the following variational
equation

a (σγ , q) =

∫

Q
(yγ − yd) qdxdt ∀q ∈ V . (4.11)

Consider the pair (pγ , λγ) given by

pγ =
1

ρ2
Lσγ , λγ =

1

ρ2
∂σγ
∂ν

∣∣∣∣
Σ0

,

then (pγ , λγ) is the solution of the following backward wave equation





Lpγ = yγ − yd
pγ (x, T ) = 0, p′γ (x, T ) = 0

pγ =

{
λγ

0

in Q,
in Ω,
on Σ0,
on Σ�Σ0,

(4.12)

with the null controllability propriety

pγ (x, 0) = p′γ (x, 0) = 0.

Rewrite the optimality condition (4.10) to be in the following form

(
Lpγ , y (v − uγ , 0)

)
ρ
+

(
Nuγ +

1

γ
S∗S (uγ) , v − uγ

)
ρ
≥ 0 ∀ v ∈ Uρ

ad,

where (
Lpγ , y (v − uγ , 0)

)
ρ
= (T ∗ (Lpγ) , v − uγ)ρ ∀ v ∈ Uρ

ad,

which gives optimality condition (4.9).

The boundedness of T follows from the continuity of the solution to (2.2), (2.5) w.r.t. data. �

5. No-regret control optimality system (Optimal control for the ill-posed wave
equation)

In this section, we will give an optimality system characterizing the optimal control (or the
no-regret control) solution to (4.1), (4.2), (2.6), (4.4) by taking the limits of uγ , yγ , pγ , θ (uγ , 0)
and λγ when γ → 0.

Theorem 3. There exists a positive constant C independent of γ such that

‖uγ‖ρ ≤ C, ‖yγ − yd‖ρ ≤ C, ‖yγ‖ρ ≤ C, ‖S (uγ)‖L2(Ω) ≤ C
√
γ, (5.1a)

‖σγ‖ρ ≤ C, ‖θ (uγ , 0)‖L2(Σ0)
≤ C, ‖λγ‖L2(Σ0)

≤ C, (5.1b)

‖pγ‖L∞(0,T ;H1

0
(Ω)) ≤ C,

∥∥p′γ
∥∥
L∞(0,T ;L2(Ω))

≤ C.
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P r o o f. Let uγ is the unique solution for (4.1), (4.2), (2.6), (4.6), (4.7), then

J γ
ρ (uγ) ≤ J γ

ρ (0) = 0 i.e. Jρ (uγ , 0) +
1

γ
‖S (uγ)‖2L2(Ω) ≤ Jρ (0, 0)

which give (5.1a).
Choose q = σγ in (4.11) with Lax–Milgram theorem stability estimates to prove that

∃C > 0 : ‖σγ‖ρ ≤ C,

where C is independent of γ. From continuity and (5.1a), we deduce the boundedness of θ (uγ , 0)
and λγ in L2 (Σ0).

Multiply (4.12) by p′γ , integrate by parts, and use (5.1a) with (5.1b) to find

∥∥p′γ
∥∥2
L∞(0,T ;L2(Ω))

+ ‖pγ‖2L∞(0,T ;H1

0
(Ω)) ≤ C

(
‖yγ − yd‖2L2(Q) + ‖λγ‖2L2(Σ0)

)
≤ C.

�

Lemma 3. The low-regret control uγ solution to (4.1), (4.2), (2.6), (4.6), (4.7) converges in
Uρ
ad to the no-regret control u solution to (4.1), (4.2), (2.6), (4.4).

P r o o f. By (5.1a), we have
‖Lyγ‖ρ ≤ C

and
uγ ⇀ u weakly in Uρ

ad,

yγ ⇀ y weakly in L2
ρ (Q) .

And by (5.1b) we have
θ (uγ , 0) ⇀ θ (u, 0) weakly in L2 (Σ0) .

We conclude that y solves




Ly = u
y (0) = 0, y′ (0) = 0
y (T ) = 0, y′ (T ) = 0

y =

{
θ (u, 0)
0

in Q,
in Ω,
in Ω,
on Σ0,
on Σ�Σ0.

Again, from (5.1a)
S (uγ) → 0 strongly in L2 (Ω) ,

then (S (u) , g)L2(Ω) = 0 for every g in L2 (Ω), which means that u is a no-regret control solution
to (4.1), (4.2), (2.6), (4.4). �

Finally, we can announce the following our main theorem characterizing the optimal control for
the ill-posed wave equation (4.2).

Theorem 4. The no-regret control u ∈ Uρ
ad solution to (4.1), (4.2), (2.6), (4.5) is characterized

by the following optimality system




Ly = u; Lp = y − yd
y (x, 0) = 0, y′ (x, 0) = 0, p (x, 0) = 0, p′ (x, 0) = 0,
y (x, T ) = 0, y′ (x, T ) = 0; p (x, T ) = 0, p′ (x, T ) = 0

y =

{
θ (u, 0)
0

; p =

{
λ
0

in Q,

in Ω,
on Σ0,

on Σ�Σ0,

(5.2)
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where λ = lim
γ→0

λγ , y = y (u, 0) and p = p (u), with the following variational inequality

(
T ∗ (Lp) +Nρ2u+ S∗S (u) , v − u

)
L2(Q)

≥ 0 ∀ v ∈ Uρ
ad.

P r o o f. We have already proved the convergence of yγ to y, and uγ to u in the proof of
Lemma 3. For the rest, use (5.1a) to get

‖Lpγ‖ρ ≤ C,

and (5.1b), to find

λγ ⇀ λ weakly in L2 (Σ0) ,

Passing to the limit when γ → 0 in (4.8) we obtain the optimality system (5.2). �

6. Conclusion

To sum up, our work leads to solving the optimal control problem for an ill-posed wave equation
without requiring the extra hypothesis of Slater. The main idea was to make a null controllability
approach to deal with a well-posed equation with a missing initial condition. Then, we have applied
the no-regret control method to solve the optimal control with incomplete data. The optimality
system describing the optimal control is built by an overdetermined optimal state and adjoint state.
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Abstract: In this paper, we study the growth of solutions of higher order linear differential equations
with meromorphic coefficients of ϕ-order on the complex plane. By considering the concepts of ϕ-order and
ϕ-type, we will extend and improve many previous results due to Chyzhykov–Semochko, Beläıdi, Cao–Xu–Chen,
Kinnunen.
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1. Introduction

Let us consider the following linear differential equations

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = 0, (1.1)

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = F (z), (1.2)

where k ≥ 2, A0 6≡ 0 and F 6≡ 0. It is well-known that if the coefficients A0, A1, . . . , Ak−1 and
F are entire functions, then all solutions of (1.1) and (1.2) are entire. The equation (1.1) has at
least one solution of infinite order if some of coefficients are transcendental. For more details about
the growth of solutions of equations (1.1) and (1.2), the reader can refer to [14]. In this paper,
we use the standard notations of Nevanlinna value distribution theory of meromorphic functions
(see [10, 14, 18, 22]). The term meromorphic function throughout this paper means meromorphic
in the whole complex plane C. This will not be recalled in the next statements.

To study the growth of meromorphic functions, we recall the following definitions. For all r ∈ R,
we define exp1 r = exp r = er and expp+1 r = exp(expp r), p ∈ N = {1, 2, . . . }. Inductively, for all
r ∈ (0,+∞) large enough, we define log1 r = log r and logp+1 r = log(logp r), p ∈ N. We also denote
exp0 r = r = log0 r, exp−1 r = log1 r and log−1 r = exp1 r.

Definition 1 [13]. The iterated p-order of a meromorphic function f is defined by

ρp(f) := lim sup
r→+∞

logp T (r, f)

log r
, p ∈ N,

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire function, then the

iterated p-order is defined as

ρ̃p(f) := lim sup
r→+∞

logp+1M(r, f)

log r
= ρp(f),

where M(r, f) = max{|f(z)| : |z| = r} is the maximum modulus of f .

https://doi.org/10.15826/umj.2020.1.008
mailto:benharrat.belaidi@univ-mosta.dz
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Note that ρ1(f) = ρ(f) is the usual order and ρ2(f) is the hyper-order.

Definition 2 [13]. The growth index of the iterated p-order of a meromorphic function f is

defined by

i (f) =





0 if f is rational,

min {j ∈ N : ρj (f) < +∞} if f is transcendental and ρj (f) < +∞ for some j ∈ N,
+∞ if ρj (f) = +∞ for all j ∈ N.

Historically, Bernal [4] was the first one who introduced the idea of the iterated order to study
the growth of solutions of complex differential equations. In [13], Kinnunen considered the growth
of solutions of equations (1.1) and (1.2) with entire coefficients of a finite iterated p-order and
extended many previous results obtained for the usual order and the hyper-order.

Theorem A [13]. Let A0 (z) , . . . , Ak−1 (z) be entire functions such that i (A0) = p (0<p<∞) .
If either max{i (Aj): j = 1, 2, . . . , k − 1} < p or max{ρp (Aj): j = 1, 2, . . . , k − 1} < ρp (A0) , then
every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p+ 1 and ρp+1 (f) = ρp (A0) .

In [3], the second author has extended Theorem A when most of the coefficients
A0 (z) , . . . , Ak−1 (z) have the same order by using the concept of iterated p-type as follows.

Theorem B [3]. Let A0 (z) , . . . , Ak−1 (z) be entire functions, and let i (A0) = p (0 < p < ∞) .
Assume that

max{ρp (Aj) : j = 1, 2, . . . , k − 1} ≤ ρp (A0) = ρ (0 < ρ < +∞)

and

max{τ̃p (Aj) : ρp (Aj) = ρp (A0)} < τ̃p (A0) = τ (0 < τ < +∞) ,

where

τ̃p (f) = lim sup
r→+∞

logpM (r, f)

rρp(f)
.

Then, every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p+ 1 and ρp+1 (f) = ρp (A0) = ρ.

In [5], Cao–Xu–Chen improved Theorems A and B by considering meromorphic coefficients
instead of entire coefficients. In [16], Liu–Tu–Shi made a small modification in the original definition
of [p, q]-order introduced by Juneja–Kapoor–Bajpai [11] in order to study the growth of entire
solutions of equations (1.1) and (1.2). After that, Li and Cao [15] investigated the growth of
meromorphic solutions of equations (1.1) and (1.2) with meromorphic coefficients of [p, q]-order
which improved many results in [3, 5, 13, 16].

Definition 3 [15, 16]. Let p ≥ q ≥ 1 be integers. The [p, q]-order of transcendental meromor-

phic function f is defined by

ρ[p,q](f) = lim sup
r→+∞

logp T (r, f)

logq r
.

If f is transcendental entire function, then

ρ[p,q](f) = lim sup
r→+∞

logp+1M(r, f)

logq r
.

Note that ρ[p,1](f) = ρp(f) is the iterated p-order (see [13, 14]).
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Definition 4 [15]. The [p, q]-type of a meromorphic function f with [p, q]-order ρ[p,q](f) ∈
(0,+∞) is defined by

τ[p,q](f) = lim sup
r→+∞

logp−1 T (r, f)

(logq−1 r)
ρ[p,q](f)

.

Definition 5 [15]. Let p ≥ q ≥ 1 be integers. The [p, q]-convergence exponent of the sequence

of zeros of a meromorphic function f is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN (r, 1/f)

logq r
,

where N (r, 1/f) is the integrated counting function of zeros of f in {z : |z| ≤ r} . Similarly, the

[p, q]-convergence exponent of the sequence of distinct zeros of f is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN (r, 1/f)

logq r
,

where N (r, 1/f) is the integrated counting function of distinct zeros of f in {z : |z| ≤ r}.

Here, we give two results due to Li-Cao in [15] concerning the growth of meromorphic solutions of
equations (1.1) and (1.2) when the coefficients are meromorphic functions of [p, q]-order.

Theorem C [15]. Let A0, A1, . . . , Ak−1 be meromorphic functions such that

max

{
ρ[p,q](Aj), λ[p,q]

(
1

A0

)
: j = 1, . . . , k − 1

}
< ρ[p,q](A0) < +∞.

Then every meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities of

equation (1.1) satisfies ρ[p+1,q](f) = ρ[p,q](A0).

If there exist some other coefficients Aj(j = 1, . . . , k − 1) having the same [p, q]-order as A0,
then we have the following result.

Theorem D [15]. Let A0, A1, . . . , Ak−1 be meromorphic functions such that λ[p,q] (1/A0) <
ρ[p,q](A0) and

max{ρ[p,q](Aj) : j = 1, . . . , k − 1} = ρ[p,q](A0) < +∞,

max{τ[p,q](Aj) : ρ[p,q](Aj) = ρ[p,q](A0) > 0, j = 1, . . . , k − 1} < τ[p,q](A0).

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ[p+1,q](f) = ρ[p,q](A0).

It is clear that Theorem C and Theorem D improve respectively Theorem A and Theorem B
from entire coefficients of iterated p-order to meromorphic coefficients of [p, q]-order. Recently,
Chyzhykov and Semochko [7] showed that both definitions of iterated p-order and [p, q]-order have
the disadvantage that they do not cover arbitrary growth (see [7, Example 1.4]). They introduced
more general scale to measure the growth of entire solutions of equation (1.1) called the ϕ-order
(see [20]).

Definition 6 [7]. Let ϕ be an increasing unbounded function on [1,+∞) . The ϕ-orders of a

meromorphic function f are defined by

ρ0ϕ(f) = lim sup
r→+∞

ϕ(eT (r,f))

log r
, ρ1ϕ(f) = lim sup

r→+∞

ϕ(T (r, f))

log r
.

If f is an entire function, then the ϕ-orders are defined by

ρ̃0ϕ(f) = lim sup
r→+∞

ϕ(M(r, f))

log r
, ρ̃1ϕ(f) = lim sup

r→+∞

ϕ(logM(r, f))

log r
.
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Definition 7 [1]. Let ϕ be an increasing unbounded function on [1,+∞). We define the ϕ-types
of a meromorphic function f with ϕ-order ∈ (0,+∞) by

τ0ϕ(f) = lim sup
r→+∞

eϕ(e
T (r,f))

rρ
0
ϕ(f)

, τ1ϕ(f) = lim sup
r→+∞

eϕ(T (r,f))

rρ
1
ϕ(f)

.

If f is an entire function, then the ϕ-types are defined as

τ̃0ϕ(f) = lim sup
r→+∞

eϕ(M(r,f))

rρ̃
0
ϕ(f)

, τ̃1ϕ(f) = lim sup
r→+∞

eϕ(logM(r,f))

rρ̃
1
ϕ(f)

.

By symbol Φ we define the class of positive unbounded increasing functions on [1,+∞) , such that

ϕ(et) grows slowly, i. e., ∀c > 0 : lim
r→+∞

ϕ(ect)

ϕ(et)
= 1.

Example 1. Let f be a meromorphic function. One can see that ϕ(r) = logp r, (p ≥ 2) belongs
to the class Φ and ϕ(r) = log r /∈ Φ. Moreover, the ρ1ϕ(f) order of the function f coincides
with its iterated p-order, i. e., ρ1ϕ(f) = ρp(f). As a particular case, for ϕ = log2 ∈ Φ we have
ρ0log2(f) = ρ1(f) and ρ1log2(f) = ρ2(f) which are respectively the usual order and the hyper-order
of f .

The following result due to Chyzhykov–Semochko [7] investigates the growth of entire solutions
of equation (1.1) when the coefficients are entire functions of ϕ-order.

Theorem E [7]. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be entire functions such that

max{ρ0ϕ(Aj), j = 1, . . . , k − 1} < ρ0ϕ(A0).

Then every solution f 6≡ 0 of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

We recall that the linear measure of a set E ⊂ (0,+∞) is defined by

m(E) =

∫ +∞

0
χE(t) dt

and the logarithmic measure of a set F ⊂ (1,+∞) is defined by

lm(F ) =

∫ +∞

1

χF (t)

t
dt,

where χA is the characteristic function of a set A. The upper density of a set E ⊂ (0,+∞) is
defined by

densE = lim sup
r→+∞

m(E ∩ [0, r])

r
.

The upper logarithmic density of a set F ⊂ (1,+∞) is defined by

log densF = lim sup
r→+∞

lm(F ∩ [1, r])

log r
.

Definition 8 [10, 22]. For a ∈ C = C∪{∞}, the deficiency of a with respect to a meromorphic

function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1/(f − a)

)

T (r, f)
= 1− lim sup

r→+∞

N
(
r, 1/(f − a)

)

T (r, f)
, a 6= ∞,

δ (∞, f) = lim inf
r→+∞

m (r, f)

T (r, f)
= 1− lim sup

r→+∞

N (r, f)

T (r, f)
.
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Recently, the second author has studied the growth of entire solutions of equation (1.1) when
the coefficients are entire functions of ϕ-order and obtained the following results.

Theorem F [2]. Let G be a set of complex numbers z satisfying log dens {|z| : z ∈ G} > 0. Let
ϕ ∈ Φ and let A0, A1, . . . , Ak−1 be entire functions satisfying

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} ≤ α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

T (r,A0) ≥ log
(
ϕ−1((α− ε) log r)

)

and

T (r,Aj) ≤ log
(
ϕ−1(β log r)

)
, j = 1, . . . , k − 1

as |z| → +∞ for z ∈ G. Then every non-zero solution f of equation (1.1) satisfies ρ1ϕ(f) = α.

Theorem G [1]. Let A0 (z) , . . . , Ak−1 (z) be entire functions, and let ϕ ∈ Φ. Assume that

max{ρ̃0ϕ (Aj) : j = 1, . . . , k − 1} ≤ ρ̃0ϕ (A0) = ρ < +∞ (0 < ρ < +∞)

and

max{τ̃0ϕ (Aj) : ρ̃
0
ϕ (Aj) = ρ̃0ϕ (A0)} < τ̃0ϕ (A0) = τ (0 < τ < +∞) .

Then every solution f 6≡ 0 of (1.1) satisfies ρ̃1ϕ (f) = ρ̃0ϕ (A0) .

2. Main results

The aim of this paper is to investigate the growth of meromorphic solutions of equations (1.1)
and (1.2) with meromorphic coefficients of finite ϕ-order. By using the concept of ϕ-order, we can
cover arbitrary growth of solutions of equations (1.1) and (1.2) which improves several results in
[1–3, 5, 7, 13]. To do that, we firstly introduce the following quantities by an analogous manner
with the definitions of the ϕ-orders.

Definition 9. Let ϕ be an increasing unbounded function on [1,+∞). We define the ϕ-
convergence exponents of the sequence of zeros of a meromorphic function f by

λ0
ϕ(f) = lim sup

r→+∞

ϕ
(
eN(r,1/f)

)

log r
, λ1

ϕ(f) = lim sup
r→+∞

ϕ (N(r, 1/f))

log r
.

Similarly, the notations λ̄0
ϕ(f) and λ̄1

ϕ(f) can be used to denote the ϕ-convergence exponents of the

sequence of distinct zeros of f .

Now, we list our main results.

Theorem 1. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions. Suppose, there exists

one coefficient As (s ∈ {0, 1, . . . , k − 1}) such that

max

{
ρ0ϕ(Aj), λ

0
ϕ

(
1

As

)
: j = 0, 1, . . . , k − 1 (j 6= s)

}
< ρ0ϕ(As) < +∞.

Then every transcendental meromorphic solution f whose poles are of uniformly bounded multiplic-

ities of (1.1) satisfies
ρ1ϕ(f) ≤ ρ0ϕ(As) ≤ ρ0ϕ(f).

Furthermore, if all solutions of (1.1) are meromorphic solutions, then there is at least one mero-

morphic solution, say f1, verifies ρ1ϕ(f1) = ρ0ϕ(A0).
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Remark 1. By setting ϕ (r) = logp+1 r (p ≥ 1) in Theorem 1, we obtain Theorem 2.2 in [5].

Theorem 2. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions such that

max

{
λ0
ϕ

(
1

A0

)
, ρ0ϕ(Aj) : j = 1, . . . , k − 1

}
< ρ0ϕ(A0) < +∞.

Then every non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

Remark 2. Clearly, Theorem 2 is an extension of Theorem E from entire solutions of equa-
tion (1.1) to the case of meromorphic solutions of equation (1.1) with meromorphic coefficients
instead of entire coefficients. Furthermore, by setting ϕ (r) = logp+1 r (p ≥ 1) in Theorem 2, we
obtain Theorem A when the coefficients of (1.1) are entire functions.

If there exist some other coefficients Aj (j = 1, . . . , k − 1) having the same ϕ-order as A0, then
we have the following result.

Theorem 3. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions such that

λ0
ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ(Aj) : j = 1, . . . , k − 1} ≤ ρ0ϕ(A0) = ρ0 < +∞, (2.1)

max{τ0ϕ(Aj) : ρ
0
ϕ(Aj) = ρ0ϕ(A0) > 0, j = 1, . . . , k − 1} < τ0ϕ(A0) = τ0 (0 < τ0 < +∞) . (2.2)

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

Remark 3. Namely, Theorem 3 extends Theorem G from entire solutions of equation (1.1) to
meromorphic solutions. Furthermore, by setting ϕ(r) = logp+1 r (p ≥ 1) in Theorem 3, we obtain
Theorem 2.1 in [5] and Theorem B when the coefficients of (1.1) are entire functions.

Theorem 4. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions such that

λ0
ϕ (1/A0) < ρ0ϕ(A0) and

max
{
ρ1ϕ(F ), ρ0ϕ(Aj) : j = 1, . . . , k − 1

}
< ρ0ϕ(A0) < +∞. (2.3)

Then every meromorphic solution f whose poles are of uniformly bounded multiplicities of (1.2)
satisfies

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = ρ0ϕ(A0)

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < ρ0ϕ(A0).

Remark 4. Theorem 4 is a counterpart of Theorem 1.6 in [15]. Moreover, if we choose ϕ (r) =
logp+1 r (p ≥ 1) in Theorem 4, then we obtain a special case of Theorem 2.6 in [21].

Theorem 5. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions such that

max{ρ0ϕ(Aj) : j = 0, . . . , k − 1} < ρ1ϕ(F ).

If all solutions f of (1.2) are meromorphic functions whose poles are of uniformly bounded multi-

plicities, then there holds ρ1ϕ(f) = ρ1ϕ(F ) for all solutions of (1.2).

Remark 5. Theorem 5 is a counterpart of Theorem 1.7 in [15]. Furthermore, if we choose
ϕ (r) = logp+1 r (p ≥ 1) in Theorem 5, then we obtain a special case in [13, Remark 4.1, p. 399]
when the coefficients of equation (1.1) are entire functions.
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Theorem 6. Let G ⊂ (1,+∞) be a set of complex numbers z satisfying

log dens{|z| : z ∈ G} > 0.

Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions satisfying δ (∞, A0) = δ > 0 and

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} ≤ α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

T (r,A0) ≥ log
(
ϕ−1((α− ε) log r)

)
(2.4)

and

T (r,Aj) ≤ log
(
ϕ−1(β log r)

)
, j = 1, . . . , k − 1 (2.5)

as |z| = r → +∞ for z ∈ G. Then every non-zero meromorphic solution of equation (1.1) satisfies
ρ1ϕ(f) = α.

Remark 6. Theorem 6 extends Theorem F from entire solutions of equation (1.1) to meromor-
phic solutions.

Theorem 7. Let G ⊂ (1,+∞) be a set of complex numbers z satisfying

log dens{|z| : z ∈ G} > 0.

Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions satisfying

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} < α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

|A0(z)| ≥ ϕ−1((α− ε) log r) (2.6)

and

|Aj(z)| ≤ ϕ−1(β log r), j = 1, . . . , k − 1 (2.7)

as |z| = r → +∞ for z ∈ G. Then, the following conclusions hold

(i) If ρ1ϕ(F ) ≥ α, then all meromorphic solutions f whose poles are of uniformly bounded multi-

plicities of equation (1.2) satisfy ρ1ϕ(f) = ρ1ϕ(F ).

(ii) If ρ1ϕ(F ) < α, then every meromorphic solution f whose poles are of uniformly bounded

multiplicities of (1.2) satisfies

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = α

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < α.

Remark 7. Clearly, Theorem 7 is an improvement of Theorem 1.15 in [2] from entire solutions of
equation (1.2) to meromorphic solutions. Furthermore, Theorem 7 is a counterpart of Theorem 1.8
in [15].
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3. Preliminary lemmas

Proposition 1 [7]. If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→ +∞, x → +∞, (3.1)

∀δ > 0 :
logϕ−1((1 + δ)x)

logϕ−1(x)
−→ +∞, x → +∞. (3.2)

Remark 8 [7]. We can see that (3.2) implies that

∀c > 0, ϕ(ct) ≤ ϕ(tc) ≤ (1 + o(1))ϕ(t), t → +∞. (3.3)

Proposition 2 [7]. Let ϕ ∈ Φ and f be an entire function. Then

ρjϕ(f) = ρ̃jϕ(f), j = 0, 1.

Lemma 1 [6]. Let f be a meromorphic solution of equation (1.1), suppose that not all coeffi-

cients Aj are constants. Given a real number γ > 1, and denoting T (r) =
k−1∑
j=0

T (r,Aj), then the

inequalities

logm(r, f) < T (r){(log r) log T (r)}γ if s = 0,

logm(r, f) < r2s+γ−1T (r){log T (r)}γ if s > 0

take place outside of an exceptional set Es with
∫
Es

ts−1 dt < +∞.

Lemma 2 [8]. Let f1, f2, . . . , fk be linearly independent meromorphic solutions of equa-

tion (1.1) with meromorphic coefficients A0, A1, . . . , Ak−1. Then

m(r,Aj) = O
(
log
(
max
1≤i≤k

T (r, fi)
))

, j = 0, 1, . . . , k − 1.

Lemma 3 [9]. Let f be a transcendental meromorphic function and let α > 1 be a given con-

stant. Then, there exists a set E1 ⊂ (1,+∞) with finite logarithmic measure and a constant Bα > 0
that depends only on α and i, j (j > i ≥ 0) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we
have ∣∣∣∣∣

f (j)(z)

f (i)(z)

∣∣∣∣∣ ≤ Bα

{
T (αr, f)

r
(logα r) log T (αr, f)

}j−i

.

Lemma 4 [12]. Let f be a meromorphic function and ϕ ∈ Φ. Then

ρjϕ(f
′) = ρjϕ(f) for j = 0, 1.

Lemma 5 [7, 12]. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. Then

(i) ρjϕ(f1 + f2) ≤ max
{
ρjϕ(f1), ρ

j
ϕ(f2)

}
and ρjϕ(f1f2) ≤ max

{
ρjϕ(f1), ρ

j
ϕ(f2)

}
for j = 0, 1.

(ii) If ρjϕ(f1) < ρjϕ(f2), then ρjϕ(f1 + f2) = ρjϕ(f1f2) = ρjϕ(f2) for j = 0, 1.
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Lemma 6. Let ϕ ∈ Φ and f be a meromorphic function. Then, for any set E2 ⊂ [0,+∞) with
finite linear measure, there exists a sequence {rn, rn /∈ E2} such that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f),

(
resp. lim

rn→+∞

ϕ(eT (rn,f))

log rn
= ρ0ϕ(f)

)
.

P r o o f. The definition of ρ1ϕ(f) implies that there exists a sequence {sn, n ≥ 1}, sn → +∞
such that

lim
sn→+∞

ϕ(T (sn, f))

log sn
= ρ1ϕ(f).

Setting m(E2) = δ < +∞. Then, for rn ∈ [sn, sn + δ + 1]\E2, we have

ϕ(T (rn, f))

log rn
≥

ϕ(T (sn, f))

log(sn + δ + 1)
=

ϕ(T (sn, f))

log sn + log
(
1 +

δ + 1

sn

) .

Hence

lim
rn→+∞

ϕ(T (rn, f))

log rn
≥ lim

sn→+∞

ϕ(T (sn, f))

log sn + log
(
1 +

δ + 1

sn

) = ρ1ϕ(f).

By

lim
rn→+∞

ϕ(T (rn, f))

log rn
≤ lim sup

r→+∞

ϕ(T (r, f))

log r
= ρ1ϕ(f),

we deduce that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f).

Similar proof for ρ0ϕ(f). �

Lemma 7. Let ϕ ∈ Φ and f be a meromorphic function satisfying 0 < ρ0ϕ(f) < +∞ and

0 < τ0ϕ(f) < +∞. Then, for any given η < τ0ϕ(f), there exists a set E3 ⊂ [0,+∞) with infinite

logarithmic measure such that for all r ∈ E3, we have

ϕ(eT (r,f)) > log(η rρ
0
ϕ(f)).

P r o o f. We denote ρ0ϕ(f) = ρ0 and τ0ϕ(f) = τ0. The definition of τ0ϕ(f) implies that there
exists a sequence {rm,m ≥ 1} tending to +∞ satisfying

(
1 +

1

m

)
rm < rm+1 and lim

m→+∞

eϕ(e
T (rm,f))

rρ0m
= τ0.

Then, for any given ε (0 < ε < τ0 − η), there exists an integer m1 such that for all m ≥ m1, we
have

eϕ(e
T (rm,f)) > (τ0 − ε)rρ0m . (3.4)

Since η < τ0 − ε, there exists an integer m2 such that for all m ≥ m2, we have

(
m

m+ 1

)ρ0

>
η

τ0 − ε
. (3.5)

Taking m ≥ m3 = max{m1,m2}, it follows from (3.4) and (3.5) that for any r ∈ [rm, (1 + 1/m) rm]

eϕ(e
T (r,f)) ≥ eϕ(e

T (rm,f)) > (τ0 − ε)rρ0m ≥ (τ0 − ε)

(
mr

m+ 1

)ρ0

> η rρ0 .
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Thus
ϕ(eT (r,f)) > log(η rρ

0
ϕ(f)).

Setting E3 =
+∞⋃

m=m3

[rm, (1 + 1/m) rm] , then the logarithmic measure lm(E3) of E3 satisfies

lm(E3) =
+∞∑

m=m3

(1+1/m)rm∫

rm

dt

t
=

+∞∑

m=m3

log
(
1 +

1

m

)
= +∞.

�

Lemma 8. Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions and let f be a meromorphic

solution of equation (1.2). If max
{
ρ1ϕ(F ), ρ1ϕ(Aj) : j = 0, 1, . . . , k − 1

}
< ρ1ϕ(f), then

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f).

P r o o f. Equation (1.2) can be written as

1

f
=

1

F

(f (k)

f
+Ak−1

f (k−1)

f
+ · · · +A1

f ′

f
+A0

)
. (3.6)

If f has a zero at z0 of order l > k and if A0, A1, . . . , Ak−1 are all analytic at z0, then F has a zero
at z0 of order at least l − k. Then

n
(
r,

1

f

)
≤ k · n̄

(
r,

1

f

)
+ n

(
r,

1

F

)
+

k−1∑

j=0

n(r,Aj)

and

N
(
r,

1

f

)
≤ k · N̄

(
r,

1

f

)
+N

(
r,

1

F

)
+

k−1∑

j=0

N(r,Aj). (3.7)

By the lemma of logarithmic derivative [10] and (3.6), we get that

m
(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k−1∑

j=0

m(r,Aj) +O(log r + log T (r, f)) (3.8)

holds for all |z| = r /∈ E4, where E4 is a set of finite linear measure. By (3.7), (3.8) and the
Nevanlinna’s first main theorem, we obtain

T (r, f) = T
(
r,

1

f

)
+O(1) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+O(1)

≤ k · N̄
(
r,

1

f

)
+ T (r, F ) +

k−1∑

j=0

T (r,Aj) +O(log r + log T (r, f))

(3.9)

holds for all sufficiently large r /∈ E4. We denote

µ = max
{
ρ1ϕ(F ), ρ1ϕ(Aj) (j = 0, 1, . . . , k − 1)

}
.

According to Lemma 6, there exists a sequence {rn, rn /∈ E4} such that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f) = ρ1.
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So, if rn /∈ E4, then for any given ε (0 < 2ε < ρ1 − µ) we get

T (rn, f) ≥ ϕ−1((ρ1 − ε) log rn). (3.10)

We have

max
j=0,1,...,k−1

{T (rn, F ), T (rn, Aj)} ≤ ϕ−1((µ + ε) log rn), (3.11)

O(log rn + log T (rn, f)) = o(T (rn, f)). (3.12)

Since ε (0 < 2ε < ρ1 − µ), then from (3.10), (3.11) and Proposition 1, we obtain

max
j=0,1,...,k−1

{
T (rn, F )

T (rn, f)
,
T (rn, Aj)

T (rn, f)

}
≤

exp
{
logϕ−1((µ+ ε) log rn)

}

exp {logϕ−1((ρ1 − ε) log rn)}

= exp
{
logϕ−1((µ + ε) log rn)− logϕ−1((ρ1 − ε) log rn)

}

= exp

{(
1−

logϕ−1((ρ1 − ε) log rn)

logϕ−1((µ + ε) log rn)

)
logϕ−1((µ+ ε) log rn)

}
−→ 0

(3.13)

as rn → +∞. By substituting (3.12) and (3.13) into (3.9) we deduce that for sufficiently large
rn /∈ E4, there holds

(1− o(1))T (rn, f) ≤ kN̄

(
rn,

1

f

)
.

From this inequality, by the monotonicity of ϕ and (3.3), we obtain ρ1ϕ(f) ≤ λ̄1
ϕ(f). In addition,

we have by definition that λ̄1
ϕ(f) ≤ λ1

ϕ(f) ≤ ρ1ϕ(f). Hence λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f). �

Lemma 9. Let f be a meromorphic function. If ρ0ϕ(f) = ρ < +∞, then ρ1ϕ(f) = 0.

P r o o f. Suppose that ρ0ϕ(f) = ρ < +∞. Then, for any given ε > 0 and sufficiently large r,
we have

T (r, f) ≤ log(ϕ−1((ρ+ ε) log r)).

By Karamata’s theorem (see [19]), it follows that ϕ(et) = to(1) as t → +∞. Hence,

ρ1ϕ(f) = lim sup
r→+∞

ϕ(T (r, f))

log r
= lim sup

r→+∞

ϕ(elog T (r,f))

log r

= lim sup
r→+∞

(log T (r, f))o(1)

log r
≤ lim sup

r→+∞

(
log log(ϕ−1((ρ+ ε) log r))

)o(1)

log r
= 0.

�

4. Proofs of the main results

P r o o f of Theorem 1. (i) We first prove that ρ1ϕ(f) ≤ ρ0ϕ(As) ≤ ρ0ϕ(f) holds for every
transcendental meromorphic function satisfying (1.1). From equation (1.1), we know that the poles
of f can only occur at the poles of A0, A1, . . . , Ak−1, note that the multiplicities of poles of f are
uniformly bounded, so we have

N(r, f) ≤ C1N̄(r, f) ≤ C1

k−1∑

j=0

N̄(r,Aj) ≤ Cmax{N(r,Aj) : j = 0, 1, . . . , k − 1} ≤ O(T (r,As)),
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where C and C1 are two suitable positive constants. Hence

T (r, f) ≤ m(r, f) +O(T (r,As)).

This inequality and Lemma 1 lead to

T (r, f) ≤ m(r, f) +O(T (r,As)) ≤ O(eT (r,As)[(log r) log T (r,As)]γ ), γ > 1

outside of an exceptional set E0 with finite logarithmic measure. By the monotonicity of the
function ϕ and (3.3), we obtain ρ1ϕ(f) ≤ ρ0ϕ(As).

On the other hand, equation (1.1) can be written as

−As =
f (k)

f (s)
+Ak−1

f (k−1)

f (s)
+ · · ·+As+1

f (s+1)

f (s)
+As−1

f (s−1)

f (s)
+ · · · +A0

f

f (s)

=
f

f (s)

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · · +As+1

f (s+1)

f
+As−1

f (s−1)

f
+ · · ·+A0

)
.

By the lemma of logarithmic derivative and the fact that

m

(
r,

f

f (s)

)
≤ T (r, f) + T

(
r,

1

f (s)

)
= T (r, f) + T (r, f (s)) +O(1) = O(T (r, f)),

it follows that

T (r,As) ≤ N(r,As) +
∑

j 6=s

m(r,Aj) +O(log r + log T (r, f)) +O(T (r, f)) (4.1)

which holds for all |z| = r /∈ E5 where E5 is a set of finite linear measure. By Lemma 6, it follows
that there exists a sequence {rn, n ≥ 1}, rn → +∞ such that for |zn| = rn /∈ E5

lim
rn→+∞

ϕ(eT (rn,As))

log rn
= ρ0ϕ(As) = ρ0

and so

T (rn, As) ≥ log(ϕ−1((ρ0 − ε) log rn)). (4.2)

Under the assumption η = max
{
ρ0ϕ(Aj), λ

0
ϕ (1/As) : j 6= s

}
< ρ0ϕ(As) = ρ0, we have

N(rn, As) ≤ log(ϕ−1((η + ε) log rn)), (4.3)

m(rn, Aj) ≤ T (rn, Aj) ≤ log(ϕ−1((η + ε) log rn)), j 6= s (4.4)

provided for any given ε that verifies 0 < 2ε < ρ0− η. Substituting (4.2), (4.3) and (4.4) into (4.1),
we get

(1− o(1)) log(ϕ−1((ρ0 − ε) log rn)) ≤ O(log rn + log T (rn, f)) +O(T (rn, f)) = O(T (rn, f)).

Applying (3.3), one can deduce that ρ0ϕ(As) = ρ0 ≤ ρ0ϕ(f).

(ii) Now, we prove that there exists at least one meromorphic solution that satisfies
ρ1ϕ(f) = ρ0ϕ(As). Let {f1, f2, . . . , fk} be a solution base of equation (1.1). By Lemma 2, we have

em(r,As) ≤ O
(
max
1≤i≤k

T (r, fi)
)
, s ∈ {1, 2, . . . , k − 1}.
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If N(r,As) ≥ m(r,As), so T (r,As) ≤ 2N(r,As), then ρ0ϕ(As) ≤ λ0
ϕ

(
1

As

)
. This contradicts our

assumption λ0
ϕ

(
1

As

)
< ρ0ϕ(As) and asserts that N(r,As) < m(r,As). Hence, for sufficiently large r,

we have
eT (r,As) = O(em(r,As)) ≤ O

(
max
1≤i≤k

T (r, fi)
)
.

This implies that there exists at least one solution of {f1, f2, . . . , fk}, say f1, that satisfies
eT (r,As) ≤ O(T (r, f1)). By this inequality and (3.3) and the monotonicity of ϕ, we obtain

ρ0ϕ(As) ≤ ρ1ϕ(f1).

We have proved in the first part that ρ1ϕ(f1) ≤ ρ0ϕ(As). Therefore, ρ
1
ϕ(f1) = ρ0ϕ(As). �

P r o o f of Theorem 2. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). Equation (1.1) can be written as

A0 = −

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · · +A1

f ′

f

)
.

By the lemma of logarithmic derivative and the above equation, we have

m(r,A0) ≤

k−1∑

j=1

m(r,Aj) +

k∑

j=1

m

(
r,
f (j)

f

)
+O(1)

≤

k−1∑

j=1

m(r,Aj) +O(log r + log T (r, f))

(4.5)

holds possibly outside of an exceptional set E6 ⊂ (0,+∞) with finite linear measure. From this
inequality, it follows

T (r,A0) = m(r,A0) +N(r,A0)

≤ N(r,A0) +

k−1∑

j=1

m(r,Aj) +O(log r + log T (r, f))
(4.6)

holds for r /∈ E6. By Lemma 6, it follows that there exists a sequence {rn, n ≥ 1}, rn → +∞ such
that for |zn| = rn /∈ E6

lim
rn→+∞

ϕ(eT (rn,A0))

log rn
= ρ0ϕ(A0) = ρ0

and so
T (rn, A0) ≥ log(ϕ−1((ρ0 − ε) log rn)) (4.7)

under the assumption η = max
{
ρ0ϕ(Aj), λ

0
ϕ (1/A0) : j 6= 0

}
< ρ0ϕ(A0) = ρ0, we have

N(rn, A0) ≤ log(ϕ−1((η + ε) log rn)), (4.8)

m(rn, Aj) ≤ T (rn, Aj) ≤ log(ϕ−1((η + ε) log rn)), j 6= 0 (4.9)

provided for any given ε that verifies 0 < 2ε < ρ0− η. Substituting (4.7), (4.8) and (4.9) into (4.6),
we get

(1− o(1)) log(ϕ−1((ρ0 − ε) log rn)) ≤ O(log rn + log T (rn, f)).
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Applying (3.3), one can deduce that ρ0ϕ(A0) = ρ0 ≤ ρ1ϕ(f).
On the other hand, from Theorem 1, we have ρ0ϕ(A0) ≥ ρ1ϕ(f). We deduce finally that every

meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities of (1.1) satisfies
ρ1ϕ(f) = ρ0ϕ(A0). �

P r o o f of Theorem 3. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). If λ0

ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ(Aj) : j = 1, . . . , k − 1} < ρ0ϕ(A0) < +∞,

then by Theorem 2, we obtain ρ1ϕ (f) = ρ0ϕ (A0) . Suppose that λ
0
ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ (Aj) : j = 1, . . . , k − 1} = ρ0ϕ (A0) = ρ0 (0 < ρ0 < +∞) ,

max{τ0ϕ (Aj) : ρ
0
ϕ (Aj) = ρ0ϕ (A0)} < τ0ϕ (A0) = τ0 (0 < τ0 < +∞) .

Then, there exists a set J ⊆ {1, . . . , k − 1} such that ρ0ϕ (Aj) = ρ0ϕ (A0) = ρ0 (j ∈ J) and τ0ϕ (Aj) <
τ0ϕ (A0) = τ0 (j ∈ J) . Hence, there exist two constants β1 and β2 such that

max{τ0ϕ(Aj) : j ∈ J} < β1 < β2 < τ0ϕ(A0) = τ0.

The definition of the type τ0ϕ(Aj) implies that for r sufficiently large

em(r,Aj) ≤ eT (r,Aj) < ϕ−1(log(β1r
ρ0)), j ∈ J (4.10)

and

em(r,Aj) ≤ eT (r,Aj) < ϕ−1(log(rρ
0
0)) < ϕ−1(log(β1r

ρ0)), j ∈ {1, . . . , k − 1} \ J, (4.11)

where 0 < ρ00 < ρ0. Since λ0 = λ0
ϕ (1/A0) < ρ0ϕ(A0) = ρ0, then for any given ε (0 < 2ε < ρ0 − λ0)

and sufficiently large r, we have

eN(r,A0) ≤ ϕ−1(log(rλ0+ε)) < ϕ−1(log(rρ0−ε)) < ϕ−1(log(β1r
ρ0)). (4.12)

By Lemma 7, there exists a set E3 ⊂ [1,+∞) with infinite logarithmic measure such that for all
r ∈ E3, we have

eT (r,A0) > ϕ−1(log(β2r
ρ0)). (4.13)

By substituting (4.10), (4.11), (4.12) and (4.13) into (4.6), we obtain

(1− o(1)) log(ϕ−1[log(β2r
ρ0)]) ≤ O(log r + log T (r, f)) (4.14)

for all r ∈ E3\E6. Since E3\E6 is a set of infinite logarithmic measure, then there exists a sequence
of points |zn| = rn ∈ E3\E6 tending to +∞. Hence, by (4.14) we have

(1− o(1)) log(ϕ−1[log(β2r
ρ0
n )]) ≤ O(log rn + log T (rn, f))

holds for all zn satisfying |zn| = rn ∈ E3\E6 as |zn| = rn → +∞. By the monotonicity of
ϕ−1 and (3.3), we obtain ρ0ϕ(A0) ≤ ρ1ϕ(f). By Theorem 1, we have ρ1ϕ(f) ≤ ρ0ϕ(A0). Therefore
ρ1ϕ(f) = ρ0ϕ(A0) which completes the proof. �

P r o o f of Theorem 4. Since all solutions of equation (1.2) are meromorphic functions, all
solutions of the homogeneous differential equation (1.1) corresponding to equation (1.2) are also
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meromorphic functions. We assume that {f1, . . . , fk} is a meromorphic solution base of (1.1), then
any solution of (1.2) has the form

f = c1f1 + c2f2 + · · ·+ ckfk, (4.15)

where c1, c2, . . . , ck are meromorphic functions satisfying

c′j = F ·Gj(f1, . . . , fk) ·W
−1(f1, . . . , fk), j = 1, 2, . . . , k, (4.16)

where Gj(f1, . . . , fk) are differential polynomials in {f1, . . . , fk} and their derivatives and
W−1(f1, . . . , fk) is the Wronskian of {f1, . . . , fk}. We have by Theorem 2

ρ1ϕ(fj) = ρ0ϕ(A0), j = 1, . . . , k.

By Lemma 4, Lemma 5, (4.15) and (4.16), we get

ρ1ϕ(f) ≤ max{ρ1ϕ(fj) ( j = 1, . . . , k) , ρ1ϕ(F )} = ρ0ϕ(A0).

In order to show that all solutions f of equation (1.2) satisfy ρ1ϕ(f) = ρ0ϕ(A0) with at most one
exceptional solution, say f1, satisfying ρ1ϕ(f1) < ρ0ϕ(A0), we suppose that there exist two distinct
meromorphic solutions f1 and f2 of equation (1.2) satisfying ρ1ϕ(fi) < ρ0ϕ(A0), i = 1, 2. Then,
f = f1 − f2 is also a non-zero meromorphic solution of (1.1) and satisfies

ρ1ϕ(f) = ρ1ϕ(f1 − f2) ≤ max{ρ1ϕ(f1), ρ
1
ϕ(f2)} < ρ0ϕ(A0)

which contradicts Theorem 2. By (2.3) for all solutions f of equation (1.2) satisfying ρ1ϕ(f) =
ρ0ϕ(A0), by Lemma 9, we have

max{ρ1ϕ(F ), ρ1ϕ(Aj) (j = 0, 1, . . . , k − 1)} = ρ1ϕ(F ) < ρ0ϕ(A0) = ρ1ϕ(f).

By Lemma 8, we have λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) and hence Theorem 4 is proved. �

P r o o f of Theorem 5. Let f be a meromorphic solution of equation (1.2) and {f1, . . . , fk}
be a meromorphic solution base of (1.1) corresponding to equation (1.2). By a similar discussion
as in the proof of Theorem 4, it follows from Lemma 4, Lemma 5, (4.15) and (4.16) that

ρ1ϕ(f) ≤ max{ρ1ϕ(fj) (j = 1, . . . , k) , ρ1ϕ(F )}.

By the first part of the proof of Theorem 1, one can show easily that

ρ1ϕ(fj) ≤ max{ρ0ϕ(Aj) : j = 0, . . . , k − 1} (4.17)

for j = 1, . . . , k. We obtain from the assumptions of Theorem 5 that ρ1ϕ(fj) ≤ ρ1ϕ(F ) and thus

ρ1ϕ(f) ≤ ρ1ϕ(F ).

On the other hand, by Lemma 4, Lemma 5 and a simple order comparison from equation (1.2),
we get

ρ1ϕ(F ) ≤ max{ρ1ϕ(Aj) (j = 0, . . . , k − 1) , ρ1ϕ(f)}.

Since ρ1ϕ(Aj) ≤ ρ0ϕ(Aj) < ρ1ϕ(F ) (j = 0, . . . , k − 1) , then

ρ1ϕ(F ) ≤ ρ1ϕ(f).
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Therefore, ρ1ϕ(f) = ρ1ϕ(F ). �

P r o o f of Theorem 6. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). Set G1 = {|z| = r : z ∈ G}, since log dens{|z| : z ∈

G} > 0, then G1 is a set with

∫

G1

dr

r
= +∞. Set

δ (∞, A0) = lim inf
r→+∞

m (r,A0)

T (r,A0)
= δ > 0. (4.18)

Thus, for sufficiently large r, we have

m (r,A0) >
1

2
δT (r,A0) . (4.19)

By substituting (2.4), (2.5) and (4.19) into (4.5), we obtain for sufficiently large r and any given ε
(0 < 2ε < α− β)

1

2
δ log

(
ϕ−1((α − ε) log r)

)
≤

1

2
δT (r,A0) ≤ m(r,A0)

≤

k−1∑

j=1

m(r,Aj) +

k∑

j=1

m

(
r,
f (j)

f

)
+O(1)

≤

k−1∑

j=1

T (r,Aj) +O(log r + log T (r, f))

≤ (k − 1) log
(
ϕ−1(β log r)

)
+O(log r + log T (r, f)),

it follows that
(1− o(1)) log

(
ϕ−1((α − ε) log r)

)
≤ O(log r + log T (r, f)) (4.20)

holds for all z satisfying |z| = r ∈ G1 \ E6 as |z| = r → +∞. Since G1 \ E6 is a set of infinite
logarithmic measure, then there exists a sequence of points |zn| = rn ∈ G1 \ E6 tending to +∞.
Hence, by (4.20) we have

(1 − o(1)) log
(
ϕ−1((α − ε) log rn)

)
≤ O(log rn + log T (rn, f))

holds for all zn satisfying |zn| = rn ∈ G1 \E6 as |zn| = rn → +∞. By the monotonicity of ϕ−1 and
arbitrariness of ε (0 < 2ε < α− β), one can obtain ρ1ϕ(f) ≥ α.

On the other hand, it follows by a similar proof as in the first part of Theorem 1 that
ρ1ϕ(f) ≤ α. Therefore ρ1ϕ(f) = α. �

P r o o f of Theorem 7. (i) If ρ1ϕ(F ) ≥ α, then it follows from Theorem 5 that ρ1ϕ(f) = ρ1ϕ(F ).
(ii) If ρ1ϕ(F ) < α, we prove that ρ1 = ρ1ϕ(f) = α for any non-zero meromorphic solution whose

poles are of uniformly bounded multiplicities of (1.1). We show firstly that ρ1 = ρ1ϕ(f) ≥ α.
Without loss of the generality, we suppose the contrary ρ1 ≤ β < α. Set G2 = {|z| = r : z ∈ G},

since log dens{|z| : z ∈ G} > 0, then G2 is a set with

∫

G2

dr

r
= +∞. From Lemma 3, there exists a set

E1 ⊂ (1,+∞) with finite logarithmic measure and a constant B > 0 such that for all z satisfying
|z| = r /∈ [0, 1] ∪E1, we have

∣∣∣∣
f (j)(z)

f(z)

∣∣∣∣ ≤ B[T (2r, f)]k+1, j = 1, . . . , k. (4.21)
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If f is a non-zero meromorphic solution of equation (1.1), then

∣∣A0 (z)
∣∣ ≤

∣∣∣∣
f (k) (z)

f (z)

∣∣∣∣+
∣∣Ak−1 (z)

∣∣
∣∣∣∣
f (k−1) (z)

f (z)

∣∣+ · · · +
∣∣A1 (z)

∣∣
∣∣∣∣
f ′ (z)

f (z)

∣∣∣∣. (4.22)

By the definition of ρ1 = ρ1ϕ(f) and substituting (2.6), (2.7), (4.21) into (4.22), we obtain

ϕ−1((α − ε) log r) ≤ |A0(z)| ≤ k B ϕ−1(β log r)[T (2r, f)]k+1

≤ k B ϕ−1(β log r)
[
ϕ−1

(
(ρ1 +

ε

2
) log 2r

)]k+1

≤
[
ϕ−1

(
(β +

ε

2
) log 2r

)]k+2
≤ ϕ−1((β + ε) log r)

(4.23)

holds for all z satisfying |z| = r ∈ G2 \ ([0, 1] ∪ E1) as |z| = r → +∞. Since G2 \ E1 is a set of
infinite logarithmic measure, then there exists a sequence of points |zn| = rn ∈ G2 \ E1 tending
to +∞. Hence, by (4.23) we have

ϕ−1((α − ε) log rn) ≤ ϕ−1((β + ε) log rn)

holds for all zn satisfying |zn| = rn ∈ G2 \ E1 as |zn| = rn → +∞. By the monotonicity of ϕ−1

and arbitrariness of ε(0 < 2ε < α− β), one can see that α ≤ β which contradicts our assumption.
Then, ρ1ϕ(f) ≥ α.

On the other hand, it follows by a similar proof in Theorem 1 that

ρ1ϕ(f) ≤ α.

Therefore ρ1ϕ(f) = α. In order to show that all solutions f of equation (1.2) satisfy ρ1ϕ(f) = α with
at most one exceptional solution, say f0, satisfying ρ1ϕ(f0) < α, we suppose that there exist two
distinct meromorphic solutions f0 and f∗

0 of equation (1.2) satisfying max
{
ρ1ϕ(f0), ρ

1
ϕ(f

∗
0 )
}
< α.

Then, f = f0 − f∗
0 is also a non-zero meromorphic solution of (1.1) and satisfies

ρ1ϕ(f) = ρ1ϕ(f0 − f∗
0 ) ≤ max

{
ρ1ϕ(f0), ρ

1
ϕ(f

∗
0 )
}
< α

which contradicts the proof of the first part of (ii). By assumptions of Theorem 7, for all solutions f
of equation (1.2) satisfying ρ1ϕ(f) = α, we have by Lemma 9

max{ρ1ϕ(F ), ρ1ϕ(Aj), j = 0, 1, . . . , k − 1} = ρ1ϕ(F ) < α = ρ1ϕ(f).

By using Lemma 8, we obtain λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) and hence

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = α

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < α.

5. Conclusion

In this paper, by using the concepts of ϕ-order and ϕ-type, we have studied the growth of mero-
morphic solutions of higher order linear differential equations when among meromorphic coefficients
having the maximal ϕ-order, exactly one has its ϕ-type stricly greater than others. Many previous
results due to Chyzhykov–Semochko, Beläıdi, Cao–Xu–Chen, Kinnunen have been extended. Now,
it is interesting to study the growth of meromorphic solutions of such equations by using the con-
cept of (α, β)-order called the generalized order introduced by Sheremeta [20], see the recent paper
of Mulyava–Sheremeta–Trukhan [17].
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Abstract: The variance of Shannon information related to the random variableX, which is called varentropy,
is a measurement that indicates, how the information content of X is scattered around its entropy and explains
its various applications in information theory, computer sciences, and statistics. In this paper, we introduce a
new generalized varentropy based on the Tsallis entropy and also obtain some results and bounds for it. We
compare the varentropy with the Tsallis varentropy. Moreover, we explain the Tsallis varentropy of the order
statistics and analyse this concept in residual (past) lifetime distributions and then introduce two new classes
of distributions by them.

Keywords: Generalized varentropy, Past Tsallis varentropy, Residual Tsallis varentropy, Tsallis varentropy,
Varentropy.

1. Introduction

Nowadays, the use of information measures has an essential role in analyzing statistical issues
and is greatly considered by the statisticians. Shannon [21] introduced a measure of uncertainty for
the discrete random variable X with probability mass function P (x) to form into E(− log P (X)),
which is a basis for the information theory. The generalization of Shannon’s measure for continuous
random variable X with density function f(x) and support S, which is named a differential entropy,
reads as follows:

h(X) = −
∫

S
f(x) log f(x)dx. (1.1)

This measure is the expectation of random variable (− log f(X)) and has recently attracted the
attention of researchers.

In computer sciences, the variance of (− log p(X)) of the discrete random variable X is called
the varentropy. This measure is an essential factor of the optimal code length calculation in the
data compression process, dispersion of sources, and so on. To conduct further studies, we refer
the reader to [3, 7, 15]. Since the varentropy was defined for discrete random variables, in this
paper, we focus on the varentropy for continuous random variables, and we discuss it under the
same name.

Let X be a continuous random variable with density function f . Then the varentropy of X is
defined as

V E(X) = Var (− log f(X)) = E[− log f(X) − h(X)]2, (1.2)

where V E(X) is called the varentropy of X. Unfortunately, there are not many studies on the
varentropy in the field of statistics. Song [22] introduced V E (of course not with that name), as
an intrinsic measure of distributions shape, which can be an excellent alternative for the kurtosis
measure. When the traditional kurtosis measure is not measurable, as Student’s t distributions
with degrees of freedom less than four, Cauchy and Pareto distributions, V E is a measure that can
be used to compare the heavy-tailed distributions instead of kurtosis measure.

https://doi.org/10.15826/umj.2020.1.009
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mailto:grmohtashami@um.ac.ir
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Liu [16] studied V E under the concept of information volatility and introduced some mathe-
matical properties of it. He calculated V E for some distributions and showed that V E of gamma,
beta (with parameters (α,α) when α < 2 −

√
2 ) and normal distributions are more than less

than, and equal to 1/2 respectively, and that V E of the uniform distributions is zero. Therefore
V E can separate the gamma, normal, beta and uniform distributions. He showed that V E of the
generalized Gaussian distribution is exactly the reciprocal of its shape parameter, which gives us
a new method to estimate this parameter. Zografos [29] found an empirical estimator for Song’s
measure in the elliptic multivariate distributions. Enomoto et al. [13] considered the multivariate
normality test based on the sample measure of multivariate kurtosis defined by Song [22]. Afhami
et al. [2] introduced the goodness of fit test based on entropy and varentropy of k-record values for
the generalized Pareto distribution and more recently, in addition to the above, the application of
the varentropy in reliability theory has been conducted in [10].

A generalization of the Shannon entropy is the Tsallis entropy (see [23]). Let X be a continuous
random variable with density function f . Then the Tsallis entropy of order α for X is defined as

IT (X,α) =
1

(1 − α)
(

∫

s
fα(x)dx− 1), α > 0, α 6= 1, (1.3)

and if α→ 1, then the Tsallis entropy is reduced to (1.1). The Tsallis entropy has many applications
in physics, statistical mechanics and image processing. The properties of the Tsallis entropy have
been investigated by several authors, see papers [17, 24, 25, 28].

On the other hand, the concentration of measure principle is one of the cornerstones in geometric
functional analysis and probability theory, and it is widely used in many other areas. Hence
the concentration property of information content (− log f(X)) is one of the central interests in
information theory, and it has great relevance with various other areas such as probability theory,
and the varentropy is the measure of this concentration. Suppose that X and Y are two random
variables with the same Shannon entropy; for example, the Shannon entropy is zero in both standard
uniform and the exponential (with the parameter e) distributions. Can we say that the uncertainty
criterion is the same in both random variables? In our opinion, our confidence in the measured
value depends on the degree of information dispersion around the entropy. Therefore, for random
variables with the less varentropy the uncertainty criteria are more appropriate. This concept is
valid for the measure of the Tsallis uncertainty information, and if two random variables have the
same Tsallis entropy, the Tsallis varentropy indicates which of these random variables has the more
appropriate criterion for Tsallis uncertainty.

The purpose of this paper is to generalize Shannon’s varentropy based on the Tsallis entropy,
and compare its properties with Shannon’s varentropy and extend it in the field of order statistics
and reliability theory.

This paper contains the following sections. The generalized varentropy which we call TV E is
introduced in Section 2. We also obtain some of its properties and compare TV E with V E in this
section. In Section 3 we discuss the Tsallis varentropy of the order statistics. In Section 4, we study
TV E in lifetime researches and achieve some bounds for it by hazard rate and reversed hazard rate
functions. Moreover, we examine the effects of system’s age on TV E. Finally, in Section 5, we
introduce two new classes of distributions by residual and past Tsallis varentropy.

2. Introduction of Tsallis Varentropy

Let X be a continuous random variable with density function f . Then Tsallis entropy of order α
for X is the expectation of a random variable (fα(X) − 1)/(1 − α) and TV E is the variance of it.
Following what was said above, we define TV E and introduce some properties of this measure.
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Definition 1. For the continuous random variable X with density function f , the Tsallis var-
entropy of order α for X is defined as follows:

TV E(X,α) =
1

(1 − α)2
Var (fα−1(X)) α > 0 α 6= 1

=
1

(1 − α)2

(
∫

f2α−1(x)dx−
(

∫

fα(x)dx
)2

)

, (2.1)

where TV E(X,α) is the Tsallis varentropy of order α for X. It is clear that when α → 1, (2.1)
implies (1.2).

For example, if X ∼ Exp (θ) with density function f(x) = θe−θx (x > 0, θ > 0), then

TEV (X,α) =
1

(1 − α)2

(

θ2α−2

2α− 1
−

(θα−1

α

)2
)

=
θ2α−2

α2(2α − 1)
, α >

1

2
. (2.2)

We see that lim
α→1

TV E(X,α) = 1 and that TV E(X, 1) = 1 is the Shannon varentropy of the

exponential distribution.

Remark 1. If X ∼ Exp (θ) and 0 < α ≤ 1/2, then TV E(X,α) diverges to infinity.

Theorem 1. X has a uniform distribution if and only if TV E(X,α) = 0 for all α > 0.

P r o o f. If X ∼ U(a, b) with density function f(x) = 1/(b− a) a < x < b, then

TEV (X,α) =
1

(1 − α)2
[

(b− a)2−2α −
(

(b− a)1−α)2] = 0.

On the other hand, if TV E(X,α) = 0, then Var (fα−1(X)) = 0, so f(X) is almost surely constant.
Suppose that f(X) = c (if a < X < b) is the support of X, then

∫ b

a
f(x)dx =

∫ b

a
cdx and c =

1

b− a
.

�

Liu [16] showed that if X is a continuous random variable with symmetric density function f
with respect to x = a, then V E(|X|) = V E(X).

Proposition 1. Suppose that X is a continuous random variable with a symmetric density
function f with respect to x = a. Then

TV E(|X|, α) = 22α−2TV E(X,α).

P r o o f. Without loss of generality suppose a = 0. In this case the density function g(x) of
the random variable |X| is g(x) = f(−x) + f(x) = 2f(x), and hence

TV E(|X|, α) =
1

(1 − α)2

(
∫ ∞

0
(2f(x))2α−1dx−

[

∫ ∞

0
(2f(x))αdx

]2
)

=
22α−2

(1 − α)2

(
∫ ∞

−∞
f2α−1(x)dx−

[

∫ ∞

−∞
fα(x)dx

]2
)

= 22α−2TV E(X,α).

�
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For example, if X has the Laplace distribution with density function f(x) =
1

2β
e−1/β·|x|, then

we can show that

TV E(X,α) =
(2β)2−2α

α2(2α − 1)
, α >

1

2
.

On the other hand if X ∼ Laplace (0, β), then |X| ∼ Exp (1/β). Therefore by using (2.2), we have

TV E(|X|, α) =
(1/β)2α−2

α2(2α− 1)
, α >

1

2
.

It implies that TV E(|X|, α) = 22α−2TV E(X,α). It is obvious that if α → 1, then V E(|X|) =
V E(X).

One of the most important properties of V E is the following:
The varentropy is a scale and location invariant measure so V E(aX + b) = V E(X) for all

a, b ∈ R. This property implies that in the location and scale family of distributions, V E is
independent of the distribution parameters. Therefore the empirical estimation of V E can separate
the distribution of this family. Now the question arises, is TV E an affine invariant measure? To
answer this question, let us look at the following theorem and at the next example.

Theorem 2. Suppose that X is a continuous random variable and that f(x) is its density
function. Then

TV E(aX + b, α) = a2−2αTV E(X,α).

P r o o f. If Y = g(X) and g(X) is a strictly monotone function of X, then

fY (y) =
f(g−1(y))

g′(g−1(y))
.

It is easy to see that

TV E(g(X), α) =
1

(1 − α)2
Var

(( f(X)

g′(X)

)α−1)

.

Therefore if g(X) = aX + b, then TV E(aX + b, α) = a2−2αTV E(X,α). �

Theorem 2 implies that in the location and scale family of distributions, the Tsallis varentropy
is independent of the location parameter but it depends on the scale parameter.

For example, if X ∼ N(µ, σ2), then TV E of X is

TEV (X,α) = (2πσ2)
1−α × 1/

√
2α− 1 − 1/α

(1 − α)2
, α >

1

2
.

We can see that if α → 1, TV E(X, 1) = V E(X) = 1/2, and TV E is reduced to V E of normal
distribution, then we can see that TV E is dependent on the scale parameter σ2.

Definition 2. The Tsallis varentropy of order α for a random vector X = (X1,X2, ....,Xn)
with joint density function f(x), is defined as follows:

TV E(X, α) =
1

(1 − α)2

(
∫

Rn

f2α−1(x)dx−
(

∫

Rn

fα(x)dx
)2

)

, α > 0, α 6= 1.

Theorem 3. If X is an n-dimensional random variable, then for any invertible n × n matrix
A and any n × 1 vector B we have TV E(AX + B,α) = |A|2−2αTV E(X, α), where |A| is the
determinant of the matrix A.
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Table 1. Comparison V E(X) and TV E(X,α) (here ψ̇(·), Γ(·) and B(a, b) are trigamma, gamma and beta
functions respectively).

Distribution Density function V E(X) TV E(X,α)

uniform (a, b) f(x) =
1

b− a
0 0

exponential
f(x) = θe−θx,

θ > 0, x > 0
1

θ2α−2

α2(2α− 1)
, α >

1

2

Laplace
f(x) = e−|x−µ|/σ/2σ,

σ > 0
1

(2σ)2−2α

α2(2α− 1)
, α >

1

2

Pareto
f(x) = θβθ/xθ+1,

β > 0, θ > 0, x > β
(θ + 1)2 × 1

θ2
β2−2αθ2α

(1−α)2
{

1

θ(θ+1)(2α−1)−θ−
1

[α(θ+1)−1]2

}

normal f(x) =
e−(x−µ)2/(2σ2)

√
2πσ2

1

2
(1−α)−2(2πσ2)1−α

(

1√
2α−1

− 1

α

)

, α >
1

2

gamma
f(x) =

λθ

Γ(θ)
xθ−1e−λx,

θ > 0, λ > 0, x > 0
(θ−1)2ψ̇(θ)−θ+2

(1−α)−2

(

λθ

Γ(θ)

)2α−1{
Γ((2α−1)(θ−1)+1)

[(2α−1)λ](2α−1)(θ−1)+1

−λ
θ[Γ(α(θ−1)+1)]2

Γ(θ)(αλ)2α(θ−1)+2

}

, α>
1

2

Weibull
f(x) = θλθxθ−1e−(λx)θ ,

θ > 0, λ > 0, x > 0
ψ̇(1)(1−θ−1)2 + 2θ−1−1

(θλ)2α−2

(1−α)2
{

Γ(θ−1(2α−1)(θ−1)+θ−1)

(2α−1)[(2α−1)(θ−1)θ−1+θ−1]

−Γ2(θ−1α(θ−1)+θ−1)

α[2θ−1α(θ−1)+2θ−1]

}

beta
f(x) =

xm−1(1− x)n−1

B(m,n)
,

0 < x < 1, m > 0, n > 0
(m−1)2ψ̇(m) + (n−1)2ψ̇(n)

B(m,n)1−2α

(1−α)2
{

B
(

(2α−1)(m−1)+1, (2α−1)(n−1)+1
)

−B−1(m,n)B2
(

α(m− 1)+1, α(n−1)+1
)

}

Rayleigh
f(x) =

x

σ2
e−x2/(2σ2),

x > 0, σ > 0

1

4
ψ̇(1)

2α−1σ2−2α

(1− α)2

{

Γ(α)

(2α− 1)α
− Γ2((α + 1)/2)

αα+1

}

P r o o f. The proof is similar to Theorem 2 in the n-dimensional spaces. �

Remark 2. Theorems 2 and 3 indicate that TV E is a location-invariant measure but is not the
scale-invariant, unless α→ 1.

Remark 3. If X and Y are two random variables, X ∼ Exp (θ), Y ∼ N(µ, σ2) and Var (X) =
Var (Y ) then

TV E(X,α) = k(α) TV E(Y, α), α >
1

2
,

where

k(α) = (2π)α−1α+
√

2α − 1

α
√

2α− 1
,

and if α→ 1, then V E(X) = 2V E(Y ).

In Table 1, we compare the V E and TV E for some continuous distributions.

Theorem 4. Let X1,X2, . . . Xn be independent random variables with joint density func-
tion f(x). Then
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TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2

n
∏

i=1

{

(1 − α)2TV E(Xi, α) + [(1 − α)IT (Xi, α) + 1]2
}

− 1

(1 − α)2

n
∏

i=1

{

[(1 − α)IT (Xi, α) + 1]2
}

,

(2.3)

and when α→ 1, (2.3) reduces to

TV E(X1,X2, . . . ,Xn, 1) = V E(X1,X2, . . . ,Xn) =

n
∑

i=1

V E(Xi).

P r o o f. If X1,X2, . . . ,Xn are independent random variables, we know that

Var
(

n
∏

i=1

Xi

)

=
n
∏

i=1

[

Var (Xi) + E2(Xi)
]

−
n
∏

i=1

E2(Xi). (2.4)

Since f(x1), ..., f(xn) are marginal density functions of f(x) and fα−1(X1), ..., fα−1(Xn) are inde-
pendent random variables, (2.4) implies that

TV E(X1,X2, ..Xn, α) =
1

(1 − α)2
Var

(

n
∏

i=1

fα−1(Xi)
)

=
1

(1 − α)2

n
∏

i=1

Var
(

fα−1(Xi) + E2(fα−1(Xi))
)

− 1

(1 − α)2

n
∏

i=1

E2(fα−1(Xi)).

Equation (1.3) indicates that E(fα−1(X)) = (1 − α)IT (X,α) + 1, and (2.1) implies

Var (fα−1(X)) = (1 − α)2TV E(X,α).

Therefore

TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2

n
∏

i=1

{

(1 − α)2TV E(Xi, α) +
[

(1 − α)IT (Xi, α) + 1
]2}

− 1

(1 − α)2

n
∏

i=1

{

[(1 − α)IT (Xi, α) + 1]2
}

.

�

It is obvious that when α→ 1, by using L’hopital’s rule, we have

TV E(X1,X2, ...,Xn, 1) = V E(X1,X2, ...,Xn) =

n
∑

i=1

V E(Xi).

Corollary 1. If X and Y are two independent random variables with joint density func-
tion f(x, y) and marginal density functions fX(x) and fY (y), respectively, then

TV E((X,Y ), α) = (1 − α)2TV E(X,α)TV E(Y, α) + TV E(X,α)[(1 − α)IT (Y, α) + 1]2

+TV E(Y, α)[(1 − α)IT (X,α) + 1]2,
(2.5)

where IT (X,α) and IT (Y, α) are Tsallis entropies of X and Y respectively, and (2.5) implies that
TV E((X,Y ), 1) = V E(X,Y ) = V E(X) + V E(Y ).
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Corollary 2. By using (2.5), the following inequalities are valid:

(a) TV E((X,Y ), α) > (1 − α)2TV E(X,α)TV E(Y, α).

(b) TV E((X,Y ), α) > TV E(X,α)[(1 − α)IT (Y, α) + 1]2 + TV E(Y, α)[(1 − α)IT (X,α) + 1]2.

Corollary 3. If X1,X2, ...,Xn are iid random variables, then using Theorem 4 we have

TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2
{

(1 − α)2TV E(X1, α) + [(1 − α)IT (X1, α) + 1]2
}n

− 1

(1 − α)2
{

[(1 − α)IT (X1, α) + 1]2
}n
.

Theorem 5. Let X and Y be two random variables with joint density function f(x, y) and
conditional density function f(x|y). If

E(f2α−2(X|Y )) ·E(f2α−2(Y )) ≥ [E(fα−1(X,Y ))]2, (2.6)

then

TV E((X,Y ), α) ≥ (1 − α)−2Cov (f2α−2(X|Y ), f2α−2(Y )), (2.7)

and the equality established when X and Y are independent.

P r o o f. The joint density of X and Y is f(x, y) = f(x|y) · f(y) therefore,

TV E((X,Y ), α) =
1

(1 − α)2
Var (fα−1(X|Y ) · fα−1(Y ))

=
1

(1 − α)2
{

E(f2α−2(X|Y ) · f2α−2(Y )) − [E(fα−1(X|Y ) · fα−1(Y ))]2
}

.

Using covariance definition we have

Cov (f2α−2(X|Y ), f2α−2(Y )) = E(f2α−2(X|Y ), f2α−2(Y )) − E(f2α−2(X|Y )) ·E(f2α−2(Y )),

therefore,

TV E((X,Y ), α) =
1

(1 − α)2
{Cov (f2α−2(X|Y ), f2α−2(Y )) + E(f2α−2(X|Y )) ·E(f2α−2(Y ))

−[E(fα−1(X,Y ))]2}.

If (2.6) holds, then (2.7) will be easily obtained. �

3. Tsallis varentropy of order α for order statistics

Suppose that X1,X2, ...,Xn are independent and identically distributed observations from den-
sity and cumulative function f and F , respectively. If we arrange of X1,X2, ...,Xn from the smallest
to the largest denoted as X1:n ≤ X2:n ≤ · · · ≤ Xn:n and fi:n denotes the density function of the ith
order statistic, then

fi:n(x) =
1

B(i, n− i+ 1)
[F (x)]i−1[1 − F (x)]n−if(x),
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where

B(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx, a > 0, b > 0.

The order statistics have many applications in probability and statistics, as the characterization
of distributions, goodness-of-fit test, reliability engineering, and many other problems. For more
information, we refer the reader to [4, 8]. The order statistics also have been studied widely
in information theory in [5, 12, 18, 26, 27]. Furthermore, the stochastic order is also has many
applications in finance, risk theory, management science and biomathematics. For example, we
refer the reader to scholarly researches such as [1, 6, 9, 11, 14, 19, 20]. In this section, we introduce
the Tsallis varentropy of order α for the ith order statistic. This measure can be one of the
useful information measures for system designers. We know that one of the systems in reliability
engineering is an (n − i + 1)-out-of-n system, and the system is active, when at least (n − i + 1)
components are operating. Assume that X1,X2, ...,Xn denote the identical lifetime of the system
components. Then the ith order statistic indicates the lifetime of the systems. In special cases,
X1:n and Xn:n are the lifetime of the series and parallel systems, respectively. Therefore the Tsallis
entropy of the ith order statistic is a measure of the uncertainty of the lifetime system and the
Tsallis varentropy is the volatility of this information.

Definition 3. Let X1,X2, ...,Xn be a random sample from a continuous distribution with den-
sity function f . Let Xi:n denotes the ith order statistic. The Tsallis varentropy of ith order statistics
is defined as:

TV E(Xi:n, α) =
1

(1 − α)2
Var (fα−1(Xi:n)) = (1 − α)−2

{
∫

S
f2α−1
i:n (x)dx−

(

∫

S
fαi:n(x)dx

)2
}

,

where S is the support of Xi:n.

In the following theorem we introduce a method for calculating the Tsallis varentropy for ith order
statistic.

Theorem 6. Suppose that X is a continuous random variable with density function f and
cumulative distribution function F , and let Xi:n denote the ith order statistic. Then the Tsallis
varentropy of Xi:n can be expressed as:

TV E(Xi:n, α) = (1 − α)−2
[

Ai:n(α) − (Bi:n(α))2
]

, (3.1)

where

Ai:n(α) =
B((2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1)

B2α−1(i, n − i+ 1)
E
(

f2α−2(F−1(Ti))
)

, (3.2)

and

Bi:n(α) =
B(α(i − 1) + 1, α(n − i) + 1)

Bα(i, n − i+ 1)
E
(

fα−1(F−1(Zi))
)

, (3.3)

where Zi has the beta distribution with parameters α(i− 1) + 1 and α(n− i) + 1 and Ti has the beta
distribution with parameters (2α− 1)(i − 1) + 1 and (2α − 1)(n − i) + 1.

P r o o f is parallel to [1, Lemma 2.1], we can prove that
∫

s f
2α−1
i:n (x)dx and

∫

s f
α
i:n(x)dx are

equivalent (3.2) and (3.3) respectively. �

Corollary 4. The first and last Tsallis varentropy of order α are:

TV E(X1:n, α) = (1 − α)−2

{

n2α−1

(2α− 1)(n − 1) + 1
E
(

f2α−2(F−1(T1))
)

−
[ nα

α(n − 1) + 1
E
(

fα−1(F−1(Z1))
)

]2
}
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and

TV E(Xn:n, α) = (1 − α)−2

{

n2α−1

(2α− 1)(n − 1) + 1
E
(

f2α−2(F−1(Tn))
)

−
[ nα

α(n− 1) + 1
E
(

fα−1(F−1(Zn))
)

]2
}

.

In the following theorem we show that if X has a symmetric density function with respect to
x = a, then the Tsallis varentropy is symmetric with respect to i.

Theorem 7. Suppose that X is a continuous random variable with the symmetric density func-
tion with respect to x = a, then

TV E(Xi:n, α) = TV E(Xn−i+1:n, α).

P r o o f. If X has a symmetric density function with respect to x = a, then X + a
has a symmetric density with respect to x = 0. Using the properties of order statistics

Xi:n + a
d
= −(Xn−i+1:n + a), we have TV E(Xi:n + a, α) = TV E(−Xn−i+1:n − a, α). Using Theo-

rem 2, we have TV E(Xi:n, α) = TV E(Xn−i+1:n, α). �

Example 1. If X ∼ U(a, b) then

E
(

f2α−2(F−1(Ti))
)

=
1

(b− a)2α−2
and E

(

fα−1(F−1(Zi))
)

=
1

(b− a)α−1
.

Using (3.2) and (3.3) we have:

Ai:n(α) =
(b− a)2−2α

[

B((2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1)
]

B2α−1(i, n− i+ 1)

and

Bi:n(α) =
(b− a)1−α

[

B(α(i− 1) + 1, α(n − i) + 1)
]

Bα(i, n − i+ 1)
.

Finally using (3.1) we get

TV E(Xi:n, α) =
(b− a)2−2a

(1 − α)2

{

B
(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1
)

B2α−1(i, n − i+ 1)

−
[

B
(

α(i− 1) + 1, α(n − i) + 1
)

Bα(i, n − i+ 1)

]2}

,

and also

TV E(X1:n, α) = TV E(Xn:n, α) =
(b− a)2−2α

(1 − α)2

{

n2α−1

(2α − 1)(n − 1) + 1
− n2α

(α(n − 1) + 1)2

}

.

Remark 4. If TV E(Xi:n, α) = TV E(Xn−i+1:n, α) and TV E(Xi:n, α) is decreasing with respect
to i for i ≤ (n+ 1)/2(n/2) when n is odd(even), then TV E(Xi:n, α) will be increasing with respect
to i for i ≥ (n+ 1)/2(n/2 + 1). Therefore the median (both random variables in the middle) of
order statistics has a minimum Tsallis varentropy.
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Figure 1. TV E(Xi:n, 2) versus i for the standard uniform distribution.

Figure 1 shows the Tsallis varentropy of ith order statistics for the uniform distribution and it
is symmetric with respect to i.

Example 2. If X ∼ Exp (θ) according to Theorem 6 we have

E(f2α−2(F−1(Ti))) =
θ2α−2B

(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i+ 1)
)

B
(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1
) ,

E(fα−1(F−1(Zi))) =
θα−1B

(

α(i− 1) + 1, α(n − i+ 1)
)

B
(

α(i − 1) + 1, α(n − i) + 1
) ,

and

Ai:n(α) =
θ2α−2B

(

(2α − 1)(i − 1) + 1, (2α − 1)(n − i+ 1)
)

B2α−1(i, n − i+ 1)
,

Bi:n(α) =
θα−1B

(

α(i− 1) + 1, α(n − i+ 1)
)

Bα(i, n − i+ 1)
,

finally

TV E(Xi:n, α) =
θ2α−2

(1 − α)2

{

B
(

(2α − 1)(i− 1) + 1, (2α − 1)(n − i+ 1)
)

B2α−1(i, n − i+ 1)

−
[

B
(

α(i− 1) + 1, α(n − i+ 1)
)

Bα(i, n − i+ 1)

]2}

.

Figures 2a–2c show the Tsallis varentropy of ith order statistics for the exponential distribution
for θ = 2 and some selected values for α. When α→ 1, the symmetric property is observed.

4. The Tsallis varentropy in lifetime study

In reliability science, the hazard rate and reversed hazard rate functions are essential functions
that can help engineers to analyze the system’s disability. If f and F̄ are density and survival
function, respectively, the hazard rate and reversed hazard functions of X are r(x) = f(x)/F̄ (x)
and µ(x) = f(x)/F (x), respectively. We know that if a lifetime distribution has an increasing
(decreasing) hazard rate, then it is called the IFR(DFR) distribution, and if it has an increasing
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(a) TV E(Xi:n, 2) versus i. (b) TV E(Xi:n, 1.005) versus i. (c) TV E(Xi:n, 1.0005) versus i.

Figure 2. TV E(Xi:n, α) versus i for the exponential distribution and θ = 2 and n = 100.

(decreasing) reversed hazard rate, then it is called the IRFR(DRFR). In this part, we introduce
some bounds by hazard and reversed hazard rate functions for TV E and study them in residual
(past) and double truncated lifetime distributions and also we examine the effect of system’s age
on them.

Theorem 8. Let X be a nonnegative continuous random variable and let r(x) be the hazard
rate function of it. Then

(a) TV E(X,α)=
1

(1 − α)2

{

Cov (r2α−2(X), F̄ 2α−2(X)) +
E(r2α−2(X))

2α− 1
− E2(rα−1(X))

α2

}

, (4.1)

(b) TV E(X,α)<(>)
1

(1 − α)2

{

Cov
(

r2α−2(X), F̄ 2α−2(X)
)

}

, if 0 < α <
1

2

(

α >
1

2

)

, (4.2)

(c) TV E(X,α)<(>)
1

(1 − α)2

{

E(r2α−2(X))

2α − 1
− E2(rα−1(X))

α2

}

, if F is IFR(DFR). (4.3)

P r o o f. It is obvious that

TV E(X,α) =
1

(1 − α)2
Var (rα−1(X)F̄α−1(X)).

On the other hand,

Var (XY ) = Cov (X2, Y 2) +E(X2)E(Y 2) − (E(X)E(Y ))2. (4.4)

Using (4.4), we have

TV E(X,α) =
1

(1 − α)2

{

Cov
(

r2α−2(X), F̄ 2α−2(X)
)

+ E(r2α−2(X)) ·E(F̄ 2α−2(X))

−
[

E(rα−1(X)) · E(F̄α−1(X))
]2
}

.

Since E(F̄ 2α−2(X)) = 1/(2α − 1) and E(F̄α−1(X)) = 1/α, (4.1) is easily obtained.

For 0 < α < 1/2, the inequality

E(r2α−2(X))

2α− 1
<
E2(rα−1(X))

α2

is established and the first inequality of (4.2) is proved.
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We know that E(r2α−2(X)) ≥ E2(rα−1(X)) and 1/(2α − 1) > 1/α2 for all α > 1/2. Hence

E(r2α−2(X))

2α− 1
>
E2(rα−1(X))

α2

and the second inequality of (4.2) is obtained. It is easy to see that if F has an IFR distribution,
then r(x) is an increasing function of x, and because F̄ is decreasing, the covariance is negative
and the first inequality of (4.3) holds. The second inequality is similarly obtained. �

Corollary 5. Let X be a nonnegative continuous random variable and let µ(x) be the reversed
hazard rate function of it, then

(a) TV E(X,α) =
1

(1 − α)2

{

Cov
(

µ2α−2(X), F 2α−2(X)
)

+
E(µ2α−2(X))

2α− 1
− E2(µα−1(X))

α2

}

,

(b) TV E(X,α) < (>)
1

(1 − α)2

{

Cov
(

µ2α−2(X), F 2α−2(X)
)

}

, if 0 < α <
1

2

(

α >
1

2

)

,

(c) TV E(X,α) > (<)
1

(1 − α)2

{

E(µ2α−2(X))

2α− 1
− E2(µα−1(X))

α2

}

, if F is IRFR(DRFR).

In the survival analysis and reliability engineering, we usually know the system’s age. Hence (2.1)
is not suitable in such a situation. The random variables {X − t|X ≥ t}, {t − X|X ≤ t} and
{X|t1 ≤ X ≤ t2} are indicative residual, past and double truncated (interval) lifetime of the
system. If f and F̄ are density function and survival function of X, respectively, then the residual,
past and interval lifetime density functions at the time t are as follows:

gR(x, t) =
f(x)

F̄ (t)
, x ≥ t,

gP (x, t) =
f(x)

F (t)
, x ≤ t,

gI(x, t1, t2) =
f(x)

F (t2) − F (t1)
, t1 ≤ x ≤ t2.

Also dynamic Tsallis entropy of X for the residual, past and double truncated lifetime random
variables are defined as

ITR
(X,α, t) =

1

1 − α

[

∫∞
t fα(x)dx

F̄α(t)
− 1

]

, α > 0, α 6= 1,

ITP
(X,α, t) =

1

1 − α

[

∫ t
0 f

α(x)dx

Fα(t)
− 1

]

, α > 0, α 6= 1,

ITI
(X,α, t1, t2) =

1

1 − α

[

∫ t2
t1
fα(x)dx

(F (t2) − F (t1))α
− 1

]

, α > 0, α 6= 1.

Definition 4. The residual, past and interval Tsallis Varentropy of nonnegative random vari-
ables {X − t|X ≥ t}, {t−X|X ≤ t} and {X| t1 ≤ X ≤ t2} are defined as

TV ER(X,α, t) =
1

(1 − α)2
Var

((f(X)

F̄ (t)

)α−1
|X ≥ t

)

=
F̄ 2−2α(t)

(1 − α)2
Var (fα−1(X)|X ≥ t), (4.5)

TV EP (X,α, t) =
1

(1 − α)2
Var

((f(X)

F (t)

)α−1
|X ≤ t

)

=
F 2−2α(t)

(1 − α)2
Var (fα−1(X)|X ≤ t), (4.6)

TV EI(X,α, t1, t2) =
1

(1 − α)2
Var

(( f(X)

F (t2) − F (t1)

)α−1
|t1 ≤ X ≤ t2

)

=
(F (t2) − F (t1))

2−2α

(1 − α)2
Var (fα−1(X)|t1 ≤ X ≤ t2).

(4.7)
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It is clear that when t→ 0 (t→ ∞), TV ER(X,α, t) (TV EP (X,α, t)) = TV E(X,α) and if t1 → 0,
t2 → ∞, then TV EI(X, t1, t2) = TV E(X,α). For example, if X has a Pareto distribution with
density function

f(x) =
θβθ

xθ+1
, x > β, β > 0, θ > 0, F̄ (t) =

βθ

tθ
,

then

TV ER(X,α, t) =
tθ(2α−2)θ2α−2

(1 − α)2
Var (X(θ+1)(1−α) |X ≥ t),

TV ER(X,α, t) =
t2−2αθ2α

(1 − α)2

{ −1

θ(θ + 1)(1 − 2α) + θ
+

1

[−α(θ + 1) + 1]2

}

.

If α → 1, then the Tsallis residual varentropy reduces to the residual varentropy of Pareto
distribution. It is (θ + 1)2/θ2 for all t > 0, and that is independent of the age of systems, but the
Tsallis residual varentropy is not.

Theorem 9. X has a uniform distribution if and only if TV ER(X,α, t) = 0, TV EP (X,α, t) =
0, or TV EI(X, t1, t2) = 0.

P r o o f. If X ∼ U(a, b), then

TV ER(X,α, t) =
F̄ 2−2α(t)

(1 − α)2
Var ((b− a)1−α|X ≥ t) = 0.

On the other hand if TV ER(X,α, t) = 0, then

F̄ 2−2α(t)

(1 − α)2
Var (f(X)α−1|X ≥ t) = 0

and f(X) is almost surely constant. Similar to Theorem 1, X has the uniform distribution. For
the other two cases, the proof is the same. �

Proposition 2. If X has an exponential distribution, then the Tsallis residual varentropy is
independent of lifetime of systems.

P r o o f. In the exponential case, we know

gR(x, t) =
f(x+ t)

F̄ (t)
= θe−θx, x > 0.

Therefore the residual lifetime distribution is independent of t and gR(x, t) = f(x) and
TV ER(X,α, t) = TV E(X,α). �

We can introduce two new classes of distributions using the following definition.

Definition 5. We say that F̄ has an increasing (decreasing) Tsallis residual varentropy
ITRV E(DTRV E) if TV ER(X,α, t) is an increasing (decreasing) function of t, and F has an
increasing (decreasing) Tsallis past varentropy ITPV E(DTPV E) if TV EP (X,α, t) is an increas-
ing (decreasing) function of t for all t ≥ 0.

Theorem 10. F̄ (F ) has DTRV E(ITPV E) in t ≥ 0 if TV ER(X,α, t)(TV EP (X,α, t)) <∞,
ITR

(X,α, t)(ITP
(X,α, t)) <∞, and 0 < α ≤ 1/2.
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P r o o f. Using the differentiation of (4.5) and (4.6) with respect to t, we have

(1 − α)2TV E′
R(X,α, t) = r(t)

{

(2α − 1)(1 − α)2TV ER(X,α, t)

−[(1 − α)ITR
(X,α, t) + 1 − rα−1(t)]2

}

,
(4.8)

(1 − α)2TV E′
P (X,α, t) = µ(t)

{

(1 − 2α)(1 − α)2TV EP (X,α, t)

+[µα−1(t) − (1 − α)ITP
(X,α, t) − 1]2

}

,
(4.9)

where ITR
(X,α, t) and ITP

(X,α, t) are the Tsallis residual and past entropy of X respec-
tively. We see that if 0 < α ≤ 1/2 then TV E′

R(X,α, t) (TV E′
P (X,α, t)) ≤ (≥) 0 and F̄ (F ) has

DTRV E(ITPV E). �

Theorem 11. F̄ has ITRV E(DTRV E) in t ≥ 0 if TV ER(X,α, t) < ∞, ITR
(X,α, t) < ∞,

and for all α > 1/2,

(2α− 1)(1 − α)2TV ER(X,α, t) ≥ (≤)
[

(1 − α)ITR
(X,α, t) + 1 − rα−1(t)

]2
.

Also F has DTPV E(ITPV E) in t ≥ 0 if TV EP (X,α, t) < ∞, ITP
(X,α, t) < ∞, and for all

α > 1/2,

|1 − 2α|(1 − α)2TV EP (X,α, t) ≥ (≤)
[

µα−1(t) − (1 − α)ITP
(X,α, t) − 1

]2
. (4.10)

P r o o f. In Definition 5 F̄ has ITRV E(DTRV E) in t if TV E
′

R(X,α, t) ≥ (≤) 0. By us-
ing (4.8), the proof is completed. Also (4.10) can be similarly proved by using (4.9). �

Corollary 6. If F̄ has ITRV E(DTRV E) in t ≥ 0, then for all α > 1/2

TV E(X,α) ≥ (≤)
[(1 − α)IT (X,α) + 1 − fα−1(0)]2

(2α − 1)(1 − α)2
. (4.11)

And if F has DTPV E(ITPV E) in t ≥ 0, then for all α > 1/2

TV E(X,α) ≥ (≤)
[fα−1(∞) − (1 − α)IT (X,α) − 1]2

|1 − 2α|(1 − α)2
. (4.12)

Therefore (4.11) and (4.12) are lower (upper) bound for Tsallis varentropy for all α > 1/2.

Corollary 7. Let F̄ be both ITRV E(DTRV E), so TV E
′

R(X,α, t) = 0. Then

(2α − 1)(1 − α)2TV ER(X,α, t) = [(1 − α)ITR
(X,α, t) + 1 − rα−1(t)]2, α > 1/2,

and

TV E(X,α) =
[(1 − α)IT (X,α) + 1 − fα−1(0)]2

(2α− 1)(1 − α)2
, α >

1

2
, (4.13)

and if F is both ITPV E(DTPV E), then TV E
′

P (X,α, t) = 0 and we have

|1 − 2α|(1 − α)2TV EP (X,α, t) = [µα−1(t) − (1 − α)ITP
(X,α, t) − 1]2,

therefore

TV E(X,α) =
[fα−1(∞) − (1 − α)IT (X,α) − 1]2

|1 − 2α|(1 − α)2
, α >

1

2
. (4.14)

Therefore (4.13) and (4.14) introduce the Tsallis varentropy when system’s age is ineffective on it.
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5. Conclusion

In this paper, we introduced the generalized varentropy of order α for continuous random
variables based on the Tsallis entropy. We showed that unlike the varentropy, which is a location
and scale-invariant measure, the Tsallis varentropy is invariant to the location transformation but
is not invariant to scale translate, unless when α → 1. After presenting some theorems of the
properties of the Tsallis varentropy, we investigated them in the order statistics, which can be
useful for the system designers in the lifetime information for the (n− i+1)-out-of-n systems. Also
we studied them for the lifetime distributions and obtained some bounds for them by using the
hazard and reversed hazard rate functions. Then we studied the age of systems regarding residual
lifetime distributions and showed that in the uniform and exponential distributions, Tsallis residual
varentropy is independent of the age of systems. We introduced two new classes of distributions
by using the residual and past Tsallis varentropy, and we described some its properties.
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15. Kontoyiannis I., Verdú S. Optimal lossless compression: Source varentropy and dispersion. IEEE Trans.
Inform. Theory, 2014. Vol. 60, No. 2. P. 777–795. DOI: 10.1109/TIT.2013.2291007

16. Liu J. Information Theoretic Content and Probability. Ph.D. Thesis, University of Florida, 2007.

17. Nanda A. K., Paul P. Some results on generalized residual entropy. Inform. Sci., 2006. Vol. 176, No. 1.
P. 27–47. DOI: 10.1016/j.ins.2004.10.008

18. Park S. The entropy of consecutive order statistics. IEEE Trans. Inform. Theory, 1995. Vol. 41, No. 6.
P. 2003–2007. DOI: 10.1109/18.476325

19. Psarrakos G., Navarro J. Generalized cumulative residual entropy and record values. Metrika, 2013.
Vol. 76. P. 623–640. DOI: 10.1007/s00184-012-0408-6

20. Raqab M. Z., Amin W. A. Some ordering result on order statistics and record values. IAPQR Trans.,
1996. Vol. 21, No. 1. P. 1–8.

21. Shannon C. E. A mathematical theory of communication. Bell System Technical J., 1948. Vol. 27, No. 3.
P. 379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
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Abstract: A mathematical model of the dynamic deformation of three-component elastic media saturated
with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of
the liquid and gas, is considered. Formulas for determining the propagation velocity of monochromatic waves
in ternary porous media are obtained. The existence of three longitudinal waves depends on the discriminant
of a cubic equation and the velocity ratio.

Keywords: Elasticity, Medium, Fluid, Stress, Deformation, Displacement.

1. Introduction

There are a number of papers [1–3, 8, 10] devoted to the propagation of elastic waves in two-
component porous media. Among these studies, papers of M.A. Biot [1–3] should be noted. He
created the theory of elasticity and consolidation of a porous medium. This theory studies settle-
ment under the influence of a load of a porous medium containing a viscous fluid.

Phase states, laws of thermodynamics of porous systems, and attempts to solve wave problems
in porous materials and moist soils were considered by Ya. I. Phrenkel [6], J. V.Reznichenko [13],
and Kh.A.Rakhmatulin [12]. The studies of these authors played a huge role in creating the classic
Biot–Phrenkel model.

When solving a considerable number of applied problems arising in various areas of human
activity (soil, porous sintered composition materials, building materials, etc.), one has to deal with
a three-component media. The complexity of describing the effects of the interaction of components,
heat transfer, and other related processes has led to the fact that until now the generally accepted
models (elastic medium—liquid—gas) have not been fully developed. Therefore, a mathematical
three-component model that takes into account the porosity of the medium is of apparent interest.

The paper considers the ratio of the velocities of acceleration waves in a three-component porous
medium to the propagation velocities of the wave surface of the porous medium in the longitudinal
and transverse directions. The interpenetrating motion of the elastic component, liquid and gas is
perceived as the motion of liquid, and gas in a deformable porous medium. It is supposed that the
pore size is small compared to the distance at which the kinematic and dynamic characteristics of
the motion change significantly. This allows us to assume that all three media are continuous and
that at each point in space there are three displacement vectors.

It is proved that, in such a medium, in the general case, three waves propagate, whose velocities
essentially depend on the direction of propagation of the wave surface. Graphs of the dependence
of the velocity ratio on the porosity of the medium are constructed.

https://doi.org/10.15826/umj.2020.1.010
mailto:polenov.vrn@mail.ru
mailto:kukarskih.liubov@yandex.ru
mailto:dima_nitsak@mail.ru
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2. Main results

Consider a system of equations determining the dynamic behavior of a three-component medium
saturated with liquid and gas in the motion of the components [9]:

• complete stress tensor in the skeleton in the presence of liquid and gas in pores

Tij = λu
(1)
k,k

δij + µ(u
(1)
i,j + u

(1)
j,i ) +mR

(2)
0 u

(2)
k,k

δij +mR
(3)
0 u

(3)
k,k

δij ; (2.1)

• forces acting on the liquid and gas per unit area of the cross section of the porous medium:

N = mR
(2)
0 u

(1)
k,k +mR

(2)
0 u

(2)
k,k +mR

(2)
0 u

(3)
k,k,

P = mR
(3)
0 u

(1)
k,k

+mR
(3)
0 u

(2)
k,k

+mR
(3)
0 u

(3)
k,k

;
(2.2)

• equations of motion of the porous media

ρ11ü
(1)
i + ρ12ü

(2)
i + ρ13ü

(3)
i = Tij,j,

ρ21ü
(1)
i + ρ22ü

(2)
i + ρ23ü

(3)
i = N,i,

ρ31ü
(1)
i + ρ32ü

(2)
i + ρ33ü

(3)
i = P,i.

(2.3)

Here λ and µ are the Lamé coefficients; u
(α)
i are the component displacements, where α = 1, 3

stands for the medium: 1 for the rigid component, 2 for the liquid, and 3 for the gas; the dots
above the letters indicate the time derivatives; indices after the comma below the letter stand for
the derivatives of the corresponding coordinates; δij is the Kronecker symbol; ρ11, ρ22, and ρ33
are effective densities of the rigid component, liquid, and gas, respectively; ρ11 < 0, ρ12 < 0, and

ρ13 < 0 are the coefficients of dynamic coupling of the skeleton, liquid, and gas, respectively; R
(2)
0

and R
(3)
0 are compressibility moduli of the components saturated with liquid and gas, respectively;

0 ≤ m ≤ 1 is the porosity of a medium, m = 1−m; and i, j, k = 1, 3. Suppose that ρij = ρji.
Hereinafter, the repeated indices assume a summation of one to three.
An acceleration wave in a three-component porous media saturated with a liquid and gas is

an isolated surface on which the stress, the forces acting on the liquid and gas, and the prop-
agation velocities of the components are continuous while some of their partial derivatives have
discontinuities.

Differentiating relations (2.1) and (2.2) in t, we obtain

Ṫij = λv
(1)
k,kδij + µ(v

(1)
i,j + v

(1)
j,i ) +mR

(2)
0 v

(2)
k,kδij +mR

(3)
0 v

(3)
k,kδij ,

Ṅ = mR
(2)
0 v

(1)
k,k

+mR
(2)
0 v

(2)
k,k

+mR
(2)
0 v

(3)
k,k

,

Ṗ = mR
(3)
0 v

(1)
k,k +mR

(3)
0 v

(2)
k,k +mR

(3)
0 v

(3)
k,k.

(2.4)

Let us write equations (2.3) and relations (2.4) in discontinuities [5, 7, 11, 14]:

λ[v
(1)
k,k

]δij + µ([v
(1)
i,j ] + [v

(1)
j,i ]) +mR

(2)
0 [v

(2)
k,k

]δij +mR
(3)
0 [v

(3)
k,k

]δij = [Ṫij ],

mR
(2)
0 [v

(1)
k,k] +mR

(2)
0 [v

(2)
k,k] +mR

(2)
0 [v

(3)
k,k] = [Ṅ ],

mR
(3)
0 [v

(1)
k,k] +mR

(3)
0 [v

(2)
k,k] +mR

(3)
0 [v

(3)
k,k] = [Ṗ ],

ρ11[v̇
(1)
i ] + ρ12[v̇

(2)
i ] + ρ13[v̇

(3)
i ] = [Tij,j],

ρ21[v̇
(1)
i ] + ρ22[v̇

(2)
i ] + ρ23[v̇

(3)
i ] = [N,i],

ρ31[v̇
(1)
i ] + ρ32[v̇

(2)
i ] + ρ33[v̇

(3)
i ] = [P,i],

(2.5)
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where [·] denotes the difference in the values of a function on different sides of the discontinuity
surface.

We apply kinematic and geometric consistency conditions of first-order to relations (2.5) on the
discontinuity surface:

[Tik,k] = sikνk, [Ṫik] = −sikG, [N,k] = ηνk, [Ṅ ] = −ηG,

[P,i] = γνi, [Ṗ ] = −γG, [v
(α)
i,k

] = λ
(α)
i νk, [v̇

(α)
i ] = −λ

(α)
i G.

(2.6)

Here sik, η, γ, and λ
(α)
i are values characterizing jumps of the first derivatives of stresses,

forces acting on the liquid and gas, and the propagation velocities of the components; νi are the
components of the unit normal to the wave surface; and G is the propagation velocity of the wave
surface of the porous medium.

Using conditions (2.6), we write formulas (2.5) in the form

λλ
(1)
k νkδij + µ(λ

(1)
i νj + λ

(1)
j νi) +mR

(2)
0 λ

(2)
k νkδij +mR

(3)
0 λ

(3)
k νkδij = −sijG,

mR
(2)
0 λ

(1)
k νk +mR

(2)
0 λ

(2)
k νk +mR

(2)
0 λ

(3)
k νk = −ηG,

mR
(3)
0 λ

(1)
k νk +mR

(3)
0 λ

(2)
k νk +mR

(3)
0 λ

(3)
k νk = −γG,

ρ11λ
(1)
i G+ ρ12λ

(2)
i G+ ρ13λ

(3)
i G = −sijνj,

ρ12λ
(1)
i G+ ρ22λ

(2)
i G+ ρ23λ

(3)
i G = −ηνi,

ρ13λ
(1)
i G+ ρ23λ

(2)
i G+ ρ33λ

(3)
i G = −γνi.

(2.7)

Excluding the values sij, η, and γ from (2.7), we get a homogeneous system for λ
(1)
k , λ

(2)
k ,

and λ
(3)
k

:

λλ
(1)
k νkνi + µ(λ

(1)
i + λ

(1)
j νiνj) +mR

(2)
0 λ

(2)
k νkνi +mR

(3)
0 λ

(3)
k νkνi =

= ρ11G
2λ

(1)
i + ρ12G

2λ
(2)
i + ρ13G

2λ
(3)
i ,

mR
(2)
0 λ

(1)
k νkνi +mR

(2)
0 λ

(2)
k νkνi +mR

(2)
0 λ

(3)
k νkνi =

= ρ12G
2λ

(1)
i + ρ22G

2λ
(2)
i + ρ23G

2λ
(3)
i ,

mR
(3)
0 λ

(1)
k

νkνi +mR
(3)
0 λ

(2)
k

νkνi +mR
(3)
0 λ

(3)
k

νkνi =

= ρ13G
2λ

(1)
i + ρ23G

2λ
(2)
i + ρ33G

2λ
(3)
i .

(2.8)

Similar to [8], system (2.8) enables deriving formulas for determining the velocity of longitudinal
and transverse waves in the three-component porous media.

We find propagation velocities of longitudinal waves assuming that λ
(α)
k νk 6= 0 on the wave

surface. Reducing (2.8) by νi and summing over the repeated index i, we obtain the homogeneous

system of three linear equations for ωα = λ
(α)
i νi:

(Λ− ρ11G
2
l )ω1 + (mR

(2)
0 − ρ12G

2
l )ω2 + (mR

(3)
0 − ρ13G

2
l )ω3 = 0,

(mR
(2)
0 − ρ12G

2
l )ω1 + (mR

(2)
0 − ρ22G

2
l )ω2 + (mR

(2)
0 − ρ23G

2
l )ω3 = 0,

(mR
(3)
0 − ρ13G

2
l )ω1 + (mR

(3)
0 − ρ23G

2
l )ω2 + (mR

(3)
0 − ρ33G

2
l )ω3 = 0,

(2.9)

where Λ = λ+ 2µ.
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Define

σ11 =
Λ

M
, σ22 =

mR
(2)
0

M
, σ33 =

mR
(3)
0

M
,

σ12 = σ21 = σ23 =
mR

(2)
0

M
, σ13 = σ31 = σ32 =

mR
(3)
0

M
,

M = Λ+mR
(2)
0 +mR

(3)
0 + 3mR

(2)
0 + 3mR

(3)
0 ;

γij =
ρij
ρ
, ρ =

∑

i

ρii + 2
∑

i,j;i 6=j;
i<j

ρij.

(2.10)

Taking into account (2.10), we write system (2.9) in the dimensionless matrix form:

(Σz2l − Γ)−→ω = 0,Σ = {σij} ,Γ = {γij} ,
−→
ω = {ωi} , (2.11)

where z2l = c2l /G
2
l , c

2
l = M/ρ; cl are the propagation velocities of the longitudinal waves in the

porous media; Gl is the longitudinal component of the propagation velocity the wave surface in the
porous medium; and zl is the longitudinal velocity ratio.

The condition for system (2.11), homogeneous with respect to ω1, ω2, and ω3, to have a non-
trivial solution is that its third order determinant must be zero:

∣

∣Σz2l − Γ
∣

∣ = 0. (2.12)

It is shown in what follows that condition (2.12) also defines three propagation velocities of the
wave surface in the three-component porous medium.

Expanding the determinant (2.12), we obtain a cubic equation for z2l :

kz6l + bz4l + dz2l + f = 0, (2.13)

where

k = σ11(σ22σ33 − σ12σ13) + σ2
12(σ13 − σ33) + σ2

13(σ12 − σ22),

b = γ11(σ12σ13 − σ22σ33) + γ22(σ
2
13 − σ11σ33) + γ33(σ

2
12 − σ11σ22)−

−γ12(σ
2
13 + σ12σ13 − 2σ12σ33)− γ13(σ

2
12 + σ12σ13 − 2σ13σ22) + γ23 [σ11(σ12 + σ13)− 2σ12σ13] ,

d = −σ11(γ
2
23 − γ22γ33)− σ22(γ

2
13 − γ11γ33)− σ33(γ

2
12 − γ11γ22)−

−2σ12(γ12γ33 − γ13γ23)− 2σ13(γ13γ22 − γ12γ23) + (σ12 + σ13)(γ12γ13 − γ11γ23),

f = −(γ11γ22γ33 + 2γ12γ13γ23 − γ11γ
2
23 − γ22γ

2
13 − γ33γ

2
12).

We find the solution of the cubic equation (2.13) by the Cardano formulas [4]. Divide (2.13) by
k and introduce a new variable

y = z2l +
b

3k
.

On rearrangement, we get
y3 + 3py + 2q = 0, (2.14)

where

3p =
d

k
−

1

3

(

b

k

)2

, 2q = 2

(

b

3k

)3

−
bd

3k2
+

f

k
.

Let us calculate the discriminant D = p3 + q2. If D < 0, then (2.14) has three distinct real
roots expressed in terms of complex values. If D > 0, then (2.14) has one real and two imaginary
solutions. If D = 0, then there are three real solutions, two of which coincide.
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Thus, in the considered three-component porous medium, there are three types of longitudinal
waves can propagate depending on the discriminant of the cubic equation (2.14) and the velocity

ratios z
(α)
l

.
Knowing the propagation velocities cl of the longitudinal waves and the velocity ratios zl, we

can calculate the propagation velocity of the longitudinal wave surface in the three-component

porous media by the formula G
(α)
l = cl/z

(α)
l .

In the absence of coupling between the liquid—gas and elasticity—gas components, i.e., if
γ13 = 0, γ23 = 0, σ13 = 0, and σ32 = 0, then equation (2.13) takes the form of biquadratic equation
with respect to z2l :

k1z
4
l + b1z

2
l + d1 = 0, (2.15)

where
k1 = σ11σ22 − σ2

12, b1 = 2σ12γ12 − σ11γ22 − σ22γ11, d1 = γ11γ22 − γ212.

Equation (2.15) coincides with the equation from [8].

Assume that λ
(α)
i νi = 0 in (2.8). Under the condition G = Gt, we obtain in the dimensionless

form

(σ′
11z

2
t − γ11)ω1 − γ12ω2 − γ13ω3 = 0,

γ12ω1 + γ22ω2 + γ23ω3 = 0,

γ13ω1 + γ23ω2 + γ33ω3 = 0;

σ′
11 = µ/M′, M′ = µ+mR

(2)
0 +mR

(3)
0 + 3mR

(2)
0 + 3mR

(3)
0 ,

z2t = c2t /G
2
t , c2t = M′/ρ.

(2.16)

For system (2.16) to have a nontrivial solution, its determinant must be zero.
Expanding the determinant

∣

∣

∣

∣

∣

∣

σ′
11z

2
t − γ11 −γ12 −γ13
γ12 γ22 γ23
γ13 γ23 γ33

∣

∣

∣

∣

∣

∣

,

we obtain an expression for determining the ratio of the propagation velocities of the transverse
waves in the three-component media:

zt =

√

γ11γ22γ33 + 2γ12γ13γ23 − γ11γ223 − γ22γ213 − γ33γ212
σ′
11(γ22γ33 − γ223)

. (2.17)

In the absence of coupling between the liquid—gas and elastic—gas components, i.e., if γ23 = 0
and γ13 = 0, then (2.17) yields

zt =

√

γ11γ22 − γ212
σ′
11γ22

. (2.18)

Formula (2.18) coincides with the formula obtained in [8].

3. Calculation results

The figure, using the data in the table, shows the dependencies of the ratio of the propagation
velocity of longitudinal waves in the three-component medium to the propagation velocity of the
wave surface in the longitudinal direction on the medium porosity.
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Table 1. Input data for calculating z
(α)
l

m σ11 σ22 σ33 σ12 σ13 {γij}

0.2

0.6

0.2 0.15 0.08 0.009
γ11 = 0.7; γ22 = 0.32;

γ33 = 0.1; γ12 = γ13 =

= γ23 = −0.02

0.4 0.15 0.1 0.025 0.025

0.7 0.15 0.19 0.01 0.01

0.9 0.1 0.15 0.025 0.025

Figure 1. Velocity ratios in the three-component porous media

It is seen from the figure that the ratios z
(1)
l and z

(2)
l change from 1.4 to 1.9 and from 0.7 to 0.9,

respectively. The ratio z
(3)
l demonstrates a weak dependence on the porosity and is close to 1.1.

Thus, in the three-component porous media, the ratios of longitudinal velocities can take values
both more and less than one.

4. Conclusion

1. In the three-component porous media, three longitudinal and one transverse waves propagate

whose velocities are defined by formulas (2.8) with λ
(α)
k νk 6= 0 or λ

(α)
i νi = 0.

2. In general, ratios of the longitudinal velocity components in the three-component porous
medium depend on the coefficients and discriminant of a cubic equation.
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Abstract: In this paper we have generalized eighth order mock theta functions, recently introduced by
Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra
parameters, which on specializing give known functions and thus these results hold for those known functions.
We have represented these generalized functions as q-integral. Thus on specializing we have the classical mock
theta functions represented as q-integral. The same is true for the multibasic expansion given.

Keywords: q-Hypergeometric Series, Mock Theta functions, Continued Fractions, q-Integrals.

1. Introduction

The last gift to mathematics by Ramanujan was mock theta functions. In his last letter to
Hardy [5], Ramanujan introduced 17 functions and called them mock theta functions as they were
not theta functions and classified them as 4 functions of third order, 10 functions of fifth order and
3 functions of seventh order though Ramanujan did not say what he meant by “order” of mock
theta function. Later Watson [12] introduced 3 more mock theta functions of third order. Gordon
and McIntosh [7] gave eight more mock theta functions and called them of eighth order. Andrews
and Hickerson [3] said the “order” is connected with combinatorics interpretation. Andrews [1]
generalized five third order mock theta functions. Srivastava [11] generalized eighth order mock
theta function. Recently Choi [4] also generalized mock theta functions of third, fifth, sixth, seventh
and tenth order.

Motivated by Andrews’ generalization of five of seven third order mock theta functions and
Choi’s generalization, we have tried to generalize the eighth order mock theta functions by intro-
ducing four independent variables. The advantage is that by specializing the parameters we can
have known functions.

In this paper we have represented these generalized functions as q-integral and we have also
given the multibasic expansion. Thus we have on specializing the parameters, the classical mock
theta functions representation as q-integral and the multibasic expansion for generalized functions
reduced to classical mock theta function of eighth order.

2. Definitions and notations

The eighth order mock theta functions of Gordon and Mclntosh [7] are

S0(q) =

∞
∑

n=0

qn
2

(−q; q2)n
(−q2; q2)n

, S1(q) =

∞
∑

n=0

qn(n+2)(−q; q2)n
(−q2; q2)n

,

T0(q) =
∞
∑

n=0

q(n+1)(n+2)(−q2; q2)n
(−q; q2)n+1

, T1(q) =
∞
∑

n=0

qn
2+n(−q2; q2)n
(−q; q2)n+1

,

https://doi.org/10.15826/umj.2020.1.011
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U0(q) =

∞
∑

n=0

qn
2

(−q; q2)n
(−q4; q4)n

, U1(q) =

∞
∑

n=0

q(n+1)2(−q; q2)n
(−q2; q4)n+1

,

V0(q) = −1 + 2

∞
∑

n=0

qn
2

(−q; q2)n
(q; q2)n

= −1 + 2

∞
∑

n=0

q2n
2

(−q2; q4)n
(q; q2)2n+1

,

V1(q) =

∞
∑

n=0

q(n+1)2(−q; q2)n
(q; q2)n+1

=

∞
∑

n=0

q2n
2+2n+1(−q4; q4)n
(q; q2)2n+2

,

where

(a; qk)n =

n
∏

j=1

(1− aqk(j−1)), (a; qk)∞ =

∞
∏

j=1

(1− aqk(j−1)), and (a; qk)0 = 1.

3. Generalized eighth order mock theta functions

The four variable generalization of the eighth order mock theta functions are

S0(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
,

T0(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2+3n+2−n+nβ(−q2/α; q2)n
(−q/z; q2)n+1zn+1

,

U0(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq4; q4)n
,

V0(t, α, β, z; q) = −1 +
1

(t)∞

∞
∑

n=0

(t)nq
n2−n+nβ

(−zq; q2)nα
n

(αq; q2)n
,

S1(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2+2n−n+nβ(−zq; q2)nα

n

(−αq2; q2)n
,

T1(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2+n−n+nβ(−q2/α; q2)n
(−q/z; q2)n+1zn+1

,

U1(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
(n+1)2−n+nβ(−zq; q2)n
(−αq2; q4)n+1

,

V1(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
(n+1)2−n+nβ(−zq; q2)nα

n

(αq; q2)n+1
.

For t = 0, α = 1, β = 1 and z = 1 these functions reduce to classical mock theta functions.

4. Relation between generalized eighth order mock theta functions

The differential operator Dq [8] is defined as

zDq,zF (z, α) = F (z, α) − F (zq, α).

By using the differential operator we shall connect the generalized eighth order mock theta
functions.
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Proposition 1. The following is true:

(i) D2
q,tS0(t, α, β, z; q) = S1(t, α, β, z; q),

(ii) q2D2
q,tT1(t, α, β, z; q) = T0(t, z, α, β, z; q).

P r o o f. Proof of (i):

tDq,tS0(t, α, β, z; q)=
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
−

1

(tq)∞

∞
∑

n=0

(tq)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n

=
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
−

1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
(1− tqn)

=
t

(t)∞

∞
∑

n=0

(t)nq
n2+nβ(−zq; q2)nα

n

(−αq2; q2)n
.

Similarly

D2
q,tS0(t, α, β, z; q) =

1

(t)∞

∞
∑

n=0

(t)nq
n2+n+nβ(−zq; q2)nα

n

(−αq2; q2)n

=
1

(t)∞

∞
∑

n=0

(t)nq
n2+2n−n+nβ(−zq; q2)nα

n

(−αq2; q2)n
= S1(t, z, α, β; q),

which proves (i).
Proof of (ii):

Dq,tT1(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

qn
2+2n−n+nβ(−q2/α; q2)n
(−q/z; q2)n+1zn+1

,

and

D2
q,tT1(t, α, β, z; q) =

1

(t)∞

∞
∑

n=0

qn
2+3n−n+nβ(−q2/α; q2)n
(−q/z; q2)n+1zn+1

,

q2D2
q,tT1(t, α, β, z; q) =

1

(t)∞

∞
∑

n=0

qn
2+3n+2−n+nβ(−q2/α; q2)n

(−q/z; q2)n+1zn+1
= T0(t, α, β, z; q),

which proves (ii). �

5. q-Integral representation for the generalized eighth order mock theta

functions

Thomae and Jackson [6, p. 19] defined q-integral

∫ 1

0
f(t)dqt = (1− q)

∞
∑

n=0

f(qn)qn,

using limiting case of q-beta integral, we have

1

(qx; q)∞
=

(1− q)−1

(q; q)∞

∫ 1

0
tx−1(tq; q)∞dqt.

We now represent these generalized functions as q-integral. By specializing the parameters we have
the integral representation for classical mock theta functions.
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Theorem 1.

(i) S0(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞S0(0, α, pu, z; q)dqu,

(ii) T0(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞T0(0, α, pu, z; q)dqu,

(iii) U0(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞U0(0, α, pu, z; q)dqu,

(iv) V0(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞V0(0, α, pu, z; q)dqu,

(v) S1(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞S1(0, α, pu, z; q)dqu,

(vi) T1(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞T1(0, α, pu, z; q)dqu,

(vii) U1(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞U1(0, α, pu, z; q)dqu,

(viii) V1(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞V1(0, α, pu, z; q)dqu.

P r o o f. A detailed proof for S0(q
t, α, β, z; q) is given.The proofs of the other functions are

similar, so omitted.
Proof of (i): By definition

S0(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
.

Replacing t by qt, we have

S0(q
t, α, β, z; q) =

1

(qt)∞

∞
∑

n=0

(qt)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq2; q2)n
=

∞
∑

n=0

qn
2
−n+nβ(−zq; q2)nα

n

(−αq2; q2)n(qn+t; q)∞

=

∞
∑

n=0

qn
2
−n+nβ(−zq; q2)nα

n

(−αq2; q2)n

(1 − q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞dqu,

but

S0(0, α, β, z; q) =
∞
∑

n=0

qn
2
−n+nβ(−zq; q2)nα

n

(−αq2; q2)n
,

putting qβ = p, we have

S0(0, α, p, z; q) =

∞
∑

n=0

qn
2
−n(−zq; q2)nα

npn

(−αq2; q2)n
,

S0(q
t, α, β, z; q) =

(1− q)−1

(q; q)∞

∫ 1

0
ut−1(uq; q)∞S0(0, α, pu, z; q)dqu,

which proves (i).
The proof of all the other functions is similar. Taking α = 1, β = 1 and z = 1 we have the

integral representation of the classical eighth order mock theta functions. �
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6. Multibasic expansion of generalized eighth order mock theta functions

The following bibasic expansion will be used to give multibasic expansion for the generalized
functions.

Theorem 2. The following is true:

∞
∑

k=0

(1− apkqk)(1− bpkq−k)(a, b; p)k(c, a/bc; q)kq
k

(1− a)(1 − b)(q, aq/b; q)k(ap/c, bcp; p)k

∞
∑

m=0

αm+k

=
∞
∑

m=0

(ap, bp; p)m(cq, aq/bc; q)mq
m

(q, aq/b; q)m(ap/c, bcp; p)m
αm.

(6.1)

P r o o f. Using the summation formula [6, (3.6.7), p. 71] we have

n
∑

k=0

(1− apkqk)(1− bpkq−k)

(1− a)(1− b)

(a, b; p)k(c, a/bc; q)k
(q, aq/b; q)k(ap/c, bcp; p)k

qk

=
(ap, bp; p)n(cq, aq/bc; q)n
(q, aq/b; q)n(ap/c, bcp; p)n

and [9, Lemma 10, p. 57],

∞
∑

n=0

n
∑

k=0

B(k, n) =

∞
∑

n=0

∞
∑

k=0

B(k, n+ k),

therefore we get the statement of the theorem. �

We will consider the following case of Theorem 2.

Case I. Letting q → q3 and c→ ∞ in Theorem 1, we have

∞
∑

k=0

(1− apkq3k)(1− bpkq−3k)(a, b; p)kq
(3k2+3k)/2

(1− a)(1− b)(q3, aq3/b; q3)kbkp(k
2+k)/2

∞
∑

m=0

αm+k

=

∞
∑

m=0

(ap, bp; p)mq
(3m2+3m)/2

(q3, aq3/b; q3)mbmp(m
2+m)/2

αm.

(6.2)

Theorem 3. The multibasic hypergeometric expansion of these generalized functions are:

(i) S0(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

k2αk

(1− qk+2)(−αq2; q2)k

× φ
[

q;−zq2k+1;tq3k,q3k+3

qk+3;−αq2k+2:0
; q, q2, q3; qα

]

,

(ii) T0(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−q
2/α; q2)kq

k2+3k+2αk

(1− qk+2)(−q/z; q2)k+1zk+1

× φ
[

q;−q2k+2/α;tq3k ,q3k+3

qk+3;−q2k+2/z:0
; q, q2, q3; q4α

]

,

(iii) U0(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

k2αkz2k

(1− qk+2)(−αq4; q4)k

× φ
[

q;−zq2k+1;tq3k,q3k+3;0
qk+3;0;0;−αq4k+4 ; q, q2, q3, q4; z2qα

]

,
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(iv) V0(t, α, 1, z; q) =
−1

(t)∞
+

1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

k2αkz2k

(1− qk+2)(αq; q2)k

× φ
[

q;−zq2k+1;tq3k ,q3k+3

qk+3;−αq2k+1:0
; q, q2, q3; qαz2

]

,

(v) S1(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

k2+2kαk

(1− qk+2)(−αq2; q2)k

× φ
[

q;−zq2k+1;tq3k ,q3k+3

qk+3;−αq2k+2:0
; q, q2, q3; q3α

]

,

(vi) T1(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−q
2/α; q2)kq

k2+kαk

(1− qk+2)(−q/z; q2)k+1zk+1

× φ
[

q;−q2k+2/α;tq3k ,q3k+3

qk+3;−q2k+3/z:0
; q, q2, q3; q2z−1α

]

,

(vii) U1(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

(k+1)2αkz2k

(1− qk+2)(−αq2; q4)k+1

× φ
[

q;−zq2k+1;tq3k ,q3k+3

qk+3;0;0;−αq4k+6:0
; q, q2, q3, q4; q3z2α

]

,

(viii) V1(t, α, 1, z; q) =
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1 − k−2k+2)(t; q)k−1(−zq; q
2)kq

(k+1)2αkz2k

(1− qk+2)(αq; q2)k+1

× φ
[

q;−zq2k+1;tq3k ,q3k+3

qk+3;αq2k+3:0
; q, q2, q3; q3z2α

]

.

P r o o f. We shall give the proof of (i) only, for others we will state the value of parameters.

Proof of (i): Taking a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mα

mqm

(q3; q)m(−αq2; q2)m
in (6.2),

we have

∞
∑

k=0

(1− tq4k−1)(1− q−2k+2)(t/q, q2; q)kq
k2+k

(1− t/q)(1 − q2)(q3, t; q3)kq2k

×

∞
∑

m=0

(t; q3)m+k(q
3; q3)m+k(−zq; q

2)m+kα
m+kqm+k

(q3; q)m+k(−αq2; q2)m+k

=

∞
∑

m=0

(t, q3; q)mq
m2+m

(q3, t; q3)mq2m
(q3; q3)m(t; q3)m(−zq; q2)mα

mqm

(q3; q)m(−αq2; q2)m
.

(6.3)

The right hand side is equal to

∞
∑

m=0

(t, q3; q)mq
m2+m

(q3, t; q3)mq2m
(q3; q3)m(t; q3)m(−zq; q2)mα

mqm

(q3; q)m(−αq2; q2)m

=
∞
∑

m=0

(t; q)m(−zq; q2)mq
m2

αm

(−αq2; q2)m
= (t)∞S0(t, α, β, z; q).
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The left hand side of (6.3) is equal to

∞
∑

k=0

(1− tq4k−1)(1− q−2k+2)(t/q, q2; q)kq
k2+k

(1− t/q)(1 − q2)(q3, t; q3)kq2k

×

∞
∑

m=0

(t; q3)k(tq
3; q3)m(q3; q3)k(q

3k+3; q3)m(−zq; q2)k(−zq
2k+1; q2)mα

m+kqm+k

(q3; q)k(qk+3; q)m(−αq2; q2)k(−αq2k+2; q2)m

=
∞
∑

k=0

(1− tq4k−1)(1 − q−2k+2)(t; q)k−1(−zq; q
2)kq

k2αk

(1− qk+2)(−αq2; q2)k

×

∞
∑

m=0

(tq3; q3)m(q3k+3; q3)m(−zq2k+1; q2)mα
mqm

(qk+3; q)m(−αq2k+2; q2)m

=
1

(t)∞

∞
∑

k=0

(1− tq4k−1)(1− k−2k+2)(t; q)k−1(−zq; q
2)kq

k2αk

(1− qk+2)(−αq2; q2)k

×φ
[

q;−zq2k+1;tq3k ,q3k+3

qk+3;−αq2k+2:0
; q, q2, q3; qα

]

which proves (i).
Proof of (ii): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−q2/α; q2)mq

4m+2αm

(q3; q)m(−q/z; q2)m+1zm+1
in (6.2).

Proof of (iii): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mq

mz2mαm

(q3; q)m(−αq4; q4)m
in (6.2).

Proof of (iv): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mq

mz2mαm

(q3; q)m(αq; q2)m
in (6.2).

Proof of (v): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mq

3mαm

(q3; q)m(−αq2; q2)m
in (6.2).

Proof of (vi): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−q2/α; q2)mq

2mαm

(q3; q)m(−q/z; q2)m+1zm+1
in (6.2).

Proof of (vii): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mq

3m+1z2mαm

(q3; q)m(−αq2; q4)m+1
in (6.2).

Proof of (viii): Take a = t/q, b = q2, p = q and

αm =
(q3; q3)m(t; q3)m(−zq; q2)mq

3m+1z2mαm

(q3; q)m(αq; q2)m+1
in (6.2).

By taking α = 1, β = 1 and z = 1 we have multibasic expansion of classical eighth order mock
theta functions.
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7. Special cases and Ramanujan’s cubic continued fraction

Proposition 2. We have the following special cases

(i) U0(0,−1, 1, 1; q) =
f(−q,−q)

ψ(−q)
,

(ii) U0(0,−1, 1, 1;−q) =
f(−q2,−q2)

ψ(−q)
,

(iii) U0(0,−1, 3,−1;−q) =
f(−q,−q5)

ψ(−q)
,

(iv) U0(0,−1, 1,−1;−q) =
f(−q3,−q3)

ψ(−q)
.

P r o o f. Proof of (i): By definition we have

U0(t, α, β, z; q) =
1

(t)∞

∞
∑

n=0

(t)nq
n2

−n+nβ(−zq; q2)nα
n

(−αq4; q4)n
, (7.1)

put t = 0, α = −1, β = 1 and z = 1, therefore we have

U0(0,−1, 1, 1; q) =
∞
∑

n=0

(−1)nqn
2

(−q; q2)n
(q4; q4)n

, (7.2)

from [10, eq. (A.13), p. 171], we have

f(−q,−q)

ψ(−q)
=

∞
∑

n=0

(−1)nqn
2

(−q; q2)n
(q4; q4)n

, (7.3)

by (7.2) and (7.3), we get

U0(0,−1, 1, 1; q) =
f(−q,−q)

ψ(−q)
,

which proves (i).

Proof of (ii): Put t = 0, α = −1, β = 1, z = 1 and replace q = −q in (7.1), we have

U0(0,−1, 1, 1;−q) =

∞
∑

n=0

qn
2

(q; q2)n
(q4; q4)n

, (7.4)

from [10, eq. (A. 23), p. 172], we have

f(−q2,−q2)

ψ(−q)
=

∞
∑

n=0

qn
2

(q; q2)n
(q4; q4)n

, (7.5)

by (7.4) and (7.5), we get

U0(0,−1, 1, 1;−q) =
f(−q2,−q2)

ψ(−q)
,

which proves (ii).
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Proof of (iii): Put t = 0, α = −1, β = 3, z = −1 and replace q = −q in (7.1), we have

U0(0,−1, 3,−1;−q) =

∞
∑

n=0

qn
2+2n(−q; q2)n
(q4; q4)n

, (7.6)

from [10, eq. (A. 52), p. 175], we have

f(−q,−q5)

ψ(−q)
=

∞
∑

n=0

qn
2+2n(−q; q2)n
(q4; q4)n

, (7.7)

by (7.6) and (7.7), we get

U0(0,−1, 3,−1;−q) =
f(−q,−q5)

ψ(−q)
, (7.8)

which proves (iii).

Proof of (iv): Put t = 0, α = −1, β = 1, z = −1 and replace q = −q in (7.1), we have

U0(0,−1, 1,−1;−q) =

∞
∑

n=0

qn
2

(−q; q2)n
(q4; q4)n

, (7.9)

from [10, eq. (A. 53), p. 175], we have

f(−q3,−q3)

ψ(−q)
=

∞
∑

n=0

qn
2

(−q; q2)n
(q4; q4)n

, (7.10)

by (7.9) and (7.10), we get

U0(0,−1, 1,−1;−q) =
f(−q3,−q3)

ψ(−q)
, (7.11)

which proves (iv). �

Remark 1. Dividing (7.8) by (7.11), we have

U0(0,−1, 3,−1;−q)

U0(0,−1, 1,−1;−q)
=

f(−q,−q5)

f(−q3,−q3)
= 1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 +
...

which is Ramanujan’s cubic continued fraction [2, (3.1.6), p. 86].

8. Conclusion

The advantage of the generalization presented in the paper is that by specializing the parameters
we can obtain known functions which connects mock theta functions with continued fractions. So
the results obtained for mock theta functions are reduced to continued fractions.

Acknowledgement

The author thanks the reviewers for their useful comments and Prof. Bhaskar Srivastava for his
guidance.



146 Pramod Kumar Rawat

REFERENCES

1. Andrews G.E. On basic hypergeometric series, mock theta functions and partitions (I). Q. J. Math.,
1966. Vol. 17, No. 2. P. 64–80. DOI: 10.1093/qmath/17.1.64

2. Andrews G.E., Berndt B.C. Ramanujan’s Lost Notebook. Part I. New York: Springer-Verlag, 2005.
437 p. DOI: 10.1007/0-387-28124-X

3. Andrews G.E., and Hickerson D. Ramanujan’s “lost” notebook VII: The sixth order mock theta func-
tions. Adv. Math., 1991. Vol. 89, No. 1. P. 60–105. DOI: 10.1016/0001-8708(91)90083-J

4. Choi Y.-S. The basic bilateral hypergeometric series and the mock theta functions. Ramanujan J., 2011.
Vol. 24. P. 345–386. DOI: 10.1007/s11139-010-9269-7

5. Collected Papers of Srinivasa Ramanujan. Hardy G.H., Seshu Aiyar P.V., Wilson B.M. (eds.) New York:
Chelsea Pub. Co., 1962 (©1927). 355 p.

6. Gasper G., Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990.
276 p.

7. Gordon B., MacIntosh R. J. Some eighth order mock theta functions. J. London Math. Soc., 2000.
Vol. 62, No. 2. P. 321–335. DOI: 10.1112/S0024610700008735

8. Jackson F.H. Basic Integration. Q. J. Math., 1951. Vol. 2, No. 1. P. 1–16. DOI: 10.1093/qmath/2.1.1

9. Rainville E.D. Special Function. New York: Chelsea Pub. Co., 1960. 365 p.

10. Sills A. V. An Invitation to the Rogers-Ramanujan Identities. New York: Chapman and Hall/CRC, 2017.
256 p. DOI: 10.1201/9781315151922

11. Srivastava B. A generalization of the eighth order mock theta functions and their multibasic expansion.
Saitama Math. J., 2006/2007. Vol. 24. P. 1–13.

12. Watson G.N. The final problem: An account of the mock theta functions. J. London Math. Soc., 1936.
Vol. 11. P. 55–80. DOI: 10.1112/jlms/s1-11.1.55

https://doi.org/10.1093/qmath/17.1.64
https://doi.org/10.1007/0-387-28124-X
https://doi.org/10.1016/0001-8708(91)90083-J
https://doi.org/10.1007/s11139-010-9269-7
https://doi.org/10.1112/S0024610700008735
https://doi.org/10.1093/qmath/2.1.1
https://doi.org/10.1201/9781315151922
https://doi.org/10.1112/jlms/s1-11.1.55


URAL MATHEMATICAL JOURNAL, Vol. 6, No. 1, 2020, pp. 147–152

DOI: 10.15826/umj.2020.1.012

DOMINATION AND EDGE DOMINATION IN TREES1

B. Senthilkumar†, Y. B. Venkatakrishnan††, H. Naresh Kumar†††

SASTRA Deemed University, Tanjore, Tamilnadu, India

†senthilsubramanyan@gmail.com ††venkatakrish2@maths.sastra.edu
†††nareshhari1403@gmail.com

Abstract: Let G = (V,E) be a simple graph. A set S ⊆ V is a dominating set if every vertex in V \ S is
adjacent to a vertex in S. The domination number of a graph G, denoted by γ(G) is the minimum cardinality
of a dominating set of G. A set D ⊆ E is an edge dominating set if every edge in E \D is adjacent to an edge
in D. The edge domination number of a graph G, denoted by γ′(G) is the minimum cardinality of an edge
dominating set of G. We characterize trees with domination number equal to twice edge domination number.

Keywords: Edge dominating set, Dominating set, Trees.

1. Introduction

Domination theory is a well studied topic in graph theory. Depending on the utility in real life
application, domination on vertex set and on edge set has been defined. Edge dominating set is used
to study the behaviour of telephone switching network [5] built to phone calls from one telephone
to another telephone at a time. Edge dominating set is also used in deterministic distributed
algorithms in networks with unique node identifier in port numbered network. Dominating set is
used to identify the minimum number of servers in an adhoc network. For different dominating
parameters, the reader is refered to two excellent books [2, 3].

In domination theory, comparison is made between domination parameters defined on vertex
set or domination parameters defined on edge set. There are only a few studies on comparison
between domination parameter defined on vertex set with a domination parameter defined on edge
set, see [4, 8]. Here, a domination parameter defined on edge set, edge domination, is compared
with a domination parameter defined on vertex set, vertex domination and we characterize trees
with domination number equal to twice edge domination number.

Let G = (V,E) be a simple connected graph. Two edges are adjacent if they are incident with a
common vertex. Two vertices u and v are adjacent if there is an edge e incident with both u and v.
For every vertex v ∈ V , the set of all vertices adjacent to v is an open neighborhood of the vertex v
denoted by N(v) and the set N [v] = N(v) ∪ {v} is called the closed neighborhood of vertex v. The
degree of a vertex v is the cardinality of its open neighborhood, denoted dG(v) = |N(v)|. A vertex
of degree one is called a leaf and its neighbor is called a support vertex. A support vertex with
more than one leaf is called a strong support vertex and a support vertex with exactly one leaf
is called a weak support vertex. The number of edges between u and v in a shortest path is the
distance between vertices u and v. The longest distance between any pair of vertices is defined as
the diameter of the graph G, and is denoted by diam(G). A path on n vertices is denoted by Pn.
A vertex v in a tree T is adjacent to a path Pn through its vertex x, if a path containing x is one
of the components of (T − vx). A star of order n ≥ 2, denoted by K1,n−1, is a tree with at least
(n − 1) leaves. A double star is a tree with exactly two support vertices and is denoted by Dr,s,
where r and s are the number of leaves attached to each support vertices.

1This work is supported by TATA-Realty and Infrastructure Limited.
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mailto:senthilsubramanyan@gmail.com
mailto:venkatakrish2@maths.sastra.edu
mailto:nareshhari1403@gmail.com


148 B. Senthilkumar, Y. B. Venkatakrishnan and H. Naresh Kumar

A subset S of V is a dominating set abbreviated DS, if every vertex in V \ S is adjacent to
some vertex in S. The domination number, γ(G) of a graph G, is the minimum cardinality of a DS
of G. By γ(G)-set, we mean a DS with minimum cardinality of a graph G.

A subset D of E is a edge dominating set abbreviated EDS, if every edge in E \D is adjacent
to some edge in D. The edge domination number, γ′(G) of a graph G, is the minimum cardinality
of a EDS of G. By γ′(G)-set, we mean an EDS with minimum cardinality of graph G. For more
properties on edge dominating set, refer the reader to [1, 7].

Characterizing trees with equal dominating parameters is available in the literature, see [6]. We
characterize trees with domination number equal to twice edge domination number.

2. Main results

We begin this section with a theorem.

Theorem 1. For any tree T , γ′(T ) ≤ γ(T ) ≤ 2γ′(T ).

P r o o f. Let D be a γ′(T )-set. Let S be the set of vertices incident with the edges of D. The
set S is a DS of tree T . Thus γ(T ) ≤ |S| ≤ 2|D| = 2γ′(T ).

Let S be a γ(T )-set. For each vertex of S, select exactly one edge incident with it, and call
such a set of edges as D. Then D is an EDS of tree T . We have γ′(T ) ≤ |D| = |S| = γ(T ). �

For the purpose of characterizing trees with equal domination number and twice edge domina-
tion number, we introduce the family A of trees T = Tk that can be obtained as follows.

Let T1 = P4. If k ≥ 2, then Tk+1 can be obtained recursively from Tk by one of the following
operations:

• Operation O1: Attach a vertex to a support vertex of Tk.

• Operation O2: Attach a 4-path by joining its support vertex to a vertex of Tk adjacent to a
4-path through its support vertex.

• Operation O3: Attach a 4-path by joining its support vertex to a support vertex of Tk.

• Operation O4: Attach a double star Dr,s with r · s ≥ 2 by joining a leaf adjacent to a strong
support vertex to a vertex of Tk adjacent to a 2-path.

• Operation O5: Attach a double star Dr,s with r · s ≥ 2 by joining a leaf adjacent to a strong
support vertex to a support vertex of Tk.

The operations given above are illustrated in Figure 1. It is proved that γ(T ) = 2γ′(T ) for every
tree T of the family A.

Lemma 1. If T ∈ A, then γ(T ) = 2γ′(T ).

P r o o f. To construct the tree T , we use the method of induction on the number k of opera-
tions. If T = P4, then obviously γ(T ) = 2 = 2γ′(T ). Let k be a positive integer. Assume that the
result is true for every T ′ = Tk of the family A constructed by k − 1 operations. Let T = Tk+1 be
a tree of the family A constructed by k operations.

First assume that T is obtained from T ′ by operation O1. Let D′ be a γ′(T ′)-set. It is easy
to see that D′ is an EDS of tree T . Thus γ′(T ) ≤ γ′(T ′). Obviously, γ(T ′) ≤ γ(T ). We now get
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Figure 1. Operations O1 to O5

2γ′(T ) ≤ 2γ′(T ′) = γ(T ′) ≤ γ(T ). On the other hand by Theorem 1, we have γ(T ) ≤ 2γ′(T ). This
implies that γ(T ) = 2γ′(T ).

Now assume that the tree T is obtained from the tree T ′ by the operation O2. Let x be the
vertex to which a 4-path pqrs is joined through q. Let q be adjacent to x. Let abcd be a path
different from path pqrs with the vertex b adjacent to x. Let D′ be a γ′(T )-set. To dominate
the edges cd, bc, ab and bx, the edge bc ∈ D′. It is clear that D′ ∪ {qr} is an EDS of T . Thus
γ′(T ) ≤ γ′(T ′) + 1. Let S be a γ(T )-set. To dominate the vertices d, a, s and p, the vertices
c, b, r, q ∈ S. It is obvious that S \ {q, r} is a DS of tree T ′. Thus γ(T ′) ≤ γ(T ) − 2. We obtain
2γ′(T ) ≤ 2γ′(T ′) + 2 = γ(T ′) + 2 ≤ γ(T ). We conclude that 2γ′(T ) = γ(T ).

Now assume that T is obtained from T ′ by the operation O3. Let x be the vertex to which the
4-path pqrs is attached by joining q and x. Let y be a leaf adjacent to x. Let D′ denote a γ′(T ′)-set.
It is clear that D′ ∪ {q, r} is an EDS of tree T . Thus γ′(T ) ≤ γ′(T ′) + 1. Let S be a γ(T )-set. To
dominate the vertices s, p and y, the vertices r, q, x ∈ S. It is obvious that S \{q, r} is a dominating
set of the tree T ′. Thus γ(T ′) ≤ γ(T ) − 2. We now get 2γ′(T ) ≤ 2γ′(T ′) + 2 = γ(T ′) + 2 ≤ γ(T ).
We conclude that 2γ′(T ) = γ(T ).

Now assume that T is obtained from T ′ by the operation O4. Let p and q be support vertices
of a double star. Let r and s be two leaves adjacent to p, and t be the leaf adjacent to q. Denote
by x the vertex to which the double star is attached. Let r be adjacent to x. Let x be adjacent to
2-path ab with a adjacent to x. Let D′ be a γ(T ′)-set. To dominate the edge ab, the edge xa ∈ D′.
The set D′ ∪{pq} is an EDS of tree T . Thus γ′(T ) ≤ γ′(T ′)+ 1. Let S be a γ(T )-set. To dominate
the vertices t, s and b, the vertices q, p, a ∈ S. It is easy to observe S \ {p, q} is a dominating set
of the tree T ′. Thus γ(T ′) ≤ γ(T )− 2. We now get 2γ′(T ) ≤ 2γ′(T ′) + 2 = γ(T ′) + 2 ≤ γ(T ). We
conclude that γ(T ) = 2γ′(T ).

Assume that T is obtained from T ′ by the operation O5. Let p and q be support vertices of
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the attached double star. Let r and s be two leaves adjacent to p, and t be a leaf adjacent to q.
Denote by x the support vertex to which the double star is attached. Let r be adjacent to x. The
leaf adjacent to x is denoted by y. Let D′ represent a γ′(T ′)-set. The set D′ ∪ {pq} is an EDS of
the tree T . Thus γ′(T ) ≤ γ′(T ′) + 1. Let S be a γ(T )-set. The vertices t, s and y, are dominated
by the vertices p, q, x ∈ S. The set S \ {p, q} is a DS of the tree T ′. Thus γ(T ′) ≤ γ(T ) − 2. We
now get 2γ′(T ) ≤ 2γ′(T ′) + 2 = γ(T ′) + 2 ≤ γ(T ). We conclude that γ(T ) = 2γ′(T ). �

We now prove that if 2γ′(T ) = γ(T ), then the tree belongs to the family A.

Lemma 2. Let T be a tree. If 2γ′(T ) = γ(T ), then T ∈ A.

P r o o f. If diam (T ) = 1, then T = P2. We have γ(P2) = 1 < 2 = 2γ′(P2). If diam (T ) = 2,
then T is a star. We have γ(P3) = 1 < 2 = 2γ′(P3). If diam (T ) = 3, the tree T is a double star. If
T = P4, then T ∈ A. If T is a double star other than P4, then T is obtained from P4 by required
number of operations O1. Thus T ∈ A. Let diam (T ) ≥ 4. Thus the order n of the tree T is at
least five. The method of induction on the order n is used to prove the result. Assume that the
lemma is valid for every tree T ′ of order n′ < n.

Assume that the support vertex of T , say x, is strong. Let p and q be leaves adjacent to x.
Let T ′ = T − p. Let D be a γ′(T )-set. If xp ∈ D then (D \ {xp})∪{xq} is an EDS of T ′. If xp /∈ D
then obviously D is an EDS of T ′. Thus γ′(T ′) ≤ γ′(T ). Let S′ be a γ(T ′)-set. Obviously S′ is a
DS of the tree T . Thus γ(T ) ≤ γ(T ′). We now get 2γ′(T ′) ≤ 2γ′(T ) = γ(T ) ≤ γ(T ′). This implies
that γ(T ′) = 2γ′(T ′). We have T ′ ∈ A from the inductive hypothesis. The tree T is obtained from
T ′ by operation O1. Thus T ∈ A. Hereafter, it is assumed that every support vertex of T is weak.

Let r be a vertex of maximum eccentricity diam (T ). We assume that r is the root of the tree T .
The leaf at a maximum distance from r is denoted by t, t be the child of v, let v be the child of u
in the rooted tree. If diam (T ) ≥ 4, then let u be the child of w. If diam (T ) ≥ 5, then let w be the
child of d. If diam (T ) ≥ 6, then let d be the child of e. The subtree induced by descendants of x
and a vertex x in the rooted tree T is denoted by Tx.

Among the children of u assume that there is a support vertex, say x, other than v. Let y be
the leaf adjacent to x. Let T ′ = T −Tv. Let D

′ be a γ(T ′)-set. The set D′∪{v} is a DS of T . Thus
γ(T ) ≤ γ(T ′) + 1. Let S be a γ′(T )-set. To dominate the edges vt and xy, the edges uv, ux ∈ S.
It is obvious that S \ {uv} is EDS of the tree T ′. Thus γ′(T ′) ≤ γ′(T )− 1. We obtain

2γ′(T ′) ≤ 2γ′(T )− 2 = γ(T )− 2 ≤ γ(T ′) + 1− 2 < γ(T ′).

By Theorem 1 this case is impossible.
Assume that some child of u, say x, is a leaf. By the choice of diametrical path, the vertex w

is adjacent to isomorphic copy of Tu or adjacent to path P3 or adjacent to path P2 or a support
vertex of T .

Case (i): Let w be adjacent to isomorphic copy of Tu, say Tu′ . Let Tu′ = t′v′u′x′. Let u′ be
adjacent to w. Let T ′ = T−Tu. Let D be a γ′(T )-set. To dominate the edges vt, uv, ux, v′t′, u′v′ and
u′x′, the edges uv, u′v′ ∈ D. It is obvious that D \ {uv} is an EDS of T ′. Thus γ′(T ′) ≤ γ′(T )− 1.
Let S′ be a γ(T ′)-set. The set S′ ∪ {u, v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 2. We now
obtain 2γ′(T ′) ≤ 2γ′(T )− 2 = γ(T )− 2 ≤ γ(T ′). This gives that γ(T ′) = 2γ′(T ′). The tree T ′ ∈ A
by the inductive hypothesis. The tree T can be constructed from T ′ by operation O2. Thus T ∈ A.

Case (ii): Let w be adjacent to a 3-path abc. Let a be adjacent to w. Let T ′ = T − Ta. Let
D be a γ′(T )-set. To dominate the edges vt, uv, ux, uw,wa, ab and bc, the edges uv, ab ∈ D. It is
clear that D \ {ab} is an EDS of the tree T ′. Thus γ′(T ′) ≤ γ′(T )− 1. Let S′ be a γ(T ′)-set. The
set S′ ∪ {b} is obviously a DS of tree T . Thus γ(T ) ≤ γ(T ′) + 1. We now obtain

2γ′(T ′) ≤ 2γ′(T )− 2 = γ(T )− 2 ≤ γ(T ′) + 1− 2 < γ(T ′).
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By Theorem 1 this case is impossible.

Case (iii): Suppose w is adjacent to 2-path xy. Let w be adjacent to 2-path x′y′ different
from 2-path xy. Let T ′ = T − Tx. Let D be a γ′(T )-set. To dominate the edges wx, xy,wx′ and
x′y′, the edges wx,wx′ ∈ D. The set D \ {wx} is an EDS of T ′. Thus γ′(T ′) ≤ γ′(T ) − 1. Let S′

be a γ(T ′)-set. The set S′ ∪ {x} is clearly a DS of tree T . Thus γ(T ) ≤ γ(T ′) + 1. We now obtain
2γ′(T ′) ≤ 2γ′(T ) − 2 = γ(T ) − 2 ≤ γ(T ′) + 1 − 2 < γ(T ′). Suppose the vertex w is adjacent to
exactly one 2-path xy. Let T ′ = T − Tw. Let D be a γ′(T )-set. The edges uv and wx are in D.
The set D \ {uv,wx} is an EDS of tree T ′. Thus γ′(T ′) ≤ γ′(T ) − 2. Let S′ be a γ(T ′)-set. It is
obvious that S′ ∪ {u, v, x} is a DS of tree T . Thus γ(T ) ≤ γ(T ′) + 3. We now get

2γ′(T ′) ≤ 2γ′(T )− 4 = γ(T )− 4 ≤ γ(T ′) + 3− 4 < γ(T ′).

By Theorem 1 this case is impossible.

Case (iv): The vertex w is a support vertex. Let y be the leaf adjacent to w. Let T ′ = T −Tu.
Let D be a γ′(T ′)-set. To dominate the edges vt, ux and wy, the edges uv, e ∈ D where e is the
edge incident with w other than wy. It is obvious that D \ {uv} is an EDS of tree T ′. Thus
γ′(T ′) ≤ γ′(T ) − 1. Let S′ be a γ(T ′)-set. The set S′ ∪ {u, v} is obviously a DS of tree T . This
gives γ(T ) ≤ γ(T ′) + 2. We now get 2γ′(T ′) ≤ 2γ′(T ) − 2 = γ(T ) − 2 ≤ γ(T ′). This implies that
2γ′(T ′) = γ(T ′). The tree T ′ ∈ A by the inductive hypothesis. The tree T can be constructed from
T ′ by operation O3. Thus T ∈ A.

Case (v): Now assume dT (w) = 2. By the choice of the diametrical path, the vertex d is
adjacent to isomorphic copy of Tw or path P4 or path P3 or path P2 or w is a support vertex or
dT (d) = 2.

Subcase (i): The vertex d is adjacent to isomorphic copy of Tw. Let D be a γ′(T )-set. To
dominate the edges vt, uv, ux and uw the edge uv ∈ D. To dominate the edges in the isomorphic
copy, the edges u′v′ ∈ D. To dominate the edges incident with d, the edge de ∈ D. Let S be the
set of vertices incident with edges in D. Clearly |S| ≤ 2|D|. The set S \ {d} is a DS of T . We have
γ(T ) ≤ 2|D| − 1 = 2γ′(T )− 1 < 2γ′(T ).

Subcase (ii): The vertex d is adjacent to 4-path a′b′c′d′ with a′ adjacent to d. Let D be a
γ′(T )-set. As in subcase (i), the edge uv ∈ D. To dominate the edge da′ and the edges in path
P4 : a′b′c′d′, the edges de, b′c′ ∈ D. Let S be the set of vertices incident with edges in D. Clearly
|S| ≤ 2|D|. The set S \ {b′} is a DS of T . We have γ(T ) ≤ 2|D| − 1 = 2γ′(T )− 1 < 2γ′(T ).

Subcase (iii): The vertex d is adjacent to 3-path a′b′c′ with a′ adjacent to d. Let D be a
γ′(T )-set. As in subcase (i), the edge uv ∈ D. To dominate the edge b′c′, the edge a′b′ ∈ D. Let S
be the set of vertices incident with edges in D. Clearly |S| ≤ 2|D|. The set S \ {a′} is a DS of T .
We have γ(T ) ≤ 2|D| − 1 = 2γ′(T )− 1 < 2γ′(T ).

Subcase (iv): The vertex d is adjacent to a 2-path a′b′ with a′ adjacent to d. Let T ′ = T −Tw.
Let D be a γ′(T )-set. As in subcase (i), the edge uv ∈ D. To dominate the edges dw and a′b′, the
edge da′ ∈ D. It is easy to observe that D \ {uv} is an EDS of T ′. Thus γ′(T ′) ≤ γ′(T )− 1. Let S′

be a γ(T ′)-set. The set S′ ∪ {u, v} is easily seen to be a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 2.
We now obtain 2γ′(T ′) ≤ 2γ′(T ) − 2 = γ(T ) − 2 ≤ γ(T ′). This gives that 2γ′(T ′) = γ(T ′). The
tree T ′ ∈ A by the inductive hypothesis. The tree T can be constructed from T ′ by operation O4.
Thus T ∈ A.

Subcase (v): The vertex d is a support vertex. Let y be the leaf adjacent to d. Let T ′ = T−Tw.
Arguing as in the previous subcase, we get γ(T ′) = 2γ′(T ′). The tree T ′ ∈ A by the inductive
hypothesis. The tree T can be constructed from T ′ by operation O5. Thus T ∈ A.

Subcase (vi): Now assume the degree of the vertex d is two. Let D be a γ′(T )-set. To
dominate the edges in Tw, the edge uv ∈ D. To dominate the edge dw, the edge de ∈ D. Let S
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be the set of vertices incident with edges of D. Clearly |S| ≤ 2|D|. The set S \ {d} is a DS of the
tree T . Thus γ(T ) ≤ 2|D| − 1 = 2γ′(T )− 1 < 2γ′(T ).

Now assume dT (u) = 2. Let T ′ = T − Tu. Let D be a γ′(T )-set. To dominate the edge vt,
the edge uv ∈ D. The set D \ {uv} is verified to be an EDS of tree T ′. Thus γ′(T ′) ≤ γ′(T ) − 1.
Let S′ be a γ(T ′)-set. The set S′ ∪ {v} is obviously a DS of tree T . Thus γ(T ) ≤ γ(T ′) + 1. We
now obtain 2γ′(T ′) ≤ 2γ′(T ) − 2 = γ(T ) − 2 ≤ γ(T ′) + 1 − 2 < γ(T ′). By Theorem 1 this case is
impossible. �

Characterization of trees with equal domination and twice the edge domination number is an
immediate consequence of Lemma 1 and 2 and is stated as a theorem below.

Theorem 2. Let T be a tree. Then 2γ′(T ) = γ(T ) if and only if T ∈ A.

3. Concluding remarks

In this paper we characterize trees with domination number equal to twice edge domination
number and present some problems for further research, among them we note the following:

1. Characterize graphs with equal domination number and twice edge domination number.

2. Characterize trees with equal domination number and edge domination number.

3. Characterize graphs with equal domination number and edge domination number.
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Abstract: In this paper, we consider a non-self-adjoint boundary value problem for a fourth-order differential
equation of mixed type with Hilfer operator of fractional integro-differentiation in a positive rectangular domain
and with spectral parameter in a negative rectangular domain. The mixed type differential equation under
consideration is a fourth order differential equation with respect to the second variable. Regarding the first
variable, this equation is a fractional differential equation in the positive part of the segment, and is a second-
order differential equation with spectral parameter in the negative part of this segment. A rational method
of solving a nonlocal problem with respect to the Hilfer operator is proposed. Using the spectral method of
separation of variables, the solution of the problem is constructed in the form of Fourier series. Theorems on the
existence and uniqueness of the problem are proved for regular values of the spectral parameter. For sufficiently
large positive integers in unique determination of the integration constants in solving countable systems of
differential equations, the problem of small denominators arises. Therefore, to justify the unique solvability of
this problem, it is necessary to show the existence of values of the spectral parameter such that the quantity we
need is separated from zero for sufficiently large n. For irregular values of the spectral parameter, an infinite
number of solutions in the form of Fourier series are constructed. Illustrative examples are provided.

Keywords: Mixed type equation, Non-self-adjoint boundary value problem, Hilfer operator, Mittag-Leffler
function, Spectral parameter, Solvability.

1. Problem statement

In a rectangular domain Ω = {(t, x) : −a < t < b, 0 < x < 1}, we consider the partial differen-
tial equation of mixed type

0 =











(

Dα, γ +
∂4

∂x4

)

U (t, x), (t, x) ∈ Ω1,
( ∂2

∂t2
+ ω2 ∂4

∂x4

)

U (t, x), (t, x) ∈ Ω2,

(1.1)

where Ω1 = Ω ∩ (t > 0), Ω2 = Ω ∩ (t < 0), ω is positive spectral parameter, a and b are positive
real numbers,

Dα, γ = Jγ−α
0+

d

dt
J1−γ
0+ (0 < α ≤ γ ≤ 1)

https://doi.org/10.15826/umj.2020.1.013
mailto:tursun.k.yuldashev@gmail.com
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is the Hilfer operator, and

Iν0+ϕ(t) =
1

Γ(ν)

t
∫

0

(t− τ)ν−1ϕ(τ)dτ , ν > 0

is the Riemann–Liouville integral operator [2, pp. 112, 113].

Nonlocal problem. It is required to find a function U (t, x), which belongs to the class

t1−γ ∂
kU

∂xk
∈C(Ω1),

∂kU

∂xk
∈C(Ω2), Dα, γ U∈C(Ω1), Utt ∈ C(Ω2), Uxxxx∈C(Ω1 ∪ Ω2), (1.2)

k = 0, 3 and satisfies the homogeneous equation (1.1) in the domain Ω1 ∪ Ω2, the homogeneous
boundary value conditions

U |x=0 =
∂2U

∂x2
|x=1 = 0,

∂kU

∂xk
|x=0 =

∂kU

∂xk
|x=1 , k = 1, 3, t 6= 0, (1.3)

the nonlocal condition
U (−a, x) = U (b, x) + ϕ (x), 0 ≤ x ≤ 1, (1.4)

and the gluing conditions

lim
t→+0

J1−γ
0+ U (t, x) = lim

t→−0
U (t, x), lim

t→+0
J1−α
0+

d

dt
J1−γ
0+ U (t, x) = lim

t→−0
Ut(t, x), (1.5)

where ϕ(x) is a given sufficiently smooth function.
Let (t0; b) ⊂ R+ ≡ [0; ∞) be a finite interval, and let α > 0. The Riemann–Liouville α-order

fractional integral of a function f is defined as follows:

Iαt0+f(t) =
1

Γ(α)

t
∫

t0

(t− s)α−1f(s)ds, t ∈ (t0; b),

where Γ(α) is the Gamma function [2, p. 112].
Let n− 1 < α ≤ n, n ∈ N. The Riemann–Liouville α-order fractional derivative of a function f

is defined as follows [9, Vol. 1, p. 27]:

Dα
t0+f(t) =

dn

dtn
In−α
t0+ f(t), t ∈ (t0; b).

The Caputo α-order fractional derivative of a function f is defined [9, Vol. 1, p. 34] by

∗D
α
t0+f(t) = In−α

t0+ f (n)(t) =
1

Γ(n− α)

t
∫

t0

f (n)(s)ds

(t− s)α−n+1 .

Both the derivatives are reduced to the nth order derivatives for α = n ∈ N [9, Vol. 1, pp. 27, 34]:

Dn
t0+f(t)=∗D

n
t0+f(t) =

dnf

dtn
.

The so-called generalized Riemann–Liouville fractional derivative (referred to as the Hilfer frac-
tional derivative) of order α, n − 1 < α ≤ n, n ∈ N, and type β, 0 ≤ β ≤ 1, is defined by the
following composition of three operators: [2, p. 113]:

Dα, β
t0+f(t) = I

β(n−α)
t0+

dn

dtn
I
(1−β)(n−α)
t0+ f(t).
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For β = 0, this operator is reduced to the Riemann–Liouville fractional derivative (Dα, 0
t0+ = Dα

t0+)

and the case β = 1 corresponds to the Caputo fractional derivative: Dα, 1
t0+ = ∗D

α
t0+.

Let t0 = 0 and γ = α + βn − αβ. It is easy to see that α ≤ γ ≤ n. Then it is convenient to
use another notation for the operator Dα, β

0+ f(t):

Dα, γf(t) = Dα, β
0+ f(t). (1.6)

For the first time, the generalized Riemann–Liouville operator was introduced in [2] by R. Hilfer
on the basis of fractional time evolutions that arise during the transition from the microscopic scale
to the macroscopic time scale. Using the integral transforms, he investigated the Cauchy problem
for the generalized diffusion equation, the solution of which is presented in the form of the Fox H-
function. We also note [10, 11], where the generalized Riemann–Liouville operator was used in
studying dielectric relaxation in glass-forming liquids with different chemical compositions.

In [23], boundary value problems for a fractional diffusion equation with the Hilfer fractional
derivative in finite and infinite domains were studied. In the finite domain, the spectral method
and the Laplace transform method were used for solving the problem. In the domain infinite with
respect to the spatial variable, the Cauchy problem was solved by the Fourier–Laplace integral
transform method.

In [12], the properties of the generalized Riemann–Liouville operator were investigated in a spe-
cial functional space, and an operational method was developed for solving fractional differential
equations with this operator. Based on the results of [12], the authors of [15] have developed an op-
erational method for solving fractional differential equations containing a finite linear combination
of the generalized Riemann–Liouville operators with various parameters. In [17], the problem of
source identification was studied for the generalized diffusion equation with the operator D α, γ . We
also note the work [4], in which inverse problems were investigated for a generalized fourth-order
parabolic equation with the operator D α, γ .

The construction of various models of theoretical physics problems by the aid of fractional
calculus is described in [9, Vols. 4, 5], [16, 26]. A specific physical interpretation of the Hilfer
fractional derivative, describing the random motion of a particle moving on the real line at Poisson
paced times with finite velocity is given in [25]. A detailed review of the application of fractional
calculus in solving applied problems is given in [9, Vols. 6–8], [19]. More detailed information as
well as a bibliography related to the theory of fractional integro-differentiation, including the Hilfer
fractional derivative, can be found in the recently published monograph [24]. In [7], the boundary
value problems for the generalized modified moisture transfer equation and difference methods for
their numerical implementation were considered.

Nonlocal problems can arise in studying various problems of mathematical biology, predicting
soil moisture, problems of plasma. Note that nonlocal conditions of the type (1.3) take place in
modeling the problems of the flow around a profile by a subsonic velocity stream with a supersonic
zone [20]. More detailed information on nonlocal problems can be found in the monograph [18].
We would like to note some works [14, 30–32], where nonlocal problems for partial differential and
integro-differential equations with derivatives of integer or fractional orders were studied.

As for the equations of mixed type, we note the work [8], where I.M. Gel’fand considered
an example of gas motion in a channel surrounded by a porous medium, and the gas motion
in a channel was described by a wave equation, while the diffusion equation was posed outside
the channel. Ya. S. Uflyand considered a problem on the propagation of electric oscillations in
compound lines when the losses on a semi-infinite line were neglected and the rest of the line was
treated as a cable with no leaks [28]. He reduced this problem to a mixed parabolic-hyperbolic
type equation. In [27], a hyperbolic-parabolic system arising in pulse combustion was investigated.

Nonlocal problems for partial differential equations of mixed type were studied by many authors,
in particular, in [13, 21, 22, 29, 33]. We would like to note also the results on nonlocal problems
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for parabolic-hyperbolic type equations with fractional order derivatives [1, 3]. But these listed
works relate mainly to nonlocal problems for fractional mixed type equations of second order. As
for mixed fourth-order equations with derivatives of integer or fractional orders, nonlocal problems
in such formulation have not been previously studied.

In this paper, we consider a non-self-adjoint boundary value problem for a mixed type fourth-
order differential equation with Hilfer operator of fractional integro-differentiation. The spectral
method of separation of variables is used taking into account the features of the fractional integro-
differentiation operator. We study the solvability of the nonlocal problem (1.1)–(1.5) for various
values of the spectral parameter. This work is a further development and generalization of the
results of [5, 6, 20].

2. Ordinary differential equation with Hilfer operator

We consider the Cauchy problem for a differential equation of fractional order with the opera-
tor D α, γ

{

D α, γ u (t) = λu (t) + f (t), t ∈ (0, ℓ),

lim
t→+0

J 1−γ
0+ u (t) = u 0,

(2.1)

where f (t) is a given continuous function and u 0 = const.

Note that the Laplace method was used for solving this problem in [4]. In [15], a solution was
found by the operational calculus for a problem more general than (2.1) in a specially constructed
functional space. In our work, in contrast to these studies, we use a more rational way to solve
problem (2.1), which allows us to obtain an explicit solution.

We prove the following Lemma.

Lemma 1. Assume that f (t) ∈ C (0; ℓ] ∩ L 1 (0; ℓ). Then a solution of problem (2.1)
u (t) ∈ C (0; ℓ] ∩ L 1 (0; ℓ) is representable as follows:

u (t) = u 0 t
γ−1Eα, γ (λ tα) +

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) f (τ) d τ, (2.2)

where

Eα, β (z) =

∞
∑

k=0

z k

Γ (α k + β)
, z, α, β ∈ C, Re (α) > 0

is the Mittag–Leffler function [9, Vol. 1, pp. 269–295].

P r o o f. By virtue of the formula (1.6), we rewrite the differential equation of problem (2.1)
in the form

J γ−α
0+ D γ

0+ u (t) = λu (t) + f (t).

Further, applying the operator J α
0+ to both sides of this equation and taking into account the

linearity of this operator and the following formula [15]:

J β
0+D β

0+ u (t) = u (t)−
1

Γ (γ)
J 1−β
0+ u (t)| t=0 t

β−1,

we obtain

u (t) =
u 0

Γ (γ)
t γ−1 + J α

0+ f (t) + λJ α
0+ u (t). (2.3)
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Using the lemma from [6, p. 123], we represent the solution of equation (2.3) as

u (t) =
u 0

Γ (γ)
t γ−1 + J α

0+ f (t)+

+λ

t
∫

0

(t− τ)α−1Eα,α (λ (t− τ)α)

[

u 0

Γ (γ)
τ γ−1 + J α

0+ f (τ)

]

d τ. (2.4)

We rewrite representation (2.4) as the sum of two expressions u (t) = I 1 (t) + I 2 (t), where

I 1 (t) = u 0

[

t γ−1

Γ (γ)
+

λ

Γ (γ)

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) τ γ−1 d τ

]

, (2.5)

I 2 (t) = J α
0+ f (t) + λ

t
∫

0

(t− τ)α−1Eα,α (λ (t− τ)α) J α
0+ f (τ) d τ. (2.6)

We make the change of variables s = t−τ in formula (2.5) and use the following formulas [9, Vol. 1,
pp. 269–295]:

Eα, µ (z) =
1

Γ (µ)
+ z Eα, µ+α (t), α > 0, µ > 0, (2.7)

1

Γ (ν)

z
∫

0

(z − t) ν−1Eα, β (λ tα) t β−1 d t = z β+ν−1Eα, β+ν (λ z α) , ν > 0, β > 0. (2.8)

Then we obtain the following representation for integral (2.5):

I1(t) = u0 t
γ−1 Eα,γ(λ t

α). (2.9)

The integral in the formula (2.6) is transformed as follows:

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α ) J α
0+ f (τ) d τ =

=
1

Γ (α)

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) d τ

τ
∫

0

(τ − s)α−1 f (s) d s =

=
1

Γ (α)

t
∫

0

f (s) d s

t
∫

s

(t− τ)α−1 (τ − s)α−1Eα, α (λ (t− τ)α) d τ.

(2.10)

In view of (2.8), the second integral in the latter equality of formula (2.10) can be written as

t
∫

s

(t− τ)α−1 (τ − s)α−1Eα,α (λ (t− τ)α ) d τ = Γ (α) (t − τ) 2α−1Eα, 2α (λ (t− τ)α) .

Then, taking into account (2.7), we represent formula (2.6) in the following form:

I 2 (t) =

t
∫

0

(t− τ)α−1Eα, α (λ (t− τ)α) f (τ) d τ. (2.11)

Substituting (2.9) and (2.11) into the sum u (t) = I 1 (t) + I 2 (t), we obtain formula (2.2). The
lemma is proved. �
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3. Uniqueness of solution of the nonlocal problem

We study this problem by the spectral method of separating variables and seek particular solu-
tions of the nonlocal problem in the form of a product of two functions U(t, x) = u(t) · ϑ(x). From
equation (1.1) and boundary value conditions (1.3), we arrive at the following spectral problem:

ϑ IV (x)− λ4ϑ (x) = 0, ϑ (0) = ϑ′′ (1) = 0, ϑ′ (1) = ϑ′ (1), ϑ′′′ (1) = ϑ′′′ (1),

where λ4 is the constant of separation, 0 < λ = const.
As follows from the results of [5], this spectral problem is non-self-adjoint and has a complete

system of eigenfunctions of the following form in the space L 2 (0; 1):

ϑ 0(x) = 2x, ϑn1(x) = 2 sin λnx, ϑn2(x) =
eλnx − eλn(1−x)

eλn − 1
+ cos λnx,

λn = 2πn, n ∈ N.

(3.1)

System (3.1) forms a Riesz basis in L 2 (0; 1). In [5], it was also proved that there exists a biorthog-
onal system of functions with (3.1):

η 0 (x) = 1, ηn1 (x) =
eλnx + eλn(1−x)

eλn − 1
+ sin 2πnx, ηn2 (x) = 2 cos λnx. (3.2)

System (3.2) also forms a Riesz basis in L 2 (0; 1).
Let U (t, x) be a solution of the nonlocal problem. We consider the functions

u+0 (t) =

1
∫

0

U (t, x) dx, u+ni(t) =

1
∫

0

U (t, x) ηni (x) dx, t > 0, (3.3)

u−0 (t) =

1
∫

0

U (t, x) dx, u−ni (t) =

1
∫

0

U(t, x) ηni (x) dx, i = 1, 2, t < 0, (3.4)

where the functions η 0 (x) and ηni (x), i = 1, 2, are defined in (3.2).
Applying the operator D α, γ with respect to t to both sides of equality (3.3), differentiating (3.4)

twice with respect to t, and taking into account equation (1.1), we obtain differential equations
with respect to the functions u±0 (t) and u±ni (t), i = 1, 2:

D α, γ u+0 (t) = 0, Dα, γ u+ni (t) + λ4
n u

+
ni (t) = 0, i = 1, 2, t > 0, (3.5)

d2

d t2
u−0 (t) = 0,

d2

d t2
u−ni (t) + λ4

nω
2 u−ni (t) = 0, i = 1, 2, t < 0. (3.6)

The general solutions of these differential equations (3.5) and (3.6) have the form

u±0 (t) =







A 0

Γ (γ)
tγ−1, t > 0,

B 0 t+ C 0, t < 0,
u±ni (t) =

{

Ani t
γ−1Eα, γ(−λ4

n t
α), t > 0,

Bni sin λ2
nω t+ Cni cos λ

2
nω t, t < 0,

(3.7)

where A 0, B 0, C 0, Ani, Bni, and Cni are arbitrary constants, i = 1, 2, n = 1, 2, . . . .
Taking into account conditions (1.4) and (1.5), we conclude from (3.3) and (3.4) that the

functions u±0 (t) and u±ni (t), i = 1, 2, in (3.7) must satisfy the following conditions:

lim
t→+0

J1−γ
0+ u+0 (t) = lim

t→−0
u−0 (t), lim

t→+0
J1−α
0+

( d

d t
J1−γ
0+ u+0 (t)

)

= lim
t→−0

du−0 (t)

d t
, (3.8)
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lim
t→+0

J1−γ
0+ u+ni (t) = lim

t→−0
u−ni (t), lim

t→+0
J1−α
0+

( d

d t
J1−γ
0+ u+ni (t)

)

= lim
t→−0

du−ni (t)

d t
, (3.9)

u−0 (−a) = u+0 (b) + ϕ 0, u−ni (−a) = u+ni (b) + ϕni , i = 1, 2, (3.10)

where

ϕ0 =

1
∫

0

ϕ (x) dx, ϕni =

1
∫

0

ϕ (x) ηni (x) dx, i = 1, 2, n = 1, 2, . . .

Therefore, we obtain the following systems of algebraic equations:






A 0 = C 0, B 0 = 0,

−B 0 a+ C 0 =
A 0

Γ (γ)
b γ−1 + ϕ 0,

(3.11)

{

Ani = Cni, ω Bni = −λ2
nAni,

−Bni sin λ2
nω a+ Cni cos λ

2
nω a−Ani b

γ−1Eα, γ(−λ4
n b

α) = ϕni.
(3.12)

Each of systems (3.11) and (3.12) has a unique solution

C 0 = A 0, B 0 = 0, A 0 =
ϕ 0

∆ 0
, Cni = Ani =

ϕni

∆n(ω)
, Bni = −

λ2
n

ω

ϕni

∆n(ω)
, (3.13)

if the following condition holds for all n ∈ N0 = N ∪ {0}:

∆n(ω) = λ 2
nω sin λ 2

nω a+ cos λ 2
nω a− b γ−1Eα, γ(−λ 4

n b
α) 6= 0. (3.14)

Substituting (3.13) into (3.7), we obtain the representation

u±0 (t) =







ϕ0

Γ (γ)∆ 0
tγ−1, t > 0,

ϕ0

∆ 0
, t ≤ 0,

(3.15)

u±ni (t) =











ϕni

∆n(ω)
t γ−1Eα, γ(−λ4

n t
α), t > 0,

ϕni

∆n(ω)

(

cos λ2
nω t−

λ2
n

ω
sin λ2

nω t

)

, t ≤ 0.
(3.16)

We show the uniqueness of the solution of the nonlocal problem under condition (3.14). Suppose
the opposite. Let the nonlocal problem have two different solutions U1(t, x) and U2(t, x), and let
U(t, x) = U1(t, x)− U2(t, x). It is not difficult to see that U(t, x) is a solution of the homogeneous
nonlocal problem (ϕ(x) = 0). This is why one only needs to prove that the homogeneous problem
has only the trivial solution.

Suppose that condition (3.14) holds and ϕ (x) ≡ 0. Then ϕ 0 = 0, ϕni = 0, i = 1, 2, and the
representations (3.3), (3.4) and (3.15), (3.16) yield

1
∫

0

t 1−γ U (t, x) dx = 0,

1
∫

0

t 1−γ U (t, x) ηni (x) dx = 0, t ∈ [0; b],

1
∫

0

U (t, x) dx = 0,

1
∫

0

U (t, x) ηni (x) dx = 0, t ∈ [−a; 0], i = 1, 2.
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Further, taking into account the completeness of system (3.2) in the space L 2 (0; 1), we conclude
that U (t, x) = 0 almost everywhere on [0; 1] for all t ∈ [−a; b]. Since t 1−γ U (t, x) ∈ C (Ω 1 ) and
U (t, x) ∈ C

(

Ω 2

)

, we have t 1−γU (t, x) ≡ 0 in the domain Ω. Therefore, the solution of the
nonlocal problem is unique in the domain Ω.

Thus, we have proved the following theorem.

Theorem 1. Suppose that there exists a solution of the nonlocal problem. This solution is

unique if condition (3.14) holds for all n ∈ N0.

4. Existence of a solution of the nonlocal problem

Now we consider the case when condition (3.14) is violated. Let ∆m(ω) = 0 for all ω, γ ∈ (0; 1)
and n = m. Then the homogeneous nonlocal problem (ϕ (x) ≡ 0) has a nontrivial solution

V ±

mi (t, x) = v±m(t)ϑmi (x), i = 1, 2, (4.1)

where

v±m (t) =







t γ−1Eα, γ

(

−λ4
mtα

)

, t > 0,

cos λ2
mω t−

λ2
n

ω
sin λ2

m ω t, t < 0.

It is easy to verify that, for γ = 1, the function V (t, x) = x is also a nontrivial solution of the
homogeneous nonlocal problem.

From ∆n (ω) = 0, we come to the trigonometric equation

√

1 + ω 2λ 4
n sin

(

λ 2
nω a+ ρn

)

− b γ−1Eα, γ

(

−λ 4
n b

α
)

= 0, (4.2)

where ρn = arcsin
(

1/
√

1 + ω 2λ 4
n

)

and ρn → 0 as n → +∞. Hence, we conclude that the

expression ∆n (ω) is zero only if

ω =
1

λ 2
n a

[

(−1)k arcsin
bγ−1Eα, γ

(

−λ 4
n b

α
)

√

1 + ω 2λ 4
n

+ π k − ρn

]

, k = 1, 2, . . . .

The set ℑ of positive solutions of trigonometric equation (4.2) is called the set of irregular values
of the spectral parameter ω.

The set of remaining values of the spectral parameter ℵ = (0; ∞) \ℑ is called the set of regular
values of the spectral parameter ω.

Since ∆n (ω) is the denominator of a fraction and its values can become quite small for suf-
ficiently large n, the problem of “small denominators” arises. Therefore, in order to justify the
unique solvability of the nonlocal problem for regular values of the spectral parameter ω, it is
necessary to show that the quantity ∆n (ω) is separated from zero for sufficiently large n.

Lemma 2. Suppose that γ ∈ (0; 1], a and b are arbitrary positive real numbers, and ω is such

that the product π ω a is a rational number. Then, for large n, there exists a positive constant M0

such that the following estimate holds:

|∆n (ω) | ≥ M 0 > 0. (4.3)

P r o o f. I. We set ω = p/π a, p ∈ N. Then we derive from (4.2) that, for all n and a, b > 0,

|∆n (ω) | ≥
∣

∣

∣
±

√

1 + 16n 4 π 2
p 2

a 2
− bγ−1Eα, γ

(

−16n 4 π 4 bα
)

∣

∣

∣
≥
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≥
∣

∣ 1− b γ−1Eα, γ

(

−16n 4 π 4 bα
)
∣

∣ ≥ 1− b γ−1Eα, γ

(

−16n 4 π 4 bα
)

.

We use the following properties of the Mittag–Leffler function [9, Vol. 1, pp. 269–295].

(1) For all λ > 0, α, γ ∈ (0; 1], α ≤ γ, and t > 0, the function tα−1Eα, γ (−λ tα) is completely
monotone, i.e.,

(−1)n
[

t γ−1Eα, γ (−λ tα)
] (n)

≥ 0, n = 0, 1, 2, . . . . (4.4)

(2) The following estimate is true for all α ∈ (0; 2), γ ∈ R, and arg z = π:

|Eα, γ (z) | ≤
M

1 + |z|
, (4.5)

where 0 < M = const is independent of z.

Then, (4.4) implies that there exists a number n0 ∈ N such that for all n > n0 we have

1− bγ−1Eα, γ

(

−16n 4 π 4 bα
)

= M1 > 0.

Consequently, ∆n (ω) ≥ M 1 > 0.

II. Now we set
p

q
= 4πωa ∈ Q ⇔ ω =

1

4πa

p

q
,

where p, q ∈ N, (p, q) = 1. We divide n2 p by q with a remainder: n2p = sq + r, s ∈ N, 0 ≤ r < q.
Then from (4.1), we obtain

|∆n (ω) | =

∣

∣

∣

∣

√

1 +
[π

a

(

s+
r

q

)] 2
(−1)s sin

(πr

q
+ ρn

)

− b γ−1Eα, γ

(

−16n 4 π 4 bα
)

∣

∣

∣

∣

.

If r = 0, then this case reduces to case I.

Suppose that r > 0. Since ρn → 0 as n → +∞, there exists a number n1 > 0 such that
ρn < π/(2q) for all n > n1. Thus, we obtain the lower estimate

|∆n (ω) | ≥

∣

∣

∣

∣

√

1 +
[π

a

(

s+
r

q

)] 2
sin

(πr

q
+ ρn

)

− bγ−1Eα,γ(−16n 4 π 4 bα)

∣

∣

∣

∣

≥

≥

√

1 +
[π

a

(

s+
r

q

)] 2 ∣
∣

∣
sin

(πr

q
+ ρn

)
∣

∣

∣
− bγ−1Eα,γ(−16n 4 π 4 bα) >

>
π

a

(

s+
r

q

)
∣

∣

∣
sin

(π(q − 1)

q
+

π

2 q

)
∣

∣

∣
− 1 =

π

a

(

s+
r

q

)

sin
π

2 q
− 1 = M 2 > 0

for

n2 ≥
[

a q
(

π p sin
π

2 q

)−1]1/2
.

Setting M 0 > max {M 1, M 2} and n > max {n0, n1, n2}, we complete the proof of the lemma.
Lemma 2 is proved. �

We call the solution of the nonlocal problem (1.1)–(1.5) for regular values of the spectral pa-
rameter ω a regular solution of the nonlocal problem. Estimates (4.3) and (4.5) imply the following
lemma.
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Lemma 3. The following estimates hold for regular values of the spectral parameter ω:

t 1−γ
∣

∣u+0 (t)
∣

∣ ≤ C 1 |ϕ 0 | , t 1−γ
∣

∣u+ni (t)
∣

∣ ≤ C 2 |ϕni | ,

t 1−γ
∣

∣

∣
D α, β u+ni (t)

∣

∣

∣
≤ C 3n

4 |ϕni | , i = 1, 2, t ∈ [0; b];

∣

∣u−0 (t)
∣

∣ ≤ C 4 |ϕ 0 | ,
∣

∣u−ni (t)
∣

∣ ≤ C 5n
2 |ϕni | ,

∣

∣

∣

∣

du−ni (t)

d t

∣

∣

∣

∣

≤ C 6n
4 |ϕni | ,

∣

∣

∣

∣

d 2u−ni (t)

d t 2

∣

∣

∣

∣

≤ C 7n
6 |ϕni| , i = 1, 2, t ∈ [−a; 0],

where C k, k = 1, 7, are positive constants.

Since system (3.1) is complete and forms a Riesz basis in L 2(0; 1), we write the solution of the
nonlocal problem for regular values of the spectral parameter ω as

U (t, x) =















u+0 (t)ϑ 0 (x) +
∞
∑

n=1

2
∑

i=1
u+ni (t)ϑni (x), (t, x) ∈ Ω 1,

u−0 (t)ϑ 0 (x) +
∞
∑

n=1

2
∑

i=1
u−ni (t)ϑni (x), (t, x) ∈ Ω 2,

(4.6)

where u±0 (t), u±n1 (t), and u±n2 (t) are defined in (3.15) and (3.16).

Indeed, substituting function (4.6) into the mixed equation (1.1) and satisfying conditions
(1.3)–(1.5), we obtain problems (3.5), (3.6), (3.8)–(3.10) with respect to the desired functions. The
solutions of these problems can be represented as functions (3.15) and (3.16).

Now formally differentiating term-by-term the series (4.6) the required number of times, we
obtain the series

D α, γ U (t, x) =

∞
∑

n=1

2
∑

i=1

D α, γ u+ni (t)ϑni (x), t > 0, (4.7)

∂ kU (t, x)

∂ xk
= u+0 (t)

d k ϑ 0 (x)

dx k
+

∞
∑

n=1

2
∑

i=1

u+ni (t)
d kϑni (x)

dx k
, k = 1, 4, t > 0, (4.8)

∂ 2U (t, x)

∂ t 2
=

∞
∑

n=1

2
∑

i=0

d 2u−ni (t)

d t 2
ϑni (x), t < 0, (4.9)

∂ kU (t, x)

∂ x k
= u−0 (t)

d k ϑ 0 (x)

dx k
+

∞
∑

n=1

2
∑

i=1

u−n2 (t)
d k ϑn 2 (x)

dx k
, k = 0, 4, t < 0. (4.10)

By virtue of Lemma 2 and Lemma 3, we conclude that series (4.9) and (4.10) are majorized by
the following sum of series:

∞
∑

n=1

n 6 |ϕn1 |+

∞
∑

n=1

n 6|ϕn2|. (4.11)

Multiplying series (4.7) and (4.8) term-by-term by t 1−γ , we obtain the series

∞
∑

n=1

2
∑

i=1

t 1−γ D α, γ u+ni (t)ϑni (x),

∞
∑

n=1

2
∑

i=1

t 1−γ u+ni (t)
d k ϑni (x)

dx k
, k = 0, 4, t > 0. (4.12)
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The series in (4.12) are also majorized by the series (4.11). Taking into account the fact that the
function ϕ (x) is sufficiently smooth and integrating by parts

ϕni =

1
∫

0

ϕ (x) ηni (x) dx, i = 1, 2,

we derive

ϕn1 = −
1

(2π n) 7
ϕ
(7)
n1 = −

1

(2π n) 7

(

ϕ (7) (x), ϑn2 (x)
)

,

ϕn2 =
1

(2π n) 7
ϕ
(7)
n2 =

1

(2π n) 7

(

ϕ (7) (x), ϑn1 (x)
)

.

By virtue of these representations, we apply the Cauchy–Schwartz inequality and Bessel in-
equality to (4.11)

∞
∑

n=1

n 6|ϕni |≤

∞
∑

n=1

1

n
|ϕ

(7)
ni |≤

(

∞
∑

n=1

1

n 2

) 1/2(
∞
∑

n=1

|ϕ
(7)
ni |

2
) 1/2

≤ C ‖ϕ (7) (x) ‖L 2(0, 1) < ∞, i = 1, 2.

This estimate implies that series (4.9) and (4.10) converge absolutely and uniformly in the domains
Ω1 and Ω2, respectively. Therefore, the function U (t, x), represented by series (4.6), possesses
properties (1.2) and satisfies conditions (1.3)–(1.5).

We note that ∆n (ω) = 0 for irregular values of the spectral parameter ω and n = k 1 , . . . , k s,
1 ≤ k 1 < k 1 < · · · < k s , s ∈ N (γ 6= 1). Then, the following orthogonality conditions are
necessary and sufficient for the solvability of systems (3.11) and (3.12):

ϕni =

1
∫

0

ϕ (x) ηni dx = 0, i = 1, 2, n = k 1 , . . . , k s . (4.13)

In this case, the solutions of the nonlocal problem are representable as a sum of series

U (t, x) = u±0 (t)ϑ 0 (x) +

+

[ k1−1
∑

n=1

+

k2−1
∑

n=k1+1

+ · · ·+

∞
∑

n=ks+1

] 2
∑

i=1

u±ni (t)ϑni (x) +
∑

m

2
∑

i=1

Cmi V
±

mi (t),
(4.14)

where m = k 1 , . . . , k s, Cmi are arbitrary constants, and the functions V ±

mi (t), i = 1, 2, are defined
in (4.1). Note that, in the case γ = 1, we replace the function u±0 (t) in (4.14) with a constant C0;
moreover, the orthogonality condition

ϕ 0 =

1
∫

0

ϕ (x) dx = 0 (4.15)

is added to formula (4.13).
Thus, the following theorem is proved.

Theorem 2. Suppose that the following conditions are fulfilled:

ϕ (x) ∈ C 6 [0; 1], ϕ (7) (x) ∈ L 2 (0; 1), ϕ (2k) (0) = 0,

ϕ (2 (k+1)) (1) = 0, k = 0, 2, ϕ (k) (0) = ϕ (k) (1), k = 1, 3, 5.
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Then the nonlocal boundary value problem is uniquely solvable for regular values of the spectral

parameter ω, and this solution is represented in the form of the Fourier series (4.6) in the domain Ω.
For irregular values of the spectral parameter ω and some n = k 1 , . . . , k s, the nonlocal problem

has an infinite number of solutions in the form of series (4.14).
For γ < 1, the solvability condition has the form (4.13). For γ = 1 in (4.14), the function u±0 (t)

is replaced with a constant C 0 and conditions (4.13), and (4.15) are the solvability conditions.

5. Stability of solution of the nonlocal problem

For regular values of the spectral parameter ω, we consider the question of the stability of the
solution of the nonlocal problem with respect to the function ϕ (x) from condition (1.4). To this
end, we introduce the norm in the space of continuous functions as follows:

‖U (t, x) ‖C (Ω) = ‖ t1−γU (t, x)‖C (Ω 1)
+ ‖U (t, x) ‖C (Ω 2)

=

= max
(t, x)∈Ω 1

∣

∣ t1−γU (t, x)
∣

∣+ max
(t, x)∈Ω 1

|U (t, x) | .

Theorem 3. Suppose that all the conditions of Theorem 2 are fulfilled. Then the following es-

timate holds for the solution of the nonlocal problem with regular values of the spectral parameter ω:

‖U (t, x) ‖C (Ω) ≤ C ‖ϕ′′′(x) ‖C [0; 1], (5.1)

where 0 < C = const is independent of ϕ (x) and ‖f(x)‖C[0; 1] = max
[0; 1]

|f(x)|.

P r o o f. Let (t, x) be an arbitrary point of the domain Ω2. Then we have the representations

ϕn1 = −
1

λ 3
n

ϕ
(3)
n1 , ϕ

(3)
n1 =

1
∫

0

ϕ′′′(x)ϑn2 (x) dx,

ϕn2 =
1

λ 3
n

ϕ
(3)
n2 , ϕ

(3)
n2 =

1
∫

0

ϕ′′′(x)ϑn1 (x) dx.

Applying Lemma 3 and the Cauchy–Schwarz inequality to (4.6), we obtain

‖U(t, x) ‖C(Ω2)
≤ 2C4|ϕ0|+ C5

∞
∑

n=1

1

n

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)

≤

≤ 2C4|ϕ0|+ C5

(

∞
∑

n=1

1

n2

)1/2(
∞
∑

n=1

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)2
)1/2

.

It is well known that the former series converges. Applying the inequality (|a|+|b|)2 ≤ 2
(

|a|2 + |b|2
)

and the Bessel inequality to the latter series, we obtain

∞
∑

n=1

(

|ϕ
(3)
n1 |+ |ϕ

(3)
n2 |

)2
≤ 2

∞
∑

n=1

(

|ϕ
(3)
n1 |

2 + |ϕ
(3)
n2 |

2
)

≤ C11

∥

∥ϕ′′′(x)
∥

∥

2

L2(0;1)
, 0 < C11 = const. (5.2)

Similarly, we can find for all (t, x) ∈ Ω 1 that

‖ t1−γU (t, x) ‖C(Ω1)
≤ C12

∥

∥ϕ′′′ (x)
∥

∥

2

L2(0; 1)
, 0 < C 12 = const. (5.3)

Estimates (6.1) and (6.2) imply estimate (5.1), where C = C 11 + C 12 . If we assume that
‖ϕ′′′(x)‖2L2(0; 1)

< δ, then the estimate ‖U(t, x)‖C(Ω) < ε is true for all ε = C · δ. The theorem is
proved. �
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6. Illustrative examples

Example 1. Consider the nonlocal problem for γ = 1. Then we have D α, γ = D α, 1 = C D α

and equation (1.1) takes the form

0 =











CD
αU (t, x) +

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2∂

4U (t, x)

∂ x 4
, t < 0.

(6.1)

Equations (6.1) is a mixed type differential equation with the Caputo operator in a positive rect-
angular domain. We consider it under conditions (1.3)–(1.5). From (3.14), we obtain A 0 = ϕ 0 = 0,
i.e., we arrive at condition (4.15). The solution of this problem with regular values of the spectral
parameter ω can be represented as

U (t, x) =















∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)
Eα, 1

(

−λ4
n t

α
)

ϑni (x) + C 01 x, (t, x) ∈ Ω 1,

∞
∑

n=1

2
∑

i=1

ϕni

∆n (ω)

(

cos λ 2
nω t−

λ 2
n

ω
sin λ 2

n ω t

)

ϑni (x) + C 02 x, (t, x) ∈ Ω 2,

where C0 i = const, i = 1, 2.

Example 2. Consider the nonlocal problem for γ = α < 1. Then we haveD α, γ = D α, α = RLD
α

and equation (1.1) takes the form

0 =











RLD
αU (t, x) +

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2 ∂

4U (t, x)

∂ x 4
, t < 0.

(6.2)

Equation (6.2) is a mixed type differential equation with the Riemann–Liouville operator in
a positive rectangular domain. We consider it under conditions (1.3)–(1.5). A solution of this
problem with regular values of the spectral parameter ω exists and is unique. This solution has a
representation coinciding with (4.6) for γ = α < 1.

Example 3. Consider the case γ = α = 1. Then we have D α, γ = D 1, 1 = d/d t and equa-
tion (1.1) takes the form

0 =











∂ U (t, x)

∂ t
+

∂ 4U (t, x)

∂ x 4
, t > 0,

∂ 2U (t, x)

∂ t 2
+ ω 2 ∂

4U (t, x)

∂ x 4
, t < 0.

We obtained a mixed type differential equation of integer order, which is a particular case
of equation (6.1) and, therefore, the solvability condition for this problem coincides with condi-
tion (4.15), and the solution of the nonlocal problem is represented as

U (t, x) =















∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)
e−λ4

n
t ϑni(x) +Ax, (t, x) ∈ Ω1,

∞
∑

n=1

2
∑

i=1

ϕni

∆n(ω)

(

cos λ2
n ω t−

λ2
n

ω
sinλ2

n ω t

)

ϑni(x) +Ax, (t, x) ∈ Ω2,

where A = const.
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7. Conclusion

We established a criterion for the existence and uniqueness of the regular solution of the nonlocal
problem for a fourth-order differential equation of mixed type with Hilfer operator in a positive
rectangular domain and with spectral parameter in a negative rectangular domain. We use the
spectral method of separation of variables, which helps us to construct the solution of the nonlocal
problem (1.1)–(1.5) in the form of Fourier series. Theorems on the existence and uniqueness of
the problem are proved for regular values of the spectral parameter ω. We study also the case of
irregular values of spectral parameter ω. Our theorem proving methods are based on expanding
the regular solution using a biorthogonal set of functions. The stability of the regular solution of
the nonlocal problem with respect to the data is proved.
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Abstract: For a class of sets with multiple terms

{λn, µn}
∞

n=1 := {λ1, λ1, . . . , λ1
︸ ︷︷ ︸

µ1−times

, λ2, λ2, . . . , λ2
︸ ︷︷ ︸

µ2−times

, . . . , λk, λk , . . . , λk
︸ ︷︷ ︸

µk−times

, . . . },

having density d counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers
{dn,k : n ∈ N, k = 0, 1, . . . , µn − 1} satisfying certain growth conditions, we consider a moment problem
of the form ∫

∞

−∞

e−2w(t)tkeλntf(t) dt = dn,k, ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1,

in weighted L2(−∞,∞) spaces. We obtain a solution f which extends analytically as an entire function,
admitting a Taylor-Dirichlet series representation

f(z) =
∞∑

n=1

( µn−1∑

k=0

cn,kz
k
)

eλnz , cn,k ∈ C, ∀ z ∈ C.

The proof depends on our previous work where we characterized the closed span of the exponential system
{tkeλnt : n ∈ N, k = 0, 1, 2, . . . , µn − 1} in weighted L2(−∞,∞) spaces, and also derived a sharp upper bound
for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions
from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.

Keywords: Moment problems, Exponential systems, Biorthogonal families, Weighted Banach spaces, Bessel
and Riesz–Fischer sequences.

1. Introduction

P. Malliavin [5] considered the following in the sense of the classical Bernstein weighted poly-
nomial approximation problem on the real line. Let W (t) be a real-valued continuous function
defined on the half-line [0,+∞) such that it is log-convex, that is log |W (es)| is a convex function
on the real line. Let CW be the weighted Banach space whose elements are the complex-valued
continuous functions f defined on [0,∞), such that

lim
t→∞

f(t)

W (t)
= 0,

equipped with the norm

||f ||W = sup

{
|f(t)|

W (t)
: t ∈ [0,∞)

}

.

Suppose also that {λn}
∞
n=1 is a strictly increasing sequence of positive real numbers diverging to

infinity so that lim inf
n→∞

(λn+1 − λn) > 0. Malliavin proved [5, Theorem 8.3] that the span of the

https://doi.org/10.15826/umj.2020.1.014
mailto:elias.zikkos@ku.ac.ae
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system {tλn}∞n=1 is not dense in CW if and only if there exists η ∈ R such that

∫ +∞

1

log |W (eσΛ(t)−η)|

t2
dt < ∞, where σΛ(t) =

∑

λn≤t

2

λn
.

The question of the closure of the non-dense span of the system {tλn}∞n=1 was later on addressed
by J. M. Anderson and K. G. Binmore [1, Theorem 3]. Provided that the λn are positive integers,
they proved that any function in the closure extends analytically as an entire function with a gap
power series expansion of the form f(z) =

∑∞
n=1 anz

λn .
We note that A. Borichev [2] gave a complete characterization of the closure of polynomials in

certain weighted Banach spaces on R, when W is an even log-convex function.
Motivated by the above results, we explored in [7, 8] the properties of a class of exponential

systems
EΛ := {tkeλnt : n ∈ N, k = 0, 1, 2, . . . , µn − 1},

in certain weighted Banach spaces on the real line. We note that such a system is associated to a
set Λ = {λn, µn}

∞
n=1 with multiple terms

{λn, µn}
∞
n=1 := {λ1, λ1, . . . , λ1

︸ ︷︷ ︸

µ1−times

, λ2, λ2, . . . , λ2
︸ ︷︷ ︸

µ2−times

, . . . , λk, λk, . . . , λk
︸ ︷︷ ︸

µk−times

, . . . },

where

• {λn}
∞
n=1 is a strictly increasing sequence of positive real numbers diverging to infinity,

• {µn}
∞
n=1 is a sequence of positive integers, not necessarily bounded.

We say that the set Λ is a multiplicity sequence.
In [7, 8] we assumed that the multiplicity sequence Λ belongs to a certain class denoted by

U(d, 0). This class and the weighted Banach spaces involved will be recalled in Section 2, while the
main results from [7, 8] will be restated in Section 3.

In this paper we continue our investigations by considering a moment problem in a weighted L2

space on the real line. Our result, Theorem 4, is proved in Section 5. Prior to that, we introduce
in Section 4 some notions from Non-Harmonic Fourier Series such as Bessel and Riesz–Fischer
sequences that will play a decisive role.

The following interesting result is a special case of Theorem 4.

Theorem 1. Let

w(t) =

{

t2m+2, t ≥ 0,

0, t < 0,
where m ∈ N.

Let {pn}
∞
n=1 be the increasing sequence of prime numbers and let µn = pn+1 − pn for each n ∈ N,

that is, µn is the distance between consecutive primes. Then, for any real number γ < 2, there
exists an entire function f admitting a Taylor-Dirichlet series representation

f(z) =

∞∑

n=1

( µn−1
∑

k=0

cn,kz
k
)

epnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that

∫ ∞

−∞
e−2w(t)tkepntf(t) dt = pγpnn , ∀n ∈ N and k = 0, 1, 2, . . . µn − 1.
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2. Notations and definitions from [7, 8]

2.1. Weighted Banach spaces

Definition 1. We denote by Aρ,τ the class of all non-negative convex functions w(t) defined

on the real line that satisfy the following properties:

(i) w(0) = 0 and w(t) ≥ t2, ∀ t ≥ τ ≥ 0,

(ii) there is some ρ > 0 so that w(t) ≤ ρ|t| ∀ t < 0,

(iii) for all A > 0 there is a positive number t(A) such that w(t+A) ≥ w(t) + t, ∀ t ≥ t(A).

Example 1. Let

w(t) =

{

t2m+2, t ≥ 0,

0, t < 0,
where m ∈ N,

then w ∈ Aρ,τ .

For p ≥ 1 we denote by Lp
w the weighted Banach space of complex-valued measurable functions f

defined on R such that ∫ ∞

−∞
|f(t)e−w(t)|p dt < ∞,

equipped with the norm

||f ||Lp
w
:=

(∫ ∞

−∞
|f(t)e−w(t)|p dt

)1/p

.

As usual, L2
w is a Hilbert space when endowed with the inner product

〈f, g〉 :=

∫ ∞

−∞
f(t)g(t)e−2w(t) dt.

2.2. The class of multiplicity sequences U(d, 0)

We say that a multiplicity sequence Λ = {λn, µn}
∞
n=1 has finite density d counting multiplicities,

if

lim
n→∞

nΛ(t)

t
= d < ∞, where nΛ(t) :=

∑

λn≤t

µn. (2.1)

If µn = 1 for all n ∈ N the above is equivalent to

n

λn
→ d as n → ∞.

Definition 2. We denote by L(c, d) the class of strictly increasing sequences A = {an}
∞
n=1

having positive real terms an such that A has a finite density d and uniformly separated terms for

some c > 0, that is,

n

an
→ d as n → ∞, an+1 − an > c ∀ n ∈ N.
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Suppose now that a sequence A={an}
∞
n=1 belongs to the class L(c, d). Then choose two positive

numbers α, δ so that

α < 1 and δ ≤ min{4, c}.

For each n ∈ N consider the closed segment Tn := {x : |x− an| ≤ aαn} ⊂ R. Then, choose a point
in Tn that we call bn, in an almost arbitrary way, in the sense that

for all n 6= m either (I) bm = bn or (II) |bm − bn| ≥ δ.

Hence a new sequence B = {bn}
∞
n=1 is constructed.

We remark that the condition (I) allows for the presence of multiple terms in B. We may now
rewrite B = {bn}

∞
n=1 in the form of a multiplicity sequence Λ = {λn, µn}

∞
n=1, by grouping together

all those terms that have the same modulus.

Definition 3. Fix a nonnegative constant d. We denote by U(d, 0) the class of all the multiplic-

ity sequences Λ = {λn, µn}
∞
n=1 constructed in the way described above from sequences A = {an}

∞
n=1

which belong to the class L(c, d), for any positive constants α, δ, c, with α < 1 and δ ≤ min{4, c}.

Remark 1. Clearly L(c, d) is a subclass of U(d, 0).

We now mention two important properties of a sequence Λ ∈ U(d, 0) [8, Section 2].

(1) Λ has the same density d counting multiplicities as the original sequence A from which it
was constructed, that is, (2.1) holds.

(2) There exists some χ > 0 independent of n, so that

µn ≤ χλα
n ∀ n ∈ N. (2.2)

We also note that since α < 1, then µn/λn → 0 as n → ∞, hence for every ǫ > 0 there is n(ǫ) ∈ N

so that

µn ≤ ǫλn ∀ n ≥ n(ǫ). (2.3)

Remark 2. We use the notation U(d, 0) since Λ has density d and µn/λn → 0 as n → ∞. That
is, the second parameter in our notation stands for the relation between the multiplicities µn and
their corresponding frequencies λn.

An interesting multiplicity sequence in the U(1, 0) class with unbounded multiplicities is the
following.

Example 2. Let {pn}
∞
n=1 be the increasing sequence of prime numbers, and let µn = pn+1 − pn

for each n ∈ N. Then Λ = {pn, µn}
∞
n=1 belongs to the class U(1, 0). It can be constructed in the

way described above from the set N of natural numbers which has density 1 (see [7, Example 1.3]
and [8, Example 2.1]).

3. Our previous main results and the new one

Assuming that a multiplicity sequence Λ = {λn, µn}
∞
n=1 belongs to the class U(d, 0), we obtained

in [7] necessary and sufficient conditions in order for the span of EΛ to be dense in Lp
w.
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Theorem 2 [7, Theorem 1.1]. Let w(t) be a function which belongs to the class Aρ,τ and sup-

pose that Λ ∈ U(d, 0) for some d > 0. Then the span of the system EΛ is not dense in Lp
w for all

p ∈ [1,∞), if and only if there exists η ∈ R such that

∫ +∞

1

w(σΛ(t)− η)

1 + t2
dt < ∞, σΛ(t) := 2

∑

λn≤t

µn

λn
. (3.1)

We then characterized in [8] the closure of the non-dense span of EΛ. Moreover, in [8] we also
derived an upper bound for the norm of the elements of a biorthogonal sequence

rΛ := {rn,k : n ∈ N, k = 0, 1, . . . , µn − 1} ⊂ L2
w

to the system EΛ in L2
w, where biorthogonality means

∫ ∞

−∞
rn,k(t)t

leλjte−2w(t) dt =







1, j = n, l = k,

0, j = n, l ∈ {0, 1, . . . , µn − 1} \ {k},

0, j 6= n, l ∈ {0, 1, . . . , µj − 1}.

Theorem 3 [8, Theorems 2.1 and 6.1]. Suppose that Λ ∈ U(d, 0) for some d > 0, w(t) ∈ Aρ,τ

and (3.1) holds.
Part I. Let f be a function which belongs to the closed span of EΛ in Lp

w for some p ≥ 1. Then

there is an entire function g(z) which admits a Taylor-Dirichlet series representation

g(z) =
∞∑

n=1

( µn−1
∑

k=0

cn,kz
k
)

eλnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that f(x) = g(x) almost everywhere

on the real line.

Part II. There is a unique biorthogonal sequence rΛ to the system EΛ in L2
w which belongs to its

closed span, such that for every ǫ > 0 there is a constant mǫ > 0, independent of n and k, so that

||rn,k||L2
w
≤ mǫ exp

{
(−2d+ ǫ)λn log λn

}
, ∀ n ∈ N, k = 0, 1, . . . , µn − 1. (3.2)

Our aim in this article is to prove the following moment problem result.

Theorem 4. Suppose that Λ ∈ U(d, 0) for some d > 0, w(t) ∈ Aρ,τ and (3.1) holds. Consider

a doubly-indexed sequence of non-zero complex numbers

{dn,k : n ∈ N, k = 0, 1, . . . , µn − 1}

such that

lim sup
n→∞

logAn

λn log λn
= γ < 2d, An = max{|dn,k| : k = 0, 1, . . . , µn − 1}. (3.3)

Then there exists a function f ∈ span (EΛ) in L2
w that extends analytically as an entire function,

admitting a Taylor-Dirichlet series representation

f(z) =

∞∑

n=1

(
µn−1
∑

k=0

cn,kz
k

)

eλnz, cn,k ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that
∫ ∞

−∞
e−2w(t)tkeλntf(t) dt = dn,k, ∀ n ∈ N and k = 0, 1, 2, . . . µn − 1. (3.4)
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We point out that similar moment problems were considered in [8, Theorems 1.2 and 7.1] but
the solution obtained is a continuous function on R rather than an entire function.

We also note that Theorem 1 follows by combining Theorem 4 with Example 1, Example 2,
and

Remark 3. Suppose that Λ has a positive density d. A sufficient condition for (3.1) to hold (see
the proof of [8, Theorem 2.2]) is if w(t) ∈ Aρ,τ such that

t2 ≤ w(t) ≤ eξt, ∀ t ≥ τ ≥ 0, 0 < ξ <
1

2d
.

The following results are direct consequences of Theorem 4.

Corollary 1. Let w(t) be as in Example 1.

(A) Suppose that {λn}
∞
n=1 is a sequence in the L(c, d) class for some d > 0 and consider a sequence

of non-zero complex numbers {dn}
∞
n=1 such that

lim sup
n→∞

log |dn|

λn log λn
< 2d.

Then there exists an entire function f admitting a Dirichlet series representation

f(z) =

∞∑

n=1

cne
λnz, cn ∈ C, ∀ z ∈ C,

with the series converging uniformly on compact subsets of C, so that

∫ ∞

−∞
e−2w(t)eλntf(t) dt = dn, ∀ n ∈ N.

(B) There exist entire functions f and g admitting a Dirichlet series representation

f(z) =

∞∑

n=1

cne
nz, g(z) =

∞∑

n=1

dne
nz,

so that for all n ∈ N we have

∫ ∞

−∞
e−2w(t)entf(t) dt = nn,

∫ ∞

−∞
e−2w(t)entg(t) dt = n!.

4. Bessel and Riesz–Fischer sequences

The proof of Theorem 4 depends on Theorem 3 and utilizes the following notions from Non-
Harmonic Fourier Series.

Let H be a separable Hilbert space endowed with an inner product 〈 · 〉, and consider two
sequences {fn}

∞
n=1 and {gn}

∞
n=1 in H. We say that [6, Chapter 4, Section 2]:

(i) {fn}
∞
n=1 is a Bessel sequence if there exists a constant B > 0 such that

∞∑

n=1

|〈f, fn〉|
2 < B||f ||2 ∀ f ∈ H.
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(ii) {gn}
∞
n=1 is a Riesz–Fischer sequence if the moment problem 〈f, gn〉 = cn has at least one

solution f ∈ H for every sequence {cn}
∞
n=1 in the space l2(N).

Remark 4. It follows from [3, Proposition 2.3] that if two sequences {fn}
∞
n=1 and {gn}

∞
n=1 in H

are biorthogonal, that is

〈fn, gm〉 =

{

1, m = n,

0, m 6= n,

and {fn}
∞
n=1 is a Bessel sequence, then {gn}

∞
n=1 is a Riesz–Fischer sequence.

We give now a sufficient condition in order for {gn}
∞
n=1 to be a Riesz–Fischer sequence.

Lemma 1. Let H be a separable Hilbert space and consider two biorthogonal sequences {fn}
∞
n=1

and {gn}
∞
n=1 in H. Let cn,m = 〈fn, fm〉 and let C = (cn,m) be the Hermitian Gram matrix associated

with {fn}
∞
n=1. If there is some M > 0 so that

∞∑

n=1

|cn,m| < M for all m = 1, 2, 3, . . . , (4.1)

then {fn}
∞
n=1 and {gn}

∞
n=1 are Bessel and Riesz-Fischer sequences respectively in H.

P r o o f. Relation (4.1) implies that the Gram matrix C defines a bounded linear operator on
the space of sequences l2(N) (see [4, Lemma 3.5.3] and [6, Sec. 4.2, Lemma 1]). It then follows by
[4, Lemma 3.5.1] that {fn}

∞
n=1 is a Bessel sequence in H. By Remark 4 we conclude that {gn}

∞
n=1

is a Riesz–Fischer sequence in H. �

5. Proof of Theorem 4

Clearly span (EΛ) in L2
w is a separable Hilbert space and let us denote this space by HΛ. From

Theorem 3 (Part II), let {rn,k} be the biorthogonal sequence to EΛ which belongs to its closed
span.

Then, define for every n ∈ N and k = 0, 1, . . . , µn − 1 the following:

Un,k(t) := λndn,krn,k(t) and Vn,k(t) :=
tkeλnt

λndn,k
.

It easily follows that {Un,k} and {Vn,k} are biorthogonal sequences in HΛ.
We now claim that {Un,k} and {Vn,k} are Bessel and Riesz–Fischer sequences respectively inHΛ.

First, since (3.2) and (3.3) hold, if we let ǫ = (2d− γ)/2 we get

||Un,k||L2
w
≤ e−ǫλn , ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1.

Then, by the Cauchy-Schwartz inequality we get

|〈Un,k, Um,j〉| ≤ e−ǫλn · e−ǫλm , ∀ n,m ∈ N k = 0, 1, 2, . . . , µn − 1 j = 0, 1, 2, . . . , µm − 1. (5.1)

Next, let cn,k,m,j be the value of 〈Un,k, Um,j〉 and let C be the infinite dimensional hermitian
matrix with entries the cn,k,m,j’s, that is C is the Gram matrix associated with {Un,k}. From (2.3)
and (5.1) we get

∞∑

n=1

µn−1
∑

k=0

∞∑

m=1

µm−1
∑

j=0

|cn,k,m,j| < ∞.



Moment Problems in L2 175

It then follows from Lemma 1 that our claim is valid.
Thus, the moment problem

∫ ∞

−∞
f(t)Vn,k(t)e

−2w(t) dt = an,k ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1,

has a solution in HΛ whenever
∑∞

n=1

∑µn−1
k=0 |an,k|

2 < ∞. Now, if we let

an,k =
1

λn
∀ n ∈ N and k = 0, 1, . . . , µn − 1,

then the density of Λ and relation (2.2) imply that

∞∑

n=1

µn−1
∑

k=0

|an,k|
2 =

∞∑

n=1

µn

λ2
n

< ∞.

Thus, {an,k} belongs to the space l2(N). Hence, and recalling the definition of Vn,k, there is some
function f ∈ HΛ so that

∫ ∞

∞
f(t)

(
tkeλnt

dn,kλn

)

e−2w(t) dt =
1

λn
, ∀ n ∈ N and k = 0, 1, 2, . . . , µn − 1.

Clearly now (3.4) holds.
Finally, since f ∈ HΛ it follows from Theorem 3 (Part I) that f extends analytically as an entire

function admitting a Taylor–Dirichlet series representation. Our proof is now complete.
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Birkhäuser, Springer, 2003. 440 p. DOI: 10.1007/978-0-8176-8224-8

5. Malliavin P. Sur quelques procédés d’extrapolation. Acta Math., 1955. Vol. 93. P. 179–255.
DOI: 10.1007/BF02392523

6. Young R.M. An Introduction to Nonharmonic Fourier Series. Revised first edition. San Diego, CA:
Academic Press, Inc., 2001. 234 p.

7. Zikkos E. Completeness of an exponential system in weighted Banach spaces and closure of its linear
span. J. Approx. Theory, 2007. Vol. 146. No. 1. P. 115–148. DOI: 10.1016/j.jat.2006.12.002

8. Zikkos E. The closed span of some exponential system in weighted Banach spaces on the real line and
a moment problem. Analysis Math., 2018. Vol. 44. No. 4. P. 605–630. DOI: 10.1007/s10476-018-0311-0

https://doi.org/10.2307/1995948
https://doi.org/10.1512/iumj.2001.50.2044
https://doi.org/10.4171/ZAA/1079
https://doi.org/10.1007/978-0-8176-8224-8
https://doi.org/10.1007/BF02392523
https://doi.org/10.1016/j.jat.2006.12.002
https://doi.org/10.1007/s10476-018-0311-0


 

 

 

 
 

 

Editor: Tatiana F. Filippova 

Managing Editor: Oxana G. Matviychuk 

Design: Alexander R. Matviychuk 
 

 
 

 

 

 

 

Contact Information 

16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990 

Phone: +7 (343) 375-34-73 

Fax: +7 (343) 374-25-81 

Email: secretary@umjuran.ru 

Web-site: https://umjuran.ru 

 

 

N.N. Krasovskii Institute of Mathematics and Mechanics 

of the Ural Branch of Russian Academy of Sciences 

 
Ural Federal University named after the first President of Russia B.N. Yeltsin 

 

 

 

 

 

 

Distributed for free 

mailto:secretary@umjuran.ru
https://umjuran.ru/

	Introduction
	Main result
	Proof of Theorem 1
	Preliminaries
	Constructing a map on the first segment
	Constructing Poincaré map

	Conclusion
	Introduction
	Conditions for embedding classes in the Lorentz space
	Estimates of best approximations of functions with logarithmic smoothness
	Conclusion
	Introduction
	Preliminaries 
	Proof of Theorem 1
	Introduction
	Preliminaries
	Positive periodic solutions
	Exponential stability of positive periodic solutions
	Application in a pipe-tank configuration
	Conclusion
	Introduction
	Asymptotically almost automorphic functions
	Smooth asymptotically almost automorphic functions
	Asymptotically almost automorphic distributions
	Linear neutral difference differential equations
	Introduction
	Asymptotic equality of sets
	Small-time reachable sets of nonlinear systems
	Auxiliary results
	Small-time reachable sets

	Time-invariant systems on a small time interval 
	Asymptotics of the smallest eigenvalue of the controllability Gramian
	Small-time reachable sets of time-invariant systems
	Examples

	Introduction
	Preliminaries
	Existence for the null-controllability problem (2.2)–(2.5)
	Optimal control of the controlled wave equation with incomplete data
	No-regret control optimality system (Optimal control for the ill-posed wave equation)
	Conclusion
	Introduction
	Main results
	Preliminary lemmas
	Proofs of the main results 
	Conclusion
	Introduction
	Introduction of Tsallis Varentropy
	Tsallis varentropy of order  for order statistics
	The Tsallis varentropy in lifetime study
	Conclusion
	Introduction
	Main results
	Calculation results
	Conclusion
	Introduction
	Definitions and notations
	Generalized eighth order mock theta functions
	Relation between generalized eighth order mock theta functions
	q-Integral representation for the generalized eighth order mock theta functions
	Multibasic expansion of generalized eighth order mock theta functions
	Special cases and Ramanujan's cubic continued fraction
	Conclusion
	Introduction
	Main results
	Concluding remarks
	Problem statement
	Ordinary differential equation with Hilfer operator
	Uniqueness of solution of the nonlocal problem
	Existence of a solution of the nonlocal problem
	Stability of solution of the nonlocal problem
	Illustrative examples
	Conclusion
	Introduction
	Notations and definitions from Z2007JAT,Z2018Analysis
	Weighted Banach spaces
	The class of multiplicity sequences U(d,0)

	Our previous main results and the new one
	Bessel and Riesz–Fischer sequences
	Proof of Theorem 4

