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PRODUCTS OF ULTRAFILTERS
AND MAXIMAL LINKED SYSTEMS
ON WIDELY UNDERSTOOD MEASURABLE SPACES

Alexander G. Chentsov

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russia

chentsov@imm.uran.ru

Abstract: Constructions related to products of maximal linked systems (MLSs) and MLSs on the product
of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped
with 7-systems of their subsets; a m-system is a family closed with respect to finite intersections). We compare
families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters.
Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type
topologies. The properties of compaction and homeomorphism hold, respectively.

Keywords: Maximal linked system, Topology, Ultrafilter.

1. Introduction

In this investigation, properties of maximal linked systems (MLSs) and ultrafilters on widely
understood measurable spaces (MSs) are considered. Every such MS is realized by equipment of a
nonempty set with m-system of subsets of this set with “zero” and “unit” (the “zero” is an empty set,
and the “unit” is our original set); a mw-system is a family closed with respect to finite intersections.
Of course, algebras, semi-algebras, topologies, and families of closed sets in topological spaces (TSs)
are m-systems. An important variant of a m-system is realized by a lattice of subsets of a fixed
nonempty set. A semi-algebra of sets is a m-system but, generally speaking, not a lattice.

We note that MLSs were considered in connection with the superextension and supercompact-
ness problem, see [2, 16, 17, 20, 21]. In addition, MLSs on the lattice of closed sets in a TS were
studied. The nonempty set of all MLSs of such type is equipped with Wallman-type topology. The
supercompactness property was implemented.

In [5-7, 9, 10, 12], an analog of the superextension and supercompactness property for the
space of MLSs on a 7-system was investigated. Moreover, a Stone-type topology was also used. In
addition, a bitopological space was implemented. The present study continues the above works.
But here the focus is on spaces of MLSs with Stone-type topology. We consider questions related
to the products of widely understood measurable spaces. In addition, representations of MLSs on
the product of these MSs in terms of analogous MLSs on spaces-factors are indicated. Namely,
MLSs on the product of (widely understood) MSs are limited to products of MLSs on initial spaces.
This important property is complemented by a proposition of a topological nature: the properties
of compaction and homeomorphism hold. In addition, the box and Tychonoff variants of topology
product are considered (similar variants are used for the product of MSs). In connection with the
above assumptions, we use constructions of [11, 13, 14].
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2. General notions and notation

We use standard set-theoretic notation, including quantifiers and propositional connectives; &

stands for an empty set) and 2 for an equality by definition. A family is a set such that all its
elements are sets themselves. We adopt the axiom of choice. For every objects x and y, denote
by {x;y} an unordered pair of x and y: = € {x;y}, y € {z;y}, and (z = x) V (z = y) for every
z € {x;y}. For every object s, denote by {s} 2 {s;s} a singleton containing s : s € {s}. In
addition, sets are objects. Then, for every objects z and y, the family (z,y) 2 {{z};{z;y}} is
(see [12, Ch. II, Section 2]|) the ordered pair with = as the first element and y as the second. For
every ordered pair h, denote by pr;(h) and pry(h) its first and second elements, respectively; thus,
h = (pry(h), pra(h)).

Denote by P(H) the family of all subsets of H. Let P'(H) 2 P(H)\ {@} be the family of all
nonempty subsets of H. Denote by Fin(H) the family of all finite nonempty subsets of H. If H is
a family and S is a set, then

[H)(S) 2 {H € H| S H} € P(H).

For every set M and a family M € P/(P(M)), the dual family
CplM] £ {M\ M : M e M} € P'(P(M))
is realized. If A is a nonempty family and B is a set, then
Alp£{ANB: Ac A} € P'(P(B))

is the trace of A onto the set B. Following to [7, Section 1], if X is a nonempty family, then {U}(X),
{N}(X), {U}s(X), and {N}4(X) stand for the families of arbitrary unions, arbitrary intersections of
nonempty subfamilies of X, finite unions, and finite intersections of sets from X, respectively.

Remark 1. In what follows, we use two types of formulas. Namely, we use expressions of
type {z € X| ...} and expressions of type {f(z) : z € ...}. In function theory, the former is used
for the preimage of a set; we have a formula corresponding to Zermelo—Fraenkel axiomatic (we
first select a set X, for points of which some property ... is postulated). The second expression
corresponds logically to the image of a set. This difference is essential from point of view of
bibliographic references to earlier publications of the author. Therefore, we use two variants of
separator character: | (vertical line) in the first case and : (colon) in the second. This stipulation
is important for the constructions that follow.

For sets A and B, we denote by B4 (see [19, Ch. II, § 6]) the set of all mappings (functions)
from A to B; values of mappings are denoted in traditionalway. If A and B are sets, f € B4, and

C € P(A), then f1(C) 2 {f(z): z€C} € P(B) and (f|C) € BY is, by definition, the restriction
of the mapping f to the set C': (f|C)(x) 2 f(z) Vz € C. For mappings, index form is often used
(a family with index, see [22, Ch. I, I.1]).

In what follows, R is the real line, N 2 {1,2;...} e P(R),and 1,n 2 {k e N| k <n}forneN.
We assume that elements of N, i.e., positive integer natural numbers are not sets. Therefore, for

every set H and n € N, instead of H'", we use the more traditional notation H™ for the set of all

mappings from 1,n to H; thus, H" is the set of all processions (hi)iel,_n : 1,n — H.

Special families. Until the end of this section, we fix a nonempty set I. The elements of
P'(P(I)) are nonempty families of subsets of I. Define the family of all 7-systems of subsets of I
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with “zero” and “unit”:
7[1] 2 {ZeP(PO)| (@& ecD)&(ANBEeI VA€IVBeI)}. (2.1)

Of course, P(I) € m[I]. Consider a very useful notion of semi-algebra of sets. For £ € 7[I], A € P(I),
and n € N, we introduce finite partitions of A by sets of L:

n

An(A L) 2 {(Liierz € £ (A= J L)&(LyN Ly =2 WpeTnvaeTn\ {p})}.
1=1

The family of all semi-algebras of subsets of I is defined as follows:
M2 {Lexl|VLeL IneN: AI\LL)# ). (2.2)

In addition, we introduce yet another type of w-systems; this type is important in questions of
interconnection between ultrafilters and MLSs. Namely,

ME{Terl]|VL €T VLeT V€T
(NI # 2)&(IaN I3 # 2)&(I1 N3 # @) = (LN LN 13 # @)}

Of course, very general constructions are connected with lattices. The family of all lattices of
subsets of I with “zero” and “unit” is

(LAT)| {Zew |AUBEeT VA€IVBeTI}, (2.3)

We introduce the family

(alg)[T) £ {A € (LAT)o[T)| T\ A€ A VA€ A} (2.4)

of all algebras of subsets of I. For A € (alg)[I], (I,.4) is an MS with algebra of sets. Moreover,
(top)[I {T € (LAT)[M)| |J Ger vGeP(r)} (2.5)
Geg

is the family of all topologies on I and

(clos)[I {CI : 7 € (top)[I]} € P'((LAT)o[1)) (2.6)

is the family of all closed topologies [1, Ch.4, §1] on I. So, (2.4)—(2.6) are important types of lattices
(see (2.3)). Semi-algebras (see (2.2)) are, generally speaking, not lattices: if £ € II[I], then it is
possible that £ ¢ (LAT)p[I].

Elements of topology. We consider the families (BAS)[I] and (p — BAS)[I] of all open bases
and subbases on I, respectively; this notation correspond to [9, Section 2] (see also [7, Section 2]).
Of course, {U}(f) € (top)[I] for 8 € (BAS)[I]; moreover, {N}4(x) € (BAS)[I] for x € (p — BAS)[I].
Note that (see (2.1))

w[I] C (BAS)[I]; (2.7)

therefore, {U}(L£) € (top)[I] is defined for £ € =[I]. If 7 € (top)[I], then
(r —BAS)OlI] = {8 € (BAS)[I]|r = {U}(8)}.

Moreover,

(p—BAS)o[;7] 2 {x € (p— BAS)[I[{N}s(x) € (r — BAS)o[I]}.
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Thus, we have introduced open bases and subbases of the specific TS (I, 7).

Linkedness. If 7 € P/(P(I)), then we suppose that

(T — k)1 2 {£ € P/(JT)| S1NSy £ 2 VS € EVEy € £, (2.8)

Elements of the family (2.8 and only they are linked subfamilies of 7. As a corollary,

(T — link)o[T] £ {€ e (T —1link)[I)| VS € (J —link)[I] (£ CS) = (£E=38)} (2.9)

is the family of all maximal linked subfamilies of 7. We call every family of (2.9) an MLS (on J). In
what follows, for our goals, it suffices to consider the case J € 7[I]. Therefore, until the end of this
section, suppose that J € 7[I]. Now, we note only several simple properties. So, {3} € (J —link)[I]
for ¥ € J\ {@}. Then, by the Zorn lemma, (J — link)o[I] # &. Moreover,
(J —link)o[I] = {€ € (J —lnk)[I]|VJ €T (JNE#@ VEe€&) = (J€&)}.
Finally, note that, for £ € (J — link)o[I], we have
([THE) CcE VEe&H&(I ). (2.10)

More detailed information on the properties of MLSs can be found in [5-7, 9-12]. Now we introduce
some constructions for a Stone-type topology. If J € J, then

(T —1ink)O[11J] £ {€ € (J — link)o[T]| J € £} € P((T — link)o[T]). (2.11)
The sets (2.11) define an open subbase. More precisely, the subbase

EILT) 2 {(T —1ink) [I[J] : J € T} € (p— BAS)[(J — link)o[T]

generates the following topology of Stone type:
T (117) £ {U}({n}:(€51; 7)) € (top)[(T — link)o[T]]. (2.12)

In addition, ((J — link)o[I], T«(I|7)) is a zero-dimensional Th-space.

3. Generalized Cartesian products

In this sections, we recall some constructions connected with Cartesian products and generalized
Cartesian products. We note also some notions connected with family products.

If X and Y are nonempty sets, X € P'(P(X)), and Y € P'(P(Y)), then

X{x}Y 2 {pry(2) x pry(z) : 2z € X x Y} € P/(P(X x Y)) (3.1)

(X x Y is the usual product of X and ), i.e., the set of ordered pairs); (3.1) is the simplest variant
of the constructions used below. It is easy to verify the property

X{x}YenX xY] VX ern[X] VYenr[Y]. (3.2)

We consider (X x Y, X{x})) as the product of the MSs (X, X) and (Y,)).
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Now we recall notions connected with generalized Cartesian products. If X and Y are nonempty
sets and (Y,)zex € P'(Y)%, then (by the axiom of choice)

[]Y. & {f € Y¥|f(z) € Yo Vo € X} € P(YF). (3.3)
zeX

In connection with (3.3), note that, for every nonempty sets X, Y, and Y and a mapping
(Va)zex € P'(Y)* N P/(Y)%, we have

{feY® f(z) €Y, Ve X} ={fe V¥ fx) €Y, VzeX}. (3.4)

In what follows, in constructions of type (3.3) we take into account (3.4). If X and Y are nonempty
sets and (Y)zex € P'(Y)%, then

[1 7 (P(2) = {Va)aex € P(POY)¥| Vs € P/(P(Y)) Vs € X}y

zeX
moreover, if (&)zex € [[,ex P'(P(Yz)), then
A
O& {15 Chexe [[&} (3.5)
reX zeX zeX

We consider the family (3.5) as a box product of the families &£,, = € X. Here, we note the natural
analogy with the base of the known box topology (see [18, Ch. 3]).
If H is a set, then we suppose that

(Fam)[H] 2 {# € P'(P(H))[H € H):

of course, P(H) € (Fam)[H]; moreover, (alg)[H] C II[H] C «[H] C (Fam)[H] and, by (2.5),
(top)[H] C (Fam)[H]. As a corollary, for nonempty sets X and Y, a mapping (Yz)zex € P'(Y)%,
and a mapping (F;)zex € [] (Fam)[Y;], we obtain

zeX
®‘7: = {H € P(H Ye)| 3(Fy)zex € 1—[.7:m :
rzeX zeX zEX (36)
(H = [] F)&(3K € Fin(X) : F, =, Vs € X\ K) .
zeX

In connection with (3.5), note that, for every nonempty sets X and Y, a mapping (Y3 )zex € P/ (Y)¥,

and a mapping (Vz)zex € [[ 7[Y%], we have
rzeX

OV ={II%: Goheexe [[ ¥} enl[] ) (37)

reX reX zeX zeX

In connection with (3.6), note that, for the above X, Y, (Y3)zex, and (Vi)zex, we have

Ry, = {H e P(I] Yo)l 3Fa)uex € [[ Ve : (H =[] Fa)

zeX zeX zeX zeX

&EK € Fin(X) : F, =Y, Vs € X\K)} e x[[] Yal-
zeX
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Note useful particular cases of (3.7) and (3.8): for nonempty sets X and Y and mappings
(Ya)eex € P'(Y)* and (73)zex € [[,ex(top)[Yz], we have

(@ng en]] Yw]>&<®% en[]] Yx])- (3.9)

zeX zeX zeX zeX

Using (2.7) in (3.9), we obtain two variants of topological equipment:

(tol(r)eex] = {UHO m)eton) ] Val )& (bal(me)ocx] = {UH m)eltop) [] Y21).  (3.10)

zeX zeX zeX zeX

Namely, by (3.10), we obtain the following two TSs:

< H Ye, tol(7e)eex] > < H Yz, tel Tm)xEX])

zeX rzeX

thus, we obtain the box TS and the Tychonoff product. Of course, topologies (3.10) are com-
parable. Moreover, for every nonempty sets X and Y and mappings (Yz)zex € P'(Y)* and

(Zz)wex € [Lyex m[Ye], we have
R c DI (3.11)
zeX zeX

From (3.11), the comparability of topologies (3.10) follows, since

H top)[Y, H7T

zeX rzeX

Thus, for every nonempty sets X and Y and mappings (Yz)zex € P/(Y)* and (7p)zex €

erx(top)[ym], we have
te[(T2)zex] C tol(Te)zex]-

4. Ultrafilters and maximal linked systems

In this section, we fix a nonempty set F and a w-system £ € 7w[E]. Recall the notions of filter
and ultrafilter on this 7-system. So,

F*(L) £ {FeP(L\{2})| (ANBE€F VYAcF VB F&(L)(F) C F VF € F)}

is the set of all filters on £. Hence (see [7, Section 2]),

Fy(L) £ {U € F*(L)| YF € F*(L) U C F) = U =F)}
—{UeF (L) VLeL (LNU £ @ VU eU) = (L €U))}.

We recall that Fj(£) # @ (this is a simplest corollary of the Zorn Lemma). If L € £, then
Bo(L) 2 {UeFHL)| LeUl ={UcTFyL)| LNU +2 VU cU}. (4.1)
Using (4.1), we introduce the following m-system:

(UF)[E; L] 2 {®,(L) : L e L} e n[FiL)]. (4.2)
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From (2.7) and (4.2), the property (UF)[E; L] € (BAS)[F;(£)] follows and, as a corollary,
* A *
Tz[E] = {U}((UF)[E; £]) € (top)[F5(L)]- (4.3)
In connection with (4.3), note that (F;(L£), T[E]) is a zero-dimensional Th-space, see [3]. Thus,
(UF)[E; £] € (TZ[E] — BAS)o[F5(L)]-

In what follows, we use the inclusion F§(L£) C (£ — link)o[E], see [8, (3.2)]. Now, we recall one
general property (see [8, (4.2)]):

((£ — link)o[E] = F§(L)) <= (£ € 7i[E]). (4.4)
In this connection, note that (see [8, (3.12)]), in the general case of £, we have
TL[E] = TAEIL)Fs () (4.5)

In connection with (4.4), we note [8, (4.3)] where supercompactness conditions for a topology of
Wallman type were considered. Moreover, in the general case of £ € 7[E], we have the following
representation [8, (4.1)]:

(L —link)o[E] \F§(L) = {€ € (L —link)o[E]| I8, € ETLy € ETEg €€ : B1NE Ny =2}
Therefore, we obtain the following useful equality:
F5(L) = {€ € (L —link)o[E]| 21NEoNT3 # @ VS €& VE, €€ Vi3 € £} (4.6)

It is easily to verify that
F3(L) € Crtinkyo[ [T+ (E]L)]- (4.7)

By (4.5) and (4.7), we conclude that (F(L£), T:[E]) is a closed subspace of ((£L—link)o[E], T\ (E|L)).

5. The case of product of two widely understood measurable spaces

In this section, we fix nonempty sets X and Y. In addition, we fix two m-systems X € 7[X] and
Y € n[Y]. We recall that (see (3.1))

A{x}B 2 {pri(2z) x pry(2) : z € A x B}

for A € P'(P(X)) and B € P'(P(Y)); of course, A{x}B € P'(P(X xY)). Note that X x Y # &
and

X{x}Y = {pri(z) x pry(z) : z€ X x Y} e n[X x Y]. (5.1)
Proposition 1. For A € (X — link)[X] and B € (Y — link)[Y], we have
A{x}B € (X{x}Y —link)[X x Y].

The proof follows from the definitions.
Below, we use constructions of [11, § 7]. We recall these constructions very briefly. So (see [11,
Proposition 17]),

VH € (X{x}Y)\ {9} Tze (X \{9}) x (Y\{9}): H =pri(z) X pry(z). (5.2)
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Using (5.2), we introduce the mappings
(<p1 e (x\ {Q})(X{X}y)\{@})&(@z e\ {@})(X{X}y)\{ﬁ})7
for which S = 1(S) x @2(S) VS € (X{x}V)\ {@}. By (2.8), we obtain
(J —link)[I] ¢ P(J \ {2}) (5.3)
for every nonempty set I and J € 7[I]. Then, by (5.1) and (5.3), we have
(X{x}Y —link)[X x Y] C P ((X{x}Y) \ {2}).
Then, by [11, Proposition 18], for £ € (X{x}Y — link)[X x Y], we obtain

((e1)(€) € (X = 1nk)[X] ) & ((22)' () € (¥ = Tink)[Y]) (5.4)
and, by [11, Proposition 19], the following inclusion holds:
£ C (e (E)1xHp2) (E)- (5.5)

From (2.9), (5.4), (5.5), and Proposition 1, we find (see [11, Propositions 20-21]) that, for
£ € (X{x}Y — link)o[X x Y],
€= () (E)x}p2) (&), (5.6)
where (1)}(€) € (X — link)o[X] and (¢2)!(E) € (¥ — link)o[Y]. Moreover,
VA € (X — link)o[X] VB € (Y — link)[Y] 57
A{x}B € (X{x}Y — link)o[X x Y],

see [11, Proposition 22]. As a corollary, from (5.6) and (5.7), we obtain
(X{x}Y —link)o[X x Y] = {pri(2){x}pry(2) : z € (X —link)o[X] x (¥ —link)o[Y]}  (5.8)

(see [11, Theorem 2]). So, MLSs on the product (X x Y, X{x})) are exhausted by products of
MLSs on (X, X) and (Y,)). Note that it is possible to use that MLSs in (5.8). For arbitrary linked
families, the property similar to (5.8) is, generally speaking, incorrect.

Ezample 1. Assume that X =Y = 1,3; thus, X = Y is a three-element set: 1 € X, 2 € X,
and 3 € X. Suppose that X = P(X) and Y = P(Y); of course, X = ). Now, we introduce the
linked family £ by the rule X x {2} € &€, {2} xY € &, {(2,2)} € &, and the family £ does not
contain any other sets. So, £ is a specific three-element family. Of course, {(2,2)} = {2} x {2}. We
have the obvious inclusion

E e (X{x}Y —link)[X x Y].

However,

E#A{x}IB VAe (X —link)[X] VBe (Y- link)[Y].
Indeed, let € = A{x}B for some A € (X — link)[X] and B € (Y — link)[Y]. Then
(X x {2} € A{x}B)&({2} x Y € A{x}B).

Using (5.2), we find that X € Aand Y € B. Then, X XY € A{x}B. But X xY ¢ £. The obtained
contradiction proves the required property: £ does not have a rectangular structure. ]

Note that, by (5.7), we have
Ul{X}UQ S <X{><}y — link>0[X X Y] YU € FS(X) YUy € IFE;(y)
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Proposition 2. IflU € F§(X) and Uy € F5(Y), then Ui {x Uz € F(X{x}D).

Proof Fix U € FiX) and Uy € F§(Y). Then, in particular, Uy € (X — link)o[X] and
Uz € (Y — link)o[Y]. By (5.7), we have

Ur{x}Us = {pri(2z) x pry(2) : z €Uy x U} € (X{x}Y — link)o[X x Y. (5.9)
Let T’ € Uy {x}s, A € Uy{x}s, and let T € Uy {x }Us. Using (5.9), we choose
(T1 €Uy)&(Ty € Us)&(Ay € Ur)& (Ao € Us)&(T € U )&(Ts € Us)
with the following properties:
([ =T xTo)&(A = A1 X N)&(T =T x Td). (5.10)
By (4.6), we obtain the following obvious statements:
(TiNANTy #2)&(ToNAaNTy # 2). (5.11)

Let a e Ty NA;NT) and B € To N Ay NTy (we use (5.11)). Then, by (5.10), (o, ) e TNANT.
Since the choice of ', A, and T" was arbitrary, the required inclusion U { x }Us € F§(X{x}Y) follows
from (4.6) and (5.9). O

Proposition 3. IfU € Fi(X{x}Y), then IA € F5(X) 3IBeFi(Y): U= A{x}B.
Proof FixU € Fj(X{x})). Then, by (4.6), we have
U e (X{x}Y —link)g[X x Y] (5.12)
and the following property:
ANBNC#@ YAeUd VBelU VCel. (5.13)

From (5.8) and (5.12), we conclude that U = Ui{x}Us for some U; € (X — link)o[X] and
Uy € (Y — link)o[Y]. In addition (see (2.10)), X € Uy and Y € Us.
Consider an MLS U;. For this, we fix M € U1, N € Uy, and T € U;. Then, by the choice of
U, and Us, we have
(M XY elU)&(N XY eld)&(T xY el), (5.14)

(see (2.10)). From (5.13) and (5.14), we obtain M N N NT # &. Since the choice of M, N, and
T was arbitrary, the inclusion U; € Fj(X) is obtained (see (4.6)). The inclusion Uy € F§(Y) is
established similarly. O

Theorem 1. The following equality holds:
Fo(X{x}Y) = {pri(:){x}pra(z) : 2 € F§(X) x F5(V)}.

The proof reduces to immediate combination of Propositions 2 and 3. Finally, we note an
important property of topological character (see [13, Theorem 5.1]). We recall that, by (3.1)
and (3.2),

T (X[X){XJT (YY) = {pri(2) x pry(2) : 2z € T(X]|X) x T(Y|V)}
€ m[(X —link)o[X] x (¥ — link)o[Y]];
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then, by (2.7), the natural topology

T.(X12) R T (Y[Y) 2 {UH(Tu(X|X){x}T.(Y]P)) € (top) (X — link)o[X] x (¥ — link)o[Y]
of the product of Stone-type TSs is realized. Moreover, the following Stone-type topology is defined:
T.(X x Y[X{x}V) € (top) [(X{x}V — link)o[X x Y]].

Then, by [13, Theorem 5.1], the mapping
20— pry (2){xpry(2) 1 (X — link)o[X] x (¥ — link)o[Y] — (X{x}Y — link)o[X x V] (5.15)
is a homeomorphism from the TS
(¢ — link)o[X] x (¥ —link)o[Y], To(X|X) R) T-(Y|))) (5.16)

onto the TS ((X{x}Y —link)o[X x Y], T (X x YV|X{x}})).
Note that, by (4.7), we have

Fo(X{x}Y) € Cx{x1y—link)o[X xY] [T« (X x Y[]X{x}V)].

Moreover, using (4.5), we obtain

vy X X Y] = To(X ) Y[X D) rg (0 1x))- (5.17)

So, ultrafilters of m-system X{x}) form a closed subspace of TSs homeomorphic to (5.16). Theo-
rem 1 reveals the structure of this subspace.

6. Infinite products of maximal linked systems, 1

Unless otherwise stated, in what follows, nonempty sets X and E and a mapping
(Ey)zex € P'(E)X are fixed (for # € X, we denote by F, a nonempty subset of E). Define
the set A

E= ] B ={f € BX|f(z) € B, V2 € X} € P'(EY) (6.1)
reX

(hereinafter, the axiom of choice is used). Finally, we fix

(['aﬁ)xeX S H W[Ex] (6'2)

zeX

We obtain (see (6.2)) the following two variants of w-systems:

® Lo = {H € P(E)| I(La)wex € ] Lo: (H= ] Lu)& (3K € Fin(X) :
zeX reX reX (6.3)

Ly = E, Vs eX\K)} e 7],

L. = { I]Z:: Lodeex € [] Ex} e 7[E). (6.4)

reX reX zeX

Q) L.c ()La (6.5)

zeX zeX

(we use [8, (6.4)—(6.5)]); in connection with (6.3)—(6.5), we recall (3.6)—(3.8). So, we have two
comparable m-systems on E.
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Now, we note one simple property:
V(Ap)zex € P/(E)Y  V(By)sex € P/(E)X
< IT4.=1] Bm> — (A, = B, VzeX). (6.6)
zeX zeX

Moreover, we note that
V(HM)eex € PE)Y V(HP)sex € PE)Y
(TT #P) 0 (TT #2) = TT 3D 0 E®). (6.7)
zeX zeX

zeX

The property (6.7) assumes a natural development; now, we note only that

V(HD)pex € PE)Y V(HP)sex € PE)Y V(HD)sex € PE)Y

T x

(TL a9 (T @) 0 (] #9) = [1HD a0 ). (6.5)
zeX reX zeX

zeX

By (6.6), an obvious corollary is realized; namely,

vH € (O PE)) \ {2} (So)eex € [ P(E)

zeX reX

H=1]] = (6.9)

zeX

Using (6.9), we define a mapping

P: (OPE))\ (2} — [[P(E)

zeX zeX

by the following rule: if H € ((O,cx P(Ez)) \ {@}, then P(H) € [[,cx P'(E.) is a mapping such
that

H= ][ PH) (). (6.10)

x€X

We can use the variant H = [], .y ¥z, where (X;)zex € [[,ex P'(E:). In addition, by (6.9), we
have

5, = P(g( zx) (V) V(Se)eex € g{ PE,) Ve X. (6.11)

Now, note the following obvious inclusions:
( [T\ t2)) < EXPI(E“)&(( O £\ 12} < (O P {e}).  (612)

Now, for x € X, we define Py, : (O,cx P(E:))\ {@} — P'(E,) by the natural rule
P (H) = P(H)(x) VH e ( O P(E.) \ {2}, (6.13)

Of course, (6.13) defines the corresponding projection mapping. From (6.11) and (6.13), for x € X
and (X;)zex € [[,ex P'(Ez), we obtain

P (I %) =5 (6.14)

zeX
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From (6.12) and (6.14), we, in particular, obtain
PX(HLx):LX (Lo)sex € [ Lo\ {2}) VxeX.
zeX zeX
Using the notion of the set image, we suppose that VH € P((O,cx P(Ez)) \ {2}) Yxe X

A

Pl (H) = (Py)'(H). (6.15)

Then, the following obvious property holds: if H € P(((D,cx L£2) \ {F}) and x € X, then

P\ (M) € P(Ly \ {2}). (6.16)

We can use a natural combination of (5.3) and (6.16): a linked system can be used as ‘H. In addition,
by [13, Proposition 3.2], we have

PL(£) € (L —link)[E,] V&€ ()L, —link)[E] Vx € X.
rzeX
As a corollary, for £ € ((O,cx £z — link)[E], we obtain the mapping
(PL(E))aex € [] (Lo —link)[Ey]. (6.17)

zeX
Proposition 4. If (£;)rex € [[ex(Le — link)[E,], then O cx & € (Oyex Lo — link) [E].

This proposition corresponds to [13, Proposition 3.1]. To prove Proposition 4, it suffices to
use (6.7) (and the axiom of choice). From (6.17) and Proposition 4, we obtain

O PLE) €(() Lo —link)[E] VE € (() L, — link)[E]. (6.18)
reX zeX zeX
Note an obvious analog of (5.5); namely, for £ € ((D,cx £z — link)o[E], we have
ec (DHPLE)
reX
therefore (see (2.9) and (6.18)), by [13, Proposition 3.4], we obtain
£=)PLE). (6.19)
rxeX
In connection with (6.19), note that, by [13, Proposition 3.5], we have
PL(€) € (Ly —link)o[E,] VE € ((-) Lo —link)o[E] Vx € X.
zeX
Then, (6.17) is supplemented by the following statement:
(PL(E)ex € [ (Lo —link)o[E,] VE € () Lo — link)o[E]. (6.20)
zeX zeX
Moreover, by [13, Proposition 3.6], we obtain the following property:

(D& () La —link) [E] Y(E)rex € [] (La — link)o[Es].

zeX zeX zeX
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By (6.19) and (6.20), the following basic statement (see [13, Theorem 3.1]) holds:
() £, —link),[E] = { O Eoex € [ 1Le~ link>0[Em]}. (6.21)
reX zeX zeX
In (6.21), we have a natural analog of (5.8). In connection with (6.21), we note that
I Foc.) = {(ux)xex e P(P(E)X| Uy € Fi(Ly) Vs € X} c T (c. —tink)olE].  (6.22)
zeX rzeX
Then, by (6.21) and (6.22), we obtain
Do € () Lo —link) [E] Y(Us)rex € [] Fo(La)- (6.23)
reX rxeX rzeX
Proposition 5. If (Uy)rex € [[oex Fo(Le), then O ex Us € FE(Opex L)
Proof Fix (Uz)eex € [[,ex Fo(Le). Then, for x € X, we obtain
Uy, € Fo(Ly). (6.24)
Recall (4.6) and (6.4). Then, by (4.6) and (6.23), we have
(Zinsnss 2o vEieQt ¥Woe QU vSse Olh)
rzeX zeX zeX (6 25)
— (QeF(O L)),
zeX zeX
Let A € Ouex Us, B € Oyex Us, and let C € (O, ¢ x Uy Then, by (3.7), for some
<(A:v)m€X € H um>&((B:v)m€X € H um)&(((cm):vEX € H um)a
rzeX reX zeX
we obtain the following equalities:
(A =11 AJC)&(IB% =11 15%)&(@ =11 @x). (6.26)

rzeX reX reX

From (6.22), for x € X, we obtain the inclusions A, € P(E), B, € P(E), and C, € P(E). Then,

by (6.8) and (6.26)
ANBNC = J[(A:NB.NC,).
reX

(6.27)

In addition, for x € X, we obtain A, € U,, B, € U,, and C, € U,; then, by (4.6) and (6.24)

A, NB,NC, # @. So,
(Ay NB, NCy)rex € P'(E)F.

Using (6.27) (and the axiom of choice), we obtain A NB N C # &. Since the choice of A, B, and
C was arbitrary, it is established that the premise of implication (6.25) is true. So, we obtain the

required property

Ot e F(() La).

zeX zeX
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Proposition 6. IfU € Fj((O,cx L), then IUz)zex € [[ex Fo(Lz) : U = Opex Un-

Proof FixU € Fj((O,cx L£z). Then, in particular,

U e () Lo — link),[E].

zeX

By (6.21), U = (O e x €z, Where

(Ex)zex € J] (L —link)o[Es.

rzeX

By formula (4.6), we get
Y1NEaNEg#@ Vel Vel Vigel. (6.28)
Let x € X. Then, &, € (L, —link)o[E]. Therefore, by formula (4.6), we get
(Z1NTNT3#0 VS €& Vie& VEze&y) = (& eFyH(Ly)). (6.29)

Choose arbitrary A € £, B € &y, and C € &,. By (5.3), A € P'(E), B € P'(E), and C € P'(E).
Now, we introduce (A;)zex € P'(E)¥ by the rule

4

(A 2 A)&(A, 2 B, Yoe X\ {x})

Similarly, we introduce (B, )zex € P'(E)¥ by the rule

(B £ B)&(B, 2 B, ¥ae X\ {x})
Finally, define (Cy),cx € P'(E)X by the rule

(Cy 2 O)&(C 2 By Vo e X\ {x)):

Then, by (6.8), we obtain the following obvious equality:
(Hﬁx)m(HBm)m(H@)z [[(A:nB.NCy). (6.30)
zeX zeX zeX zeX

Note that, by (2.10), (A, € £,)&(Bx € £,)&(C, € &,) for x € X. Therefore,

((Ae)eex € T] &)&((Blaex € T] &)&((Cadeex € [T &)

zeX zeX zeX

By the choice of (£;).cx, we obtain (see (3.7))

As a corollary, by (6.28), we have the following important statement:

(mg(&&) N (mg(éx> N <g{6’x) £ Q.
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Then, from (6.30), we obtain A,NB,NC,#@ for ze€X. In particular,
A N B N C # . As a corollary, AN BN C # &. Since the choice of A, B, and C was
arbltrary, the follovvlng property holds:

21ﬂ22ﬂ237é® VEleé’X VEQEEX VE3€(€X.
From (6.29), we obtain &, € F§(L,). Since the choice of x was arbitrary,
E €FH(Ly) VreX.

As a corollary, by the choice of (£;)zex, we obtain

(Ex)zex € H Fo(Ly) s U = an:-

zeX zeX

Theorem 2. The following equality is true:

Fy((D) L) = { Ol : Us)eex € [] Fg(ﬁm)}.

zeX zeX zeX

The proof immediately follows from Propositions 5 and 6. Returning to (6.21), we note that
A T (La—link)o[Ex]
= (&) k) re (€2 -tinklol.] € ( () Lo — link) [E]=<¥ (6.31)
reX zeX
is a surjection. Moreover (see (2.11)), by [14, Proposition 4.3], for (Ls)sex € [[,cx L2, we have
f*1<<@ £, —1ink)°[E] [ Lx]> = T (€. — link)°[E.|La). (6.32)
reX zeX zeX

Moreover, the following set-product is defined:

[ &lEw £a] = {(Ha)sex € P(P'(P(E))™| Hy € €[Ey; £,] Vx € X}

zeX

In addition (see Section 2), €[E,; L,] € P'(P((Ly — link)o[E,])) for £ € X. Then, by (3.5), we

have

O B L) = { [T B s Fadeex € [T Gl L2} € P (P T] (0 — tinko[E]) )

reX reX zeX zeX

thus, the box product of the families @6 [Ex; L], v € X, is defined. Moreover, we have the property
[ 10Y: ] (p — BAS) [<@ Lo link>0[E]].
zeX zeX

From (6.32), we obtain the following statement:

e O GlE;L.) VHEE [E; © Lx}. (6.33)
reX zeX
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Now, we recall that (see (2.12)), for z € X,

To(Ey|Ly) € (top)[(Le — Unk)o[EL]] 1 Ch[Ey; L] C TulEy|Ly). (6.34)
Then,
(T (Es|La))zex € H (top)[(Ls — link)o[Ey]].
reX
By (3.9),
O T(E|L.) { [16G:: (Goloex €[] T*(Ex]£x>} € 77[ Iz —link>0[E$]]
reX zeX zeX zeX

is used as an open base for the corresponding box topology:

6 [(Te (e Lo)aex] = {UHQ) Tl Bl £2)) € (top)| TT (£z — link)o[ ] |.

zeX zeX
Moreover, by (6.34), we obtain
(D GilEw; La] € () Tl EalLs) C to[(TulEe|La))aex]. (6.35)
zeX zeX

On the other hand, by (2.12), the following inclusion holds:
E; (O L] € (p — BAS) [ O £~ link) B T.(E| ) L, } (6.36)
reX zeX zeX
Therefore, from (6.33) and (6.35), we find that f is a continuous mapping in the sense of topologies
to[(Ts(Eelo))eex], Te(Bl () Lo); (6.37)
zeX

we use [15, Proposition 1.4.1]. So, we established the continuity of the mapping (6.31). In addition,
the space-product of the families (£, —link)o[E,], = € X, is equipped with box topology. Moreover,
note that f (6.31) is a bijection from

I (£ —link)o[E,]
rzeX

onto (O, ¢ x Lo — link)o[E]; see [14, Proposition 5.2]. As a result, f (6.31) is a continuous bijection,
i.e., condensation in the sense of topologies (6.37). So, the TS

(TT (2 = tink)o[Exl, b [(T (2 |L0)aex))
zeX

condenses on the following space of Stone type:

(@L — link), ],’]1‘*<E]@£x>). (6.38)

zeX zeX
In addition, by (4.7), we obtain
F5((D £:) € €@ £o-tinkofs) [T+ (EI O £a)
zeX vex zeX

Theorem 2 reveals the structure of the set F5((D,cx £2)- By (4.5), we have

T £, Bl = T(El () Lo)lrs( © £a);

zeX zeX zeX

thus, ultrafilters of the m-system (O, x £, form a closed subspace of the space (6.38).



Products of Ultrafilters and Maximal Linked Systems 19

7. Infinite products of maximal linked systems, 2

We use the notation of the previous section: X, E, (E;)zex, and E. By (3.8), (6.3), and(6.5),
we have

Q) L. = {A € PE)| HLu)oex € [] Lo

zeX zeX

(8=TI £.)&(K € Fin(X) : Ly=E, Vs € X\ K) } e nE] nP( () £2).

zeX reX

(7.1)

Consider a widely understood MS
(E, O £$> R L. c O L (7.2)
zeX zeX zeX

Note that (see (2.10)) the following inclusion is true:

I (£ —tink)o[E,] € [] (Fam)[E,].

rzeX zeX

Therefore, by [13, (4.5), Proposition 4.1], we obtain

Q& = {H e PEIISo)ex € [] &

reX reX
(# =TI =.)&(K eFin(X): % =B, vse X \K)} (73)
zeX
€ () Lo —link)([E] V(Ex)aex € ] (La —link)o[EL).
reX reX

We recall that (see [13, Theorem 4.1]) the following equality is true:
(R L. — link), { R & (Eo)vex € [[ (Lo~ link>0[Em]} (7.4)
zeX zeX rxeX

By (6.10), (6.12), (6.13), and (7.2), we have

A= P.0) vAe (R L)\ {2}

reX zeX

We use notation (6.15) for the image operation. Then, by [13, Propostion 4.2], we have

(PL(E))rex € [ (Lo —link)o[E,] VE € ((X) Lo — link), [E] (7.5)
reX zeX

(we use (5.3)). In this connection, we use the following useful property:
(E)acx = < (R ¢ ) Exoex € [ (La — link)o[Ey); (7.6)
rzeX zeX

n (7.6), we use (7.4), (7.5), and [14, Proposition 6.1]. Now, we recall (6.22); hence (see (7.4)),

QR U € {R) Lo —link) [E] V(Us)rex € [] Fo(La)- (7.7)

zeX zeX zeX
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Moreover, by (7.1), the general constructions imply the following obvious inclusion:

Fi(X) Lz) € ( (R) Lo — link)o[E]. (7.8)

zeX rzeX

In what follows, we consider questions related to a representation of ultrafilters on &),y £: as
products (7.7). In this connection, we recall [4]. But, in the present constructions, we use a scheme
based on (4.6).

Proposition 7. If (Uy)zex € [] F§(Ly), then @ U, € FG( Q) Ly).

zeX reX zeX
Proof. Fix
(ux)J:EX € H FS(ﬁ
zeX
Then, by (7.7), we have
Q) € () L, — link) [E]. (7.9)
zeX reX

The inclusion U, € F§(L;) holds for z € X; therefore,
Y1NXoNdg= (21 N 22) N X3 75 VYL eEU, V€U, VX3€lU, (7.10)

(we use the axioms of filter). Moreover, by (4.6) and (7.9), we obtain the following implication:

(Zinmnss£o v QU VEe QU V5 € Q)

zeX rzeX rzeX (7.11)
= (@ux e Fy( ®£x))
reX rzeX

Now, we choose arbitrary sets

(Ae ®um>&(IB%e @ux)&@e @ux). (7.12)

zeX zeX zeX

Using (7.3), (7.8), (7.9), and (7.12), we obtain
(A€ P(E))&(B € P(E))&(C € P(E)).

In addition, for some (Ay)zex € [ ey Us, We have

(A -1I AJC)&(HK EFin(X): Ay =B, Vse X \K). (7.13)
zeX
Similarly, for some (B,)zcx € [I,cx Uz, we have
( ) (3K € Fin(X) : B, = E, Vse X \K).
reX
Finally, for some (Cy)zex € [[,cx Uy, We obtain
((C =11 @C)&(HK €Fin(X): C,=FE, Vse X\K). (7.14)

zeX
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Then, A, € U,, B, € Uy, and C, € U, for z € X. Therefore, by (7.10), for z € X, we have
A, NB,NC, # ; (7.15)
as a corollary, A, NB, N C, € P'(E). Then, by (7.15), we have

[[(A:nB.NC.) # 2 (7.16)
rzeX

(we use the axiom of choice). In addition, (Ap)zex € PE)X, (Bieex € P(E)X, and
(Cp)zex € P(E)X. Then, by (6.8) and (7.13)—(7.14), we have

ANBNC=J[(AzNB.NCy).
reX

From (7.16), the property ANBNC # & follows. Since the choice of A, B, and C was arbitrary
(see (7.12)), the premise of implication (7.11) is true. As a corollary, we obtain

Q) e € F5( X £L2).

zeX zeX
U
Proposition 8. IfU € Fj(Q,cx L), then
IUy)aex € [[ Fo(La) : U= Q) Us. (7.17)
zeX zeX
Proof FixU € Fj(Q,cx Lz). Then, by (7.8), we have
U € (R Lz — link)o[E]. (7.18)
reX
Therefore, from (7.4) and (7.18), we find that, for some mapping
(Ex)rex € [] (£a —link)o[Es],
zeX
the following equality holds:
U=Q & (7.19)
zeX

In addition, &, € (£, — link)o[F;] for € X. Fix x € X then &, € (£, — link)g[E,]. By (4.6), we
obtain the following implication:

(Z1NSaNS3#0 VS €& VN €&, VE3€&) = (& € Fi(Ly)). (7.20)

Choose arbitrary sets A € &, B € &, and C € &,. Using (2.10), we introduce

(Aaz)xeX S H gx

zeX

by the following rule: A, 2 A and A, 2 E, for x € X \ {x}. We obtain

AZ ] 4. e P(E). (7.21)
zeX
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Therefore, for A (7.21), we find that 3(X;)sex € [[ex & :

<A - II(EQC)&(HK cFin(X): ¥,=E, VseX\K).

Then, by (3.6), (3.8), and (7.19), we conclude that A € . Introduce (see (2.10)) a mapping

(Bm):vEX S H Em

zeX

by the rule: B, 2 B and B, 2 E, for x € X \ {x}. Then

B2 [[ B. € P®. (7.22)

zeX

So, B (7.22) is a set, for which 3(X;)zex € [[,ex &x

(Ias -1I EJC)&(HK € Fin(X) : %, = B, Vs € X \ K).
reX
As a result, we conclude that (see (3.6) and (7.19)) B € U. Finally, we introduce (see (2.10)) a
mapping

(ém):vEX S H Em

zeX

by the following rule: C, 2

1>

C and C, = E, for x € X \ {x}. Then

CEJ[CeP®) (7.23)
zeX

is a set, for which, by (7.23), 3(X2)zex € [[,ex &

(C =[] Z2)&(EK € Fin(X) : 5, = E, Vs € X \ K).

rzeX
From (3.6) and (7.19), we conclude that C € Y. So, A € U, B € U, and C € U. By the choice of U,
we have (see (4.6)) the property

ANBNC#o. (7.24)
But (A,).ex € PE)X, (Byrex € P(E)X, and (Cp)rex € P(E)X; therefore (see (6.8) and
(7.21)—(7.23)),
ANBNC = H(Axméxméx).
zeX

Then, by (7.24), we obtain A, N B, N C, # @ Yz € X. In particular,

ANBNC=A,NBNC, # @.
Since the choice of A, B, and C was arbitrary, we obtain
21ﬂ22ﬂ2375® V¥4 EEX VYo EEX VE3€(€X.

Then (see (7.20)) &, € F;(Ly). Since the choice of x was arbitrary, it is established that &, € Fj(L,)
Vz € X. So,
(Ex)zex € H FS(E:E)
zeX
Using (7.19), we obtain the required statement (7.17). O
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Theorem 3. The following equality holds:

F5() L) = { Rt : Us)oex € [] FS(Em)}.

zeX zeX reX

The proof immediately follows from Propositions 7 and 8. In connection with Theorem 3, we
recall constructions of [4].
Following to [14], we introduce the following natural mapping:

[T (Le—link)o[Ex]

A
= (R &) e, e s iio(p] € (@) Lo — link)  [E]-ex : (7.25)
zeX reX
So,
g: Hﬁ — link)g ®£ —hnk [E];
zeX reX
in addition,
Exrex) = Q) & V(Ex)aex € [] (L — link) [Ex]. (7.26)
zeX zeX

The properties of g (see (7.25), (7.26)) were considered in [14]. Now we will restrict ourselves to
listing them. Note that

® CGlEu; £a] = {C € P( I] (£, — link)o[Eu])| 3(Faleex € T GGlEL2]
zeX reX zeX (7.27)

(C = J] F.)&(3K € Fin(X) : F, = (L, — link)o[E,] Vs € X\ K)}
zeX

(in (7.27), we use (3.6) and take into account that, for x € X,
(Lo —link)°[E,|E,] = (L, — link)o[Ey),
see [7, (4.7)]). Then, by [14, Proposition 6.2], we obtain
e Q) B L] YH € GE; R) L] (7.28)
rzeX zeX
Now, we recall (6.34). As a corollary, the following m-system is defined:

Q) T EalLy) = {H c 79( I <. - link>0[E$])] I(Bu)eex € [[ TolBulLa) :

zeX zeX reX

<H - 11(183,3>&(3K € Fin(X) : By = (£y — link)o[Es] Vs e X\ K)} (7.29)

e r[ T (£, — linko[ .

rzeX

we use (3.6) and (3.9). By means of (2.7), (3.10), and (7.29), the topology

te[(Tx(EalCo))oex] = {UH ) To(ExlLa)) € (top)[ [ 1 (o —link)o[E,] (7.30)
zeX zeX
is defined. From (6.34) and (7.30), we obtain

Q) Co[Ea; La] € R TulEalLs) C tol(Tu(Ee|La))aex]. (7.31)
zeX zeX
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Therefore, by (7.28) and (7.31), we have the following property:

g (H) € to[(Tu(BulLe))zex] VH € C[E; (X) La]. (7.32)
zeX

Using (6.36) and (7.32), we obtain the following important property: g (7.25) is a continuous
mapping in the sense of TS

(T (2o = tink)o[Ee], b [(Tu(BalL))ex]). ((Q) £ — link)o[E, T (E] @) £a));  (7:33)

reX zeX zeX

we use [15, Proposition 1.4.1]. Now, we recall [14, Proposition 6.4] that g is a bijection from
[l cx £z —link)o[E,] onto (@), x Lz — link)o[E] (in this connection, we recall (7.6)). In addition,
we recall the following useful statement [14, Proposition 6.5]:

) € GIE; Q) La] VH € X) C[Ex; La.
zeX zeX

By means of this property, the following important statement was established in [14, Proposi-
tion 7.1]: g is an open mapping in the sense of TS (7.33). So, we obtain the following basic
statement (see [14, Theorem 7.1]).

Theorem 4. The mapping g (7.25) is a homeomorphism from the TS

(TT ¢ = timko[ B, 6 (T (Fe|L2)aex])

zeX

() Lo — link)o[E], T, (E| (X) La))-

zeX zeX

onto the TS

From (4.7), we obtain

F5(Q) £La) € Cy ® Lorlink) ol [T+(E| ) La)
zeX reX

Theorem 3 reveals the structure of the set Fj(&), x L£z). By (4.5), we have

rzeX

T'g £ [E = To(El ) L)l @ c.)-

zeX xeX reX

Thus, ultrafilters of our m-system () L, form a closed subspace of the second TS in (7.33).

zeX
8. Some corollaries for ultrafilter spaces

In this section, we consider some statements related to products of spaces with topologies of
type (4.3). But, at first, we note general properties connected with subspaces of T'Ss.

For every TS (X,7), X # &, and (Y,¥), Y # &, denote by C(X,7,Y,¥) the set of all
mappings from Y* continuous with respect to the topologies 7 and ¥. Similarly, for nonempty sets
X and Y, let

S{FeY¥ F(X) =Y}
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be the set of all surjections from X onto Y, let

(O)[X; Y] £ {f € YR Va1 € X Van € X (f(21) = f(x2)) = (21 = 22)}

be the set of all bijections from X onto Y finally, for 7 € (top)[X] and 7 € (top)[Y], let

CAX, .Y, m) = C(X, 71, Y, ) N (bi)[X: Y] (8.1
be the set of all condensations from (X, 7;) onto (Y, 72). We note yet another important notion:

for every TS (X, 71), X # @, and (Y, 72), Y # &, let

Cop(X, 71, Y, 1) 2 {f € C(X, 7, Y, )| f(G) € 5 VG € 71 }
be the set of all open mappings from (X, 77) in (Y, 72). Then
(Hom)[X; 71; Y 9] 2 Cop(X, 71, Y, ) N (b)[X;Y] € P(CYUX,71,Y, 7))

is the set (possibly empty) of all homeomorphisms from (X, 1) onto (Y, 7). Now, we note several
simple general properties.

(1) If (X,71), X # &, and (Y, 1), Y # &, are two TS, f € C(X,71,Y,m), and A € P'(X),

then f1(A) € P'(Y) and
(FlA) € C(A,71]a, F1(A), T2l p1(a))-

(2) If X and Y are nonempty sets, f € (bi)[X;Y], and A € P'(X), then (f|A) € (bi)[4; f1(A)].
Immediate combination of (1) and (2) implies the following properties.

(3) If (X,71), X # @, and (Y,72), Y # &, are two TS, f € C{(X,7,Y,m), and 4 € P'(X),
then (f|A) € CO(A, 71|, f1(A), T2l p1(4))-

(4) If (X,71), X # @, and (Y, 72), Y # @, are two TS, f € (Hom)[X;71;Y; 7], and A € P'(X),

then
(flA) € (Hom) [A; Tl’A7f1(A)7TQ\f1(A)]-

Now, we note some statements on the structure of a subspace of the product of TSs. If (X, 1),
X # @, and (Y, ), Y # &, are two TS, then, similarly to Section 5, in what follows, we suppose
that

71 Q)7 £ {UHn{x}). (8:2)

Note that (3.6) and (8.2) should be distinguished; in (8.2), we consider a topology. Then, using
[15, Proposition 2.3.2], for every TS (X, 71), X # &, and (Y, 72), Y # &, and sets A € P'(X) and
B € P'(Y), we obtain

(11 Q) 72)|axs = 11]4 Q) 72l 5. (8.3)

Moreover, if X and Y are nonempty sets, (Yz)zex € P(Y)*, (7o)sex € [I,ex(top)[Ys], and
(Az)eex € [l ex P'(Yz), then

t@[(Tw)xex]‘erx A, = to [(T$‘Ax)$ex] ) (8-4)

of course, we keep in mind that, in the case under consideration,

(Az)zex € PI(Y)Xa (Tz]a,)zex € H (top)[As], H A, € P H Yz).

zeX reX zeX
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In (8.4), we have an analogy with [15, Proposition 2.3.2] (an obvious verification of (8.4) we omit).
Finally, for every nonempty sets X and Y, mappings (Y3)zex € P/ (Y)*, (72)zex € [Loex(top)[Yal,
and (Ag)zex € [[ex P'(Yz), we have

t®[(7x)x€X”HI€X = to (2] 4, )wex]- (8.5)

Now, we consider some topological properties for products of ultrafilter spaces. We begin with
the simplest case.

The case of product of two ultrafilter spaces. In this subsection, we fix nonempty sets
X and Y. In addition, we fix m-systems X € n[X]| and Y € w[Y]. Then

T%[X] € (top)[Fo(X)] and Ty[Y] € (top)[Fo(V)];
F(X) € P'({(X — link)o[X]) and F:(Y) € P/((Y — link)o[Y]).

We recall (4.5):

(T3 [X] = T X|X) |5 (1)) &(TH[Y] = TV (V)29 (8.6)
By (8.2), the following topology is defined:
X]Q T3 [Y] € (top)[F(X) x Fy(V)].
Using (8.3) and (8.6), we obtain
(X]Q THY] = (T (X]X) Q) Tl Y I) () ey ) (8.7)

where

T, (X|X) ® T.(Y|Y) € (top) [(X — link)o[X] x (¥ — link)o[Y]].
The mapping (5.15) is a homeomorphism. Finally, we recall (5.17). Now, we note that
2z pri(2){x}pry(2) :  Fo(X) x Fo(Y) — Fo(X{x})) (8.8)

is defined correctly (see Theorem 1). In addition, the mapping (8.8) is a restriction of (5.15) to the
set F§(X) x Fj(Y). To make this and subsequent statements shorter, we introduce new notation.
In this subsection, denote by u and v the mappings (5.15) and (8.8), respectively. Then,

v = (u[F5(X) x F3(V)). (8.9)
Moreover, by Theorem 1 and (5.15), we obtain
Fo(X{x}Y) = ul (F5(X) x F5())). (8.10)
Theorem 5. The mapping (8.8) is a homeomorphism in the sense of topologies (8.7) and

T aylX x Y] v € (Hom) [F5(X) x F(Y (X)Ty [ Fo(X{x}Y); Th gy [ X x Y]]

Proof. Weuse (89) and (8.10) in constructions connected with (4). For this, we note that
(see Section 5)

€ (Hom) [{(X — link)o[X] x (¥ — link)o[Y]; To(X|X) Q) Tu(Y|V); (X{x}Y — link)o[X x Y];
T (X x Y|X{x}D)].
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Consider (4) with the following specific definitions:

X = (X —link)o[X] x (¥ — link)o[Y], 71 = T.(X]X) R T.(Y]V),
= (X{x}Y —link)o[X x Y], 7 =T.(X x Y|X{x}V), (8.11)
f=u, A=TFuX) xF5().

Using (4), (8.9) and (8.11), we obtain

v € (Hom)[Fj(X) x F5()); (T4 (X]X) (X) T (YY)

F(X )x]Fg(y),ul(FS(X) x Fo(I));

(8.12)
T. (X x Y]X{x }y>|u1 Fi(X x]F*(y))]
Then, we use (4.5), (8.7), (8.9), and (8.10). We have the chain of equalities
Ty X x Y] = To(X x Y[X{X V) [rs (v {x3y) = Tl X x Y[ ur w5 (2) <75 () -
Using (8.7), (8.9), (8.10), and (8.12), we obtain the required property of v. O

The case of box topology on the product of ultrafilter spaces. In this and subsequent
subsections, we use nonempty sets X and E and the mapping (E,)zcex € P'(E)¥X defined in
Section 6. Moreover, we follow (6.1) for the set E. In what follows, we fix (L;)zex (6.2). Then,
by (4.3), we have

(TZ, [E]eex € ] (top)[F5(L.)]. (8.13)
zeX

In addition,
F&(Le) € P'((L, — link)o[E,]) Vz € X.

Therefore,

(F5(La))aex € [T P/((£e — link)o[Ey]).
zeX

Using (4.5), we obtain
T, [Ex] = T (Bl La)lps(c,) Vr € X (8.14)

From (3.10) and (8.13), the following property is extracted:
t@[(T*Lx [Em] mGX tOp H IFo (8.15)
zeX
We recall that, by Proposition 5, the mapping

Un)eex — (DU [ Fo(Le) — Fo((C) £La) (8.16)

rzeX zeX zeX

is defined correctly. By (6.31), this mapping (8.16) is a restriction of (6.31) to the set [] . x F5(Lz).
For brevity, we denote the mapping (8.16) by w. By (6.22), we have

xeX xeX

Then
I Fi(La) € P(]] (Lo — link)o[Ex])

zeX reX
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and
= (f| [] Fo(£a))- (8.18)
rzeX
Moreover, we recall that, by (6.31) and Theorem 2,
Fo(() £2) = (] ] Fo(L2))- (8.19)
zeX reX

Theorem 6. The mapping (8.16) is a condensation in the sense of topologies (8.15)
and TE[O,ex L]

weCO(HFO ) tol(Tr, [Eooex] Fo () L), T £, ]) (8.20)

rzeX zeX zeX

Proof. We use (8.17)-(8.19) in constructions connected with (3). For this, we recall that
(see Section 6)

feCS(H(Em—link>o[E] ol(Tu(Bu|La))sex], () Lo — link)o E|@£)

rzeX zeX zeX

Now, we use (3) with the following specific definitions:

X = H <£$ — hnk>0[Ex], T = t@[(T*<EJ:’£a:>)x€X]7

zeX
Y = <@ Ly — link>0[E], T2 = T*<E| @ £$>’ (8.21)
zeX reX
f=f A=T]F£
reX

Then, by (3), (8.18), and (8.21), we obtain

w e CY( TT Fo(Le), to (Tt BelLa)aex]] 11 mycen)s £ [T Fo()) TulBl ) Ladler 1 7aca )

z€EX zEX r€EX rEX zeX

By (8.19), the following inclusion holds:

w e O T F3(La). tol(Tul Bl La)aex]l 11 2p(c0) Fo(QD £0) Tu(Bl O Loy @ £ ) (8:22)

zeX vex zeX zeX zeX
Now, we use (8.4) with the following specific definitions:
X=X, Y=P(PE)). (8.23)
Using (8.23), we also suppose that
(Ya)zex = (Lo —link)o[Es])zex, (To)rex = (Tu(Ezlle))oex, (Ax)zex = (Fo(La))zex. (8:24)

In this connection (see (8.23) and (8.24)), we recall that, by (2.8) and (2.9), the following chain of
inclusions holds:

(L, —link)o[E,] C (L, — link)[E,] € P'(L,) C P (P(E,)) C P'(P(E)) =Y;
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moreover, (£, — link)g[E,] # @ for z € X. Therefore (see (8.23)),
((Ly —1ink)o[E,))eex € P/ (Y)X.
This corresponds to the conditions for (8.4). Then, from (8.4), (8.23), and (8.24), we have

to[(T(ExlLa))wex]| 1T i) = tol(Ts(EelLa)lrs(c,))zex] = tol(TZ, [Ez])zex]; (8.25)

zeX

of course, in (8.25), we use (4.5). Moreover, by (4.5), we have

TEl () La)lsz( @ ) =T @ £.[EN. (8.26)
reX zeX zeX
From (8.22), (8.25), and (8.26), we obtain (8.20). =

The case of generalized Cartesian product of ultrafilter spaces. We follow the previous
subsection (see also Sections 6 and 7), using X, E, (E;)zex, E, and (Ly)zex. Of course, we use
(8.13)—(8.14). Then, by (3.10) and (8.13), we have

t®[(T*Lx [EJ:] JCEX tOp H IE‘0 (8.27)
zeX
From Proposition 7, we conclude that
(u$)l‘€X — ®ux H Fo —> IFO ® ﬁ (8.28)
zeX zeX zeX

is a restriction of the mapping g (7.25) to the set [] F§(Ly). We denote this mapping (8.28) by

r for brevity; so,

reX

= (@ Us)th)exe 1 Fi(e) € Fi((Q) L) Trex Folle), (8.29)

zeX zeX

Similar to (8.18), we obtain the following equality:

r= (g [] F5(La)). (8.30)

zeX

Moreover, note that, by (7.25) and Theorem 3, we have

Fo(X) L) = &' (] Fo(L2))- (8.31)

zeX zeX

Theorem 7. The mapping (8.28) is a homeomorphism in the sense of topologies (8.27)

and T'g [E] :
rzeX
(Hom) [HFO )i tol(TE, [Eooex )i Fo () Lo): T'g £, | ]} (8.32)
reX reX zeX

Proof. Weuse (829)(8.31) in constructions connected with (4). For this, we note that, by
Theorem 4,

€ (Hom) [ I (€2 = link)o[E.]; o [(Tu{ Bxl £o))aex]; (R) Lo — link)o[E]; To (B[ (X) La)

zeX zeX reX
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Now, we use (4) with
X = (Lo —link)o[EL], 71 = te[(Tw(Ez|Le))zex],

eX
= <® Ly — hnk>0[E]a T2 = T*<E| ® ‘c:v>’ (8.33)

zeX zeX

f=g A= ]] Fi(La).
zeX

Then, by (4), (8.30), and (8.31), we obtain (see (8.33)) the following property:

(Hom) | TT F5(L2): be[(TtEul L)) eex]l 11 sz
xeX zeX
g' (L Fo(£2)): T (Bl Q) Lallgr( 11 mie) )
zeX r€EX

Using (8.31), we get the obvious inclusion:

(Fom) | TT F3(£a); tal(TulBal £a))uex]| 11 rytenri Fa(Q) £o);
reX
zeX zeX (8.34)
TH(E| Q) Lalliy( @ 2)]-
zeX zeX
Now, using (4.5) and (8.34), we obtain
(Hom) [ T F5(£a); tal(TulBal £))uex]| 11 r3(coyiFo(Q) £0)i T o, [B]]. (8:35)
zeX ze€X zeX z€X
In what follows, we use (8.5). In addition, we suppose that, in (8.5),
(X = X)&(Y = P'(P(E))). (8.36)

Using (8.36), we suppose that, in (8.5),

(Yx)xex = ((ﬁx - hnk>0[Em])xeX7 (Tx)xex - (T* <Ex’£x>)a:eX=
(Aa:)a:eX = (Fa(ﬁx))xeX

Then we obtain the following chain of equalities:

®[(T*<Em|£ >)meX]| [T F§(Le) — =tg [(T*<E:v|£:v>

zeX

Fi(La)Joex] = to[(TZ, [Ea])zex]-
Therefore, by (8.35), the following inclusion holds:

zeX :reX zeX

So, the property (8.32) is established. O
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9. Conclusion

In this paper, some questions related to the structure of ultrafilters and MLSs on products of
widely understood MSs were considered. In this connection, two basic directions were developed:
the direction connected with representations for ultrafilter and MLSs on the products of MSs
(set-theoretical direction) and (topological) direction connected with topological relations between
TSs of Stone type arising under consideration of topology products (in the box and Cartesian
variants) and topologies on the sets of ultrafilters and MLSs for the product of the corresponding
measurable structures. In the first direction, the following property is established: ultrafilters and
MLSs on products of MSs are exhausted by products of ultrafilters and MLSs, respectively. In
the second direction, important properties of homeomorphism and compaction were obtained. In
addition, the compaction property is established for the box products of TSs. In the case of the
generalized Cartesian product, the homeomorphism property holds. This comparison shows the
better character of Tychonoff’s product of T'Ss compared to box TSs.
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Abstract: The paper deals with linearization problem of Poisson-Lie structures on the (1 + 1) Poincaré
and 2D Euclidean groups. We construct the explicit form of linearizing coordinates of all these Poisson-Lie
structures. For this, we calculate all Poisson-Lie structures on these two groups mentioned above, through the
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1. Introduction

Poisson-Lie structure on a Lie group G is a Poisson structure {.,.} on C°°(G), such that the
multiplication p : G X G — G is a Poisson map, namely

{folt'l’7 gou}coo(GXg)(x,y) = {f’ g}COO(G)(M(x7y))7 r,yeG, [,g€ COO(G)

By Drinfel’d [5, 6], this is equivalent to giving an antisymmetric contravariant 2—tensor = on G
such that the Schouten—Nijenhuis bracket [, 7] = 0 and satisfies the multiplicativity relation

m(xy) = lo,7(y) + 1y 7(x), Va,y € G,

where [, and r,, are the left and right translations in G' by = and y, respectively.

The relation above shows that the Poisson-Lie structure m must vanishing at the identity e € G,
so that its derivative d.m : G — /\2 G at e is well defined, where G is the Lie algebra of G. This
linear homomorphism turns out to be a 1-cocycle with respect to the adjoint action, and the dual
homomorphism /\2 g* — G* satisfies the Jacobi identity; i.e., the dual G* of G becomes a Lie
algebra. Satisfying these properties, the map d.7 is said to be a Lie bialgebra structure associated
to .

Recall that the preceding construction is in some sense invertible [10]. Namely, if G is simply
connected then any Lie bialgebra structure 6 : G — /\2 G on the Lie algebra G = Lie (G) carries
uniquely defined Poisson—Lie structure m on G such that

(dem)(S) = 8(S), VS €G. (1.1)
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If we choose a local coordinates (x1, x2, ..., ;) in a neighborhood U of the unity e, the Poisson—
Lie structure 7 is given by

m(x)= > wy(x)dw; Az, VzeU,

1<i<j<n
where ;; are smooth functions vanishing at e and
{zs, 2} (x) = mi(x), Vael.

The Taylor series of the functions m;; is given by

Wij(x) = Z ijxk + Hl-j(x),

1<k<n

where order (6;;) > 2 and cf“'j = 0m;j/0xy(e).
In particular, the terms cé“jxk define a linear Poisson structure mg, called the linear part of m,

there Poisson bracket is written in terms of the local coordinates (z1,x2, ..., zy) as

{zi,xjito = Z Cf]wk (1.2)
1<k<n

Further, since 7 satisfies the Jacobi identity, the {cf“']} 1<i<j<n form a set of structure constants for
1<k<n

the Lie algebra (G*,6*) dual of Lie algebra (G,[,]). In other words, G* is called the linearizing Lie
algebra of Poisson—Lie structure 7.

In this paper we are interested in the following linearization problem:

Are there new coordinates where the terms 0;; vanish identically, so that the Poisson-Lie structure
coincides with its linear part?

For a Poisson structure P vanishing at a point xp, Weinstein [11] proved that if the linearizing
Lie algebra is semisimple, then P is formally linearizable at . Furthermore, Conn [3] proved that
if the linearizing Lie algebra is semisimple, then P is analytically linearizable. Duffour [7] showed
that semisimplicity does not imply smooth linearizability by giving a counterexample of a three-
dimensional solvable Lie algebra. In the case of smooth Poisson structures, Conn [4] proved that if
the linearizing Lie algebra is semisimple and of compact type then the linearization is smooth.

For a Poisson—Lie structures, Chloup—Arnould [2] gave examples of linearizable and non lin-
earizable Poisson—Lie structures. Recently, Enriquez—Etingof-Marshal [8] constructed a Poisson
isomorphism between the formal Poisson manifolds ¢* and G*, where g is a finite dimensional qua-
sitriangular Lie bialgebra and Alekseev—Meinrenken [1] showed that for any coboundary Poisson—Lie
group G, the Poisson structure on G* is linearisable at the group unit.

The aim of this paper is the explicit construction of smooth linearizing coordinates for the
Poisson-Lie structures on the 2D Euclidean group generated by the Lie algebra s3(0) and the
(14 1) Poincaré group generated by the Lie algebra 73(—1). We note that the notations s3(0) and
73(—1) are the same as in [9], where all real three-dimensional Lie algebras are classified. We adopt
the same notification throughout this paper.

In this work we present a Lie bialgebra structures on the Lie algebras s3(0) and 73(—1) and we
adopt the classification given in [9]. Then, we give the corresponding Poisson—Lie structures on 2D
Euclidean and (1 4 1) Poincaré groups and present their Casimir functions, which describe a sym-
plectic leaves for all Poisson—Lie structures. Finally, we show that all these Poisson—Lie structures
are linearizable near the unity by constructing the explicit forme of linearizing coordinates.

The paper is organized as follows. In Section 2 we treat the 2D Euclidean group and explain
the technical methods, in Section 3 we investigate the (1 + 1) Poincaré group for which we list in
a schematic way our results in the same order and with the same notations.
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2. Poisson—Lie structures on 2D Euclidean group

2.1. 2D Euclidean Lie algebra and group

The 2D Euclidean Lie algebra s3(0) is defined by the Lie brackets:

[es,e1] = e2, [es,ea] = —e1, [e1,ea] =0.

The relation above defines a solvable three-dimensional real Lie algebra where its adjoint represen-

tation p is as follows:
1

0
0

o O O

, ples) =

o O O
o O O
o O =
o = O

0
0 -1 9 p(62) -
0

The generic Lie group element M with a local coordinates (x,y, z) “near {e}” is as follows

cos(z) —sin(z) y
sin(z)  cos(z) —=x

M = exp(zp(er)) exp(yp(e2)) exp(zp(es)) =
0 0 1

If M’ is another generic Lie group element with “local coordinates” (z/,y’, 2’), then the multiplica-
tion of two group elements would be

cos(z+2) —sin(z+2) y+y cos(z)+ 2’ sin(z)
MM = | sin(z+2') cos(z+2) —x—a cos(z)+y sin(z)
0 0 1

Therewith, the 2D Euclidean group can be identified by R? associated with the group multiplication

law:
(x,y,2).(2',y,2") = (x + 2/ cos(z) — ¢/ sin(2),y + 9 cos(z) + 2’ sin(2), 2z + 2)

with the unity e = (0,0,0).
The left invariant fields (Eq, F2, F3) associated to the basis (eq, e2, e3) have this local expression

Ei = cos(2)0, +sin(2)0y, FEy = —sin(z)0, + cos(2)0y, FE3=0..

2.2. Bialgebra and Poisson-Lie structures on 2D Euclidean group
Let d be a bialgebra structure on the Lie algebra s3(0). In the basis (ey, ea, e3) of s3(0) we write

5(61) =ajes Neg+bies ANep +crer A e,
6(62) = ageg N e3 + b2€3 A ey + coer A eg,
6(63) = ages A ez + bgez A eg + czer A eg,

this is equivalent to

5(61) ar b1 e2 N\eg ez N\ eg
5(62) = as by o es N\ ey =U es3 N\ey
6(63) az bz c3 e1 N\ eg e1 N\ eg
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If (1,9, €3) is the dual basis of (e1, ez, e3), then the Lie bracket on s5(0) given by 6* can be written:

5*(82 A 83) = a1€1 + age2 + azes,
0*(e3 Ne1) = biey + baeg + bses,
(5*(81 VAN 82) = c1€1 + c2e9 + C3€3.

By a straightforward computation, we show that in order to ensure that § is a 1-cocycle, the
system below must to be verified

as+by by—a; by+co e2 N\ eg 0
ai — by as+by ag+co es3 N\ ey = 0
0 0 ai + by SWAY 0

Hence, the matrix U has the form

0 b1 C1
U= —bl 0 C9 s (2.1)

—C1 —C2 C3

where the Jacobi identity fulfilled by §* is bycs = 0.
Therefore, we get

Proposition 1. The Lie bialgebra structures § on 2D Fuclidean Lie algebra are written in
terms of the basis (e1,e2,e3) as follows:

(5(61) =bieg ANer +crer A es,
(5(62) = —bieg N ez + coeq A e,
5(63) = —c1ea2 N eg3 — cae3 N\ ey + c3ep A ea,
where by, c1,co and cg are reals such that bicg = 0.
Now, let m be the Poisson-Lie structures corresponding to the bialgebra structures §. We set:
T = mo3Fy N B3 + w313 A By + ma 1 A\ By,

where (Ey A E3, Es A\ E1, Eq A Es) is the basis of the bivector fields on the 2D Euclidean group.
For any element Ej} of the basis (E1, Ea, E3), the Lie derivative of 7 in the direction of Ej is
written as

Lp m™= Z Ek(ﬂ'ij)Ei A E]’ + 4 ([Ek,Ez] AN Ej — [Ek,Ej] N EZ‘), k=1,2,3.

1<i<j<3

k

By a technical and explicit computation using the above relation, we show that the equation (1.1)
which describes the correspondence between 7 and § can be transformed into the following system

E(m3) =0, Ey(m31) = b, Ey(m12) + 731 = ¢,
Ey(ma3) = —by, Es(m31) =0, Es(m12) — o3 = c2, (2.2)
Es3(mo3) — m = —c1, Es(m31) 4 mo3 = —ca, E3(m12) = c3.

The system (2.2) has for solutions:

m23(7, Y, 2) = (b1w — c1)sin(z) — (b1y — c2) cos(z) — ca,
m31(x,y, 2) = (bix — ¢1) cos(z) + (bry — ¢2) sin(z) + ¢1,

b
2 L2t em + ey + sz

by
le(x,y,z) = _Ex 9
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Since
Es N Es = cos(z)0y A O, + sin(2)0; A Oy,
E3 N Ey = —sin(z)0y A 0, + cos(2)0; A Oy,
E1 N Es :835/\83/,
we have:

Proposition 2. In the local coordinates (z,y,z), the Poisson—Lie bracket {.,.} on 2D Fu-
clidean group 1is:

{y,z} = —b1y — ¢1 sin(2) — ca(cos(z) — 1),
{z,2} = bix — cgsin(z) + ¢1(cos(z) — 1),
by

b
{z,y} = —51$2 - Eyz +ar+ ey + c3z2.

We will call this four-parametric Poisson—Lie brackets as PL(by, 1, ca, ¢3).
The linear part my of 7 is straightforwardly obtained as

{y,z}o = —biy — 12,
{Z,x}o = b1£U — G2z,
{z,y}o = a1z + 2y + c32.

2.3. Classification of Poisson—Lie structures on 2D Euclidean group

The Poisson—Lie structures on a Lie group G are in one-to-one correspondence with the bialgebra
structures on its Lie algebra G. Thus, we obtain the complete classes of the Poisson-Lie structures
on 2D Euclidean group by using the classification of Lie bialgebra structures on s3(0), which was
given by Gomez in [9].

In [9], we find four nonequivalents (under Lie algebra automorphisms) classes of Lie bialgebra
structures on s3(0). By taking into account the change of basis:

€1 = ¢, €3 =¢e2, €3= —¢,

we get a correspondence between each one of those classes and our presented cocommutator J given
in Proposition 1. This correspondence is specified by a fixed values of the parameters (b1, c1, ¢2, c3)
of the matrix (2.1), as presented in the table below

Table 1. Correspondence with the classification [9] of Lie bialgebra structures on s3(0).

Lie bialgebra in [6] | b1 | ¢1 | ¢ | ¢3
9) xlololo

15’ 00| —w
11’ 117010

(14 a0 —=A

In Table 1, the first column describe the number that identifies the type of Lie bialgebra
(last column of table III in [9]). The remaining of columns describe the particular values of the
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parameters (b1, c1, ¢a, c3) for which the cocommutator given in Proposition 1 coincides with the Lie
bialgebra parameters from [9]. Note, the parameters A and w are nonzero reals.

Thus, we have four nonequivalents (under group automorphisms) classes of Poisson—Lie struc-
tures on the 2D Euclidean group, that would be explicitly obtained by substituting the values of
the parameters (b1, ¢1, ¢, c3) into the full Poisson—Lie bracket expressions PL (b1, c1, c2,c3) given in
Proposition 2 as shown in table below

Table 2. Classification of Poisson-Lie structures on the 2D Euclidean group correspond-
ing to the Lie bialgebra structures given in Table 1.

{, {y, 2} {22} {z,y}

PL(—A,0,0,0) Ay —\x A2 (22 +y?)
PL(0,0,0, —w) 0 0 —wz
PL(0,1,0,0) | —sin(z) cos(z) — 1 x

PL0,a,0,—)\) | —asin(z) | a(cos(z) — 1) ar — Az

Now, recall that a local Casimir function on a Poisson—Lie group G is a function C such that
{C,f} = 0 for any function f on G. Note that the local Casimir functions on a Poisson—Lie
group (G, 7) are constant in symplectic leaves of G.

Let Cpr (b, ,c1,c0,c5) De the Casimir functions for the Poisson-Lie structures PL (b1, c1, c2,¢3). For
the classes of Poisson—Lie structures given in Table 2, we get

x
CPL(fA,0,0,0) = 2arctan <§> + z,

Cpr(0,0,0,—w) = f(2),
xsin(z
Cpr(0,1,00) = )

cos(z) —1 7

(ar — A\z)sin(z)

Cpr(0,0,0,-2) = —ay + cos(z) —1 — An(1 — cos(z2)),

where f is a C°°—function that depends only on z.

2.4. Linearization of Poisson—Lie structures on 20D Euclidean group

Now, we consider the formula (1.2), than the linear part my of m can be written as
mo(x) = Z ( Z cf]a:k> Oz; N Oz
1<i<j<n M1<k<n

Note, the Lie bialgebra structure § associated to 7w defines a linear Poisson—Lie structure on the
additive group G (G ~ R"™), that can be expressed as

d(a) = Z Z cfjak 0; N0j, a=(ay,..,a,) €R", (2.3)

1<i<j<n \1<k<n

where (01, ...,0,) is the canonical basis of R".
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The expression (2.3) coincides with the linear part mp, hence the linearization problem becomes
as follows:
Is there a local Poisson diffeomorphism ¢ : G — G of a neighborhood of e in G into a neighborhood
of 0in G such that p(e) =07

A such diffeomorphism preserves necessarily the subgroup of singular points: {x € G : 7(z) = 0}
and the symplectics leaves.

If (¢1,...,pn) are the components of ¢, then ¢ is solution of the system of equations
{onpit= > e,  1<i<j<n (2.4)
1<k<n

Method. We calculate the equations which determine the symplectics leaves for the four classes
of Poisson—Lie structures given in Table 2, using the Casimir functions (each symplectic leaf is the
common level manifold of Casimir functions) and we determine their subgroup of singular points.

The identification of the subgroup of the singular points and the symplectics leaves of the 2D
Euclidean group with those of its Lie algebra s3(0) allows us to solve the system of equations (2.4)
for each class of Poisson-Lie structures given in Table 2. Consequently, our main result is the
following

Theorem 1. All Poisson—Lie structures on 2D FEuclidean group which are given in Table 2 are
linearizable near the unity. The linearizing coordinates of each class are given in Table 3:

Table 3. Components of linearizing diffeomorphisms ¢ corresponding to the Poisson—Lie
structures given in Table 2.

%‘(%yaz) (pl(i’,y,Z) 902($7y72) ()03($7y72)
PL(—A,0,0,0) wcos(3) +ysin(3) —wsin(3) +ycos(3) z
PL(0,0,0, —w) x Yy z

PL(0,1,0,0) T+ ytan(3) Y tan(3)
T — 224
PL0,a,0,—)) “ y 2tan(3)
+(y — gln(l + tan?(%)) tan(2)

Remark 1. The class PL(0,0,0, —w) is linear in the local coordinates (z,y, z) (trivial case).

3. Poisson—Lie structures on (1 + 1) Poicaré group

3.1. (1+1) Poincaré Lie algebra and group

The (1 + 1) Poincaré Lie algebra 73(—1) (presented in null coordinates) is defined by the Lie
brackets

les,e1] = —e1, [es,e2] =e2, [e1,ea] =0.
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1. Adjoint representation

0 01 00 O -1 0 0
pler) =0 0 0 |, ple2)=|[0 0 =1 |, plesg)=| 0 1 0
0 00 0 0 O 0 0 0

2. Matrix group element
M = explapler)) exp(yp(ea) exp(zp(es) = [ 0 exp(z) —y

3. Group multiplication law
The (1 + 1) Poincaré group can be identified by R? associated with the group multiplication

law:
(z,y,2).(2",y,2) = (x + 2" exp(—2),y + ¥ exp(2), 2 + 2'),
with the unity e = (0,0,0).
4. Basis of left invariant fields

E| =exp(—2)0y, FEy=-exp(2)0,, E3=0,.
3.2. Lie bialgebra and Poisson—Lie structures on (1 + 1) Poincaré group

1. Lie bialgebra structures on 73(—1)

Proposition 3. The Lie bialgebra structures 6 on (1 + 1) Poincaré Lie algebra are written in

terms of the basis (e1,ea,e3) as follows:
6(61) =bies Ner +crer Aeg,
5(62) = —bieg Nesg + coeq A e,
5(63) = —c1ea N eg3 — cae3 N\ ey + c3ep A ea,
with aq,by,c1,cy are real such that bicg = 0.

P roof Similar to the proof of Proposition 1. O

2. Poisson—Lie structures on (1+1) Poincaré group
Proposition 4. In the local coordinates (x,y,z), the Poisson—Lie bracket {.,.} on (1 + 1)
Poincaré group is written as
{y, Z} = _bly + Cl(l - GXp(Z)),
{z,2} = bix + ca(exp(—2) — 1),
{z,y} = c1ox + coy + c32 — brxy.

We will call this six-parametric Poisson—Lie brackets as PL(b1, c1, c2, c3).
P roof Similar to the proof of Proposition 1. O

3. The linear part is as follows
{y,2}o = —biy — a1z,
{Z,x}o = bir — c22,

{z,y}o = a1z + 2y + c32.
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3.3. Classification of Lie bialgebra and Poisson—Lie structures on (1 + 1)
Poincaré group

1. Isomorphic to the Lie algebra 73(—1) in [9] through the change of variables
€1 =¢, €2=¢2, €3=—¢
2. Correspondence with the classification of Lie bialgebras on 73(—1)

Table 4. Correspondence with the classification [9] of Lie bialgebra structures on 73(—1).

Lie bialgebra in [9] by | ¢ | ¢l e
6(p=—-1,x=eANey)| O 0 |1
7 (p=—1) Al o0 o
(11) 0 |af | «

5’ 0 0 0]-1

8 0O | —a| 0]-1

(14) 0 |aXd|a|-1

In Table 4, the first column describes the number that identifies the type of Lie bialgebra (last
column of table III in [9]. Note, the parameters A\, &« and  are nonzero reals.

3. Classification of Poisson Lie structures on (141) Poincaré group

Table 5. Correspondence with the Lie bialgebra structures given in Table 4 of Poisson—
Lie structures on the (1 + 1) Poincaré group.

{.} {y, 2} {z, 2} {z,y}
PL(0,0,1,0) 0 exp(—z) — 1 Y
PL(—A,0,0,0) Ay —\z Azy
PLO,af,a,0) | af(l —exp(z)) | alexp(—2z)—1) afx + ay
PL(0,0,0, 1) 0 0 —
PLO,—a,0,—1) | alexp(z) —1) 0 —ar — 2
PLO, aX, a,—1) | a1 —exp(z)) | a(exp(—2z) — 1)) | adz + ay — 2

4. Casimir functions

c __ ¥ ¢ __repl) o, _ frep(z) +y
PL0,0,1,0) = exp(z) — 1 PL(—X,0,0,0) = y ) PLO,ap,0,0) — exp(z) — 1 )
arexp(z) + z
CPE(O,O,O,—l) = f(2), CPL(O,—a,O,—l) = ﬁ —In(exp(—2) — 1),

alrexp(z) +ay —z

Crrio,ara,—1) = — In(exp(—2) — 1),

1 —exp(2)

where f is a C*°—function of the only variable z.
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3.4. Linearization of Poisson-Lie structures on (141) Poincaré group

Theorem 2. All Poisson-Lie structures on (1 + 1) Poincaré group which are given in Table 5
are linearizable near the unity. The linearizing coordinates of each class are given below:

Table 6. Components of linearizing diffeomorphisms ¢ corresponding to the Poisson—Lie
structures given in Table 5.

pi(r,y,2) p1(7,y,2) pa(r,y,2) | p3(z,y,2)
PL(0,0,1,0) x —y exp(z) — 1

PL(—A,0,0,0) xexp(z) —y z

PLO, af, «,0) x + (%y +1)(exp(—2) — 1) Y exp(—z) — 1
PL(0,0,0,—1) x Y z

PL(0,—,0,1) —z — Lrexp(—2) y exp(—z) — 1
PLO,—,0,1) | + Fy(exp(—z) — 1) — L zexp(—2) y 1 —exp(—2)

Proof We usethe same method as in Theorem 1. O

Remark 2. The class PL(0,0,0,—1) is linear in the local coordinates (z,y, z) (trivial case).
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Abstract: Let E, be the ring of Eisenstein integers modulo n. We denote by G(E,) and Gg,,, the unit
graph and the unitary Cayley graph of E,,, respectively. In this paper, we obtain the value of the diameter, the
girth, the clique number and the chromatic number of these graphs. We also prove that for each n > 1, the
graphs G(Ey) and Gg,, are Hamiltonian.

Keywords: Unit graph, Unitary Cayley graph, Eisenstein integers, Hamiltonian graph.

1. Introduction

Associating a graph with an algebraic object is an active research subject in algebraic graph
theory, an area of mathematics in which methods of abstract algebra are employed in studying
various graph invariants and tools in graph theory are used in studying various properties of the
associated algebraic structure. The Cayley graph of a finite group was first considered in 1878 by
Arthur Cayley [12]. Research on graphs associated with rings was started in 1988 by I. Beck [10].
In the literature, there are some other graphs associated with rings, such as the Cayley graph of a
commutative ring [1], the unitary Cayley graph of a ring [3], the total graph of a ring [5], the zero
divisor graph of a ring [6], the unit graph of a ring [7] and the comaximal graph of a ring [16].

Let R be a commutative ring with non-zero identity. We denote by U(R), J(R) and Z(R) the
group of units of R, the Jacobson radical of R and the set of zero divisors of R, respectively. The
unitary Cayley graph of a ring R, denoted by G, is the graph whose vertex set is R, and in which
{a,b} is an edge if and only if a — b € U(R). In 1995 this graph was initially introduced by Dejter
and Giudici [14] for Z,, the ring of integers modulo n. In 2009, Akhtar et al. [3] generalized the
unitary Cayley graph Gz, to Gp for a finite ring R. The unit graph of a ring R, denoted by G(R),
is a graph whose vertices are elements of R and two distinct vertices a and b are adjacent if and
only if @ + b in U(R). In 1990, the unit graph was first investigated by Chung [13] and Grimaldi
[16] for Z,. In 2010, Ashrafi, et al. [7] generalized the unit graph G(Z,) to G(R) for an arbitrary
ring R. Numerous results about unit and unitary Cayley graphs were obtained, see for examples
3,7, 18, 19, 21, 22].

The following facts are well known, see for example [4] and [17]. Let w be a primitive third root
of unity. Then the set of all complex numbers a4+ bw, where a and b are integers, forms an Euclidean
domain with the usual complex number operations and Euclidean norm N (a + bw) = a® + b? — ab.
This domain will be denoted by E and will be called the ring of Fisenstein integers. The units of
E are +1, +w and +@. The primes of E (up to a unit multiple) are the usual prime integers that
are congruent to 2 modulo 3 and Eisenstein integers whose norm is a usual prime integer. Let n
be a natural number and let (n) be the principal ideal generated by n in E. Then the factor ring
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E/(n) is isomorphic to the ring ,, = {a + bw|a,b € Z, }, where Z,, is the ring of integers modulo n.
Thus E, is a principal ideal ring. This ring is called the ring of Eisenstein integers modulo n. In [4]
this ring is studied and its properties are investigated, its units are characterized and counted. It
is easy to see that a + bw is a unit in E, if and only if N(a + bw) is a unit in Z,. Recall that a ring
is local if it has a unique maximal ideal. It is shown that

(1) if p is a prime integer, then the ring E is local if and only if p = 3 or p =2 (mod 3);
(2) let o(R) denote the number of units in a ring R, then p(Fgr) = 2 x 3%*~! and

p?=2(p?> —1) if p=2 (mod 3),
(p*F —pF 1% if p=1 (mod 3).

In this article, some properties of the graphs G(E,) and G, are studied. The diameter, the
girth, chromatic number and clique number, in terms of n, are found. Also, we prove that for
each n > 1, the graphs G(E,) and Gg, are Hamiltonian and the independence number of Gp,
is calculated. An earlier study was carried out for the unit and unitary graphs for the ring of
Gaussian integers modulo n, see [9].

Throughout the article, by a graph G we mean a fnite undirected graph without loops or
multiple edges. If the degree of each vertex in G is equal to k, where k is a positive integer, then
G is called k-regular graph. For a graph G and for any two vertices a and b of G, we recall that
a walk between a and b is an alternating sequence a = vq, ey, v1, €9, ..., €g, v = b of vertices and
edges of GG, denoted by

ey es ek
a = vy U1 v = b,

such that for every ¢ with 1 < i < k, the edge e; has endpoints v;_1 and v;. Also, a path between
a and b is a walk between a and b without repeated vertices. A cycle of a graph is a path such
that the start and end vertices are the same. The number of edges (counting repeats) in a walk,
path or a cycle, is called its length. A Hamiltonian path (cycle) in G is a path (cycle) in G that
visits every vertex of GG exactly once. A graph is called Hamitonian if it contains a Hamiltonian
cycle. For vertices a and b of G, we define d(a,b) to be the length of a shortest path from a to b
(d(a,a) =0 and d(a,b) = oo if there is no such path). The diameter of G is

diam (G) = sup{d(a,b) | a,b € V(G)}.

The girth of G, denoted by gr(G) is the length of a shortest cycle in G, (gr(G) = oo if G contains
no cycle). For a positive integer r, a graph is called r-partite if the vertex set admits a partition
into r classes such that vertices in the same partition class are not adjacent. A r-partite graph is
called complete if every two vertices in different parts are adjacent. The complete 2-partite graph
(also called the complete bipartite graph) with exactly two partitions of size n and m, is denoted
by K, m. A complete graph on the n vertices, denoted by K,, is a graph such that every two of
distinct vertices are adjacent. A cligue in GG is a set of pairwise adjacent vertices of G. A clique
of the maximum size is called a mazimum clique. The cligue number of G, denoted by w(G),
is the number of vertices of a maximum clique in G. We color the vertices of G so that no two
joined vertices have the same color. If we color the vertices, we call it a coloring of G. The
chromatic number x(G) of the graph G is the minimum number of colors of colorings of G. The
tensor product or Kronecker product G ® H of two graphs GG and H is the graph with vertex set
V(G) x V(H), in which (a,b) is adjacent to (c¢,d) if and only if a is adjacent to ¢ in G and b is
adjacent to d in H. For other notions not mentioned in this introduction, one can refer to [11, 15].

Throughout this article, the integers p and p; are used implicitly to denote primes congruent
to 2 modulo 3, while ¢ and g; likewise denote prime integers congruent to 1 modulo 3. For classical
theorems and notations in commutative algebra, the interested reader is referred to [8].
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2. The Unit and Unitary Cayley Graphs of F,

In this section, we determine diameter and girth of the unit and unitary Cayley graphs of F,,.
The case when n is a power of a prime is considered first. Then the general case is considered.

2.1. The Unit and Unitary Cayley Graphs of Fi»

For the sake of compeleteness, we mention here two important results that will be kept throghout
the paper.

Proposition 1 [3, Proposition 2.2].
(a) Let R be a ring. Then G is a regular graph of degree |U(R)]|.

(b) Let R be a local ring with the mazimal ideal m. Then Gr is a complete mutipartite graph
whose partite sets are the cosets of m in R. In paticular, Gr is a compelete graph if and only

if R is a field.

Theorem 1 [2, Theorem 3.1]. Let R be a ring. Then G(R) is a complete r-partite graph if and
only if R is a local ring with the maximal ideal m and r = |R/m| = 2", for somen € N or R is a

finite field.
Theorem 2. Let n be a positive integer. Then the following statements hold
(1) diam (G(E3n)) = diam (Gg,, ) = 2;
(2) gr(G(Esn)) = gr(Gpy) = 3.

P r oo f. For each positive integer n, E3n is a local ring with the maximal ideal (24 w), see [4].
Since p(FE3n) = 2 x 32"~ we have

Esn
‘ (24 w)
Therefore, by Proposition 1, Gg,, is a complete 3-partite graph and hence diam (Gg,,) = 2
and gr(Gg,,) = 3. Also, by Theorem 1, G(E3~»/(2+w)) is a complete bipartite graph. Thus
diam (G(E3n)) = 2 and gr (G(Esn)) = 3. O

=3

Theorem 3. Let n be a positive integer and q be a prime integer congruent to 1 modulo 3.
Then the following statements hold,

(1) diam (G(En)) = diam (Gg,.) = 2;
(2) er (G(Eqn)) = gr(Ggpn) = 3.

P roof. Since ¢ is a prime integer congruent to 1 modulo 3, the ring E;» is the product of the
two local rings E/((a 4+ bw)"™) and E/((a + bw)™) that have the same number of elements. The ideals
(a 4+ bw) and (a + bw) are the only maximal ideals of Eyn, see [4]. Therefore, by [18, Theorem 3.5],
we have

diam (G(Eqn)) = diam (Gg,. ) = 2.
On the other hand, in view of the proof of [7, Proposition 5.10] and [3, Theorem 3.2], we obtain

gr (G(Eqn)) = gr (Gryn) = 3.
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Lemma 1 [19, Lemma 4.1]. Let R be a finite ring and a € R. The following statements are
equivalent:

(1) a e J(R);
(2) a4+u e U(R) for any u € U(R).
Theorem 4 [9, Theorem 2.6]. Let R =~ Ry X Ry X .... X R, be a finite ring, where (R;, m;) is
a local ring, for each i =1,--- ,n. Then the following statements are equivalent:
(1) 2 € J(R);
(2) Gr=G(R);

(3) for everyi=1,...n, |R;| is even.

Theorem 5. Let n be a positive integer and p be a prime integer congruent to 2 modulo 3.
Then the following statements hold

(1) diam (G, ,) :{ ; Zﬁ i

(2) diam (G(Epn)) = 2;

(3) gr(G(Epn)) = gr(Gp,n) = 3.

P r oo f. Since pis a prime integer congruent to 2 modulo 3, p is an Eisenstein prime integer.
Hence E), is a field. If n > 1, then the ring Epy» is a local ring with the maximal ideal (p). Since

P(Bpn) = p** 72 (p* — 1),

we obtain that (see [4]):

Epn

(p)

If p = 2, then it follows from Theorem 4 that G(Ey) = Gg,,. In this case, by [3, Theorem 3.1]
and [3, Theorem 3.2], we obtain gr (G(Eyn)) = gr (Gg,,) = 3 and

:p2_

1 if n=1,

diam (G(Epn)) = diam (Gg,,) = { 9 if n>1

We now assume that p # 2. Then G, is a complete p?-partite graph. Therefore, diam (G Epn) =2
and gr (Gg,.) = 3. Since G (Epn /(p)) is a complete (p? + 1) /2-partite graph, we obtain that

diam (G(Epn)) =2, gr (G(Ep)) = 3.
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2.2. Diameter and Girth for the Graphs Gg, and G(E,)

The general case is now investigated. It is well known [8, Theorem 8.7] that every finite
commutative ring can be expressed as a direct product of finite local rings, and this decomposi-
tion is unique up to permutations of such local rings. Throughout this section we assume that
R = Ry X Ry X .... X Ry is a finite commutative ring, where each R; is a finite commutative local
ring with the maximal ideal m;. Since (u1,...,u:) is a unit of R if and only if each u; is a unit in
R;, we see immediately that G = Gr, ® GR,... ® Gg, and G(R) = G(R1) ® G(R2)... ® G(Ry).
We denote by K; the (finite) residue field R;/m; and f; = |K;|. We also assume (after appropriate
permutation of factors) that f; < fo < ... < f.

Theorem 6. Let n > 1 be an integer with at least two distinct prime factors. Then
diam (Gg, ) = diam (G(E,,)) = 2.
Proof. Let

m l
i Bj
n:3k><Hpg><||qj’,
i=1 j=1

where p; and g; are prime integers such that p; =2 (mod 3) and ¢; =1 (mod 3), then

m l
E, = Eq, % HEP?Z X Hqu?p
i=1 j=1 "

see [4]. This shows that, E, is isomorphic to a direct product of finite local rings (R;, m;), such
that for every i, |R;/m;| = 3 or p? or ¢;. By [3, Theorem 3.5 (b)], we conclude that

diam (Gg, ) = diam (G(E,,) = 2.

Theorem 7. Let n > 1 be an integer with at least two distinct prime factors. Then
gr(Ge,) = gr(G(En)) = 3.

P r o o f. By the argument similar to that above, we conclude that

m l
En = Egk X HEP?Z X Hquj.
i=1 j=1 "

Thus, by [3, Theorem 3.2], we obtain gr (Gg,) = 3. On the other hand, in view of the proof of
[7, Theorem 5.10], we have gr(G(E,)) € {3,4}.

Since n is an integer with at least two distinct prime factors, we can assume that n = ab with
ged (a,b) = 1. Tt is clear that

ged (a® 4+ % — ab,n) = 1.

Thus, N(a+ bw) is a unit in Z,, and so a + bw is a unit in F,. This showes that x = a and y = bw
are adjacent. Now, by taking z = b+ aw, we have t + 2z = (a + b) + aw and y + z = b+ (a + b)w.
Clearly, N(x + z) = N(y + 2) = a? + b*> + ab is a unit in Z,, which implies that = + z and y + z are
unit elements of E,,. Therefore, we obtain the cycle

T— Yy —z—.

This implies that gr (G(E,)) = 3. O
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2.3. Some Graph Invariants of Graphs Gy, and G(FE,)

In the sequel, we obtain the clique number and the chromatic number for the graphs Gg, and
G(E,).

Theorem 8. Let n > 1 be an integer and

m l
o=t ot ¢ T
i=1 j=1

Then the following statements hold
(1) if 3| n, then x(Gg,) = w(GEg,) =3 and a(Gg,) = n?/3;
(2) if 31n, then
X(Gg,) = w(Gg,) =min {p},¢;| 1 <i<m, 1<j<I, p;i|n, q;|n}

and
n2

a(Gg,) =

min {p?, ¢j| 1<i<m, 1<j <1, pi|n, qj|n}

Proof. 1. Let k be the biggest positive integer such that 3% | n. Then

m l
En = Egk X HEp?i X H Eqﬁj.
i=1 j=1 "

Since Egi is a local ring with the maximal ideal (2 + w) and
Egk o
2+wy]

it follows from [3, Proposition 6.1] that x(Gg,) = w(GE,) = 3 and a(Gg,) = n?/3.

2. If 3t n, then it yields that E,, is isomorphic to a direct product of finite local rings (R;, m;),
such that for every 4, |R;/m;| = p? or q;. Thus by [3, Proposition 6.1], we have

X(Gg,) =w(GE,)=k=min{ pl,q; | 1<i<m, 1<j<I}

and a(Gg,) = n?/k. O

Theorem 9. Let n > 1 be an integer and

m l
w3 [T < T
i=1 j=1

Then the following statements hold
(1) if 2 | n, then x(G(E,)) = w(G(E,)) = 4;
(2) if 21 n, then

l
1 v e s
X(G(En)) = w(G(E,)) = Simal X l_I(Z)Z2 i ZZ %) x H(q]@’ — q]@’ 2 +m+2 4+ 1.
i=1
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Proof. Sincen=3Fx[[" 1pl'><Hj 1q] 7 we have

m l
En = Egk X HEp?i X HEqﬁ]
i=1 j=1

1. If 2 | n, then 2 ¢ U(E,). Hence, in view of the proof of [21, Theorem 2.2], we have

X(G(En)) = w(G(En)) =4.

2.If 2¢n, Then 2 € U(E,). By an argument similar to that above, we conclude that

m l
1 o o —
X(G(En)) = w(G(En)) = gy x [T 08" =07 7)< | [ ¢ 2 +m+20+1.
=1 ]:1

We now state our final result.
Theorem 10. For each integer n > 1, the graphs G(E,) and Gg, are Hamitonian.

Proof. Letn>1bean integer. By Theorem 2, Theorem 3, Theorem 5 and Theorem 6, the
graphs G(E,,) and Gp, are connected. Thus G(E,,) is Hamiltonian graph, by [22, Theorem 2.1].
Also, it follows from [20, Lemma 4] that G, is Hamiltonian graph. O

3. Concluding Remarks

In this article, the diameter, the girth, the chromatic number and the clique number of G(E,,)
and G, are studied. We also prove that for each n > 1, the graphs G(E,) and Gg, are
Hamiltonian and the independence number of G, is calculated. We end our paper with the
following two open questions:

Question 1. Is there any closed formula for o(G(E,))?

Question 2. When are G(E,,) and Gg, Eulerian?
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Abstract: A Q-polynomial Shilla graph with b =5 has intersection arrays {105t,4(21¢ + 1), 16(¢t + 1);
1,4(t +1),84t}, t € {3,4,19}. The paper proves that distance-regular graphs with these intersection arrays
do not exist. Moreover, feasible intersection arrays of @-polynomial Shilla graphs with b = 6 are found.

Keywords: Shilla graph, Distance-regular graph, Q-polynomial graph.

1. Introduction

We consider undirected graphs without loops or multiple edges. For a vertex a of a graph I,
denote by I';(a) the ith neighborhood of a, i.e., the subgraph induced by I" on the set of all vertices
at distance i from a. Define [a] = I'i(a) and a* = {a} U [a].

Let T be a graph, and let a,b € T'. Denote by u(a,b) (by A a,b)) the number of vertices in
[a] N [b] if @ and b are at distance 2 (are adjacent) in I'. Further, the induced [a] N [b] subgraph is
called p-subgraph (A-subgraph).

If vertices u and w are at distance 7 in I', then we denote by b;(u, w) (by ¢;(u,w)) the number of
vertices in the intersection of I'; ;1 (u) (of I';_1(u), respectively) with [w]. A graph I' of diameter d is
called distance-regular with intersection array {bg,b1,...,bq—_1;c1,...,¢cq} if, for each i = 0,...,d,
the values b;(u,w) and ¢;(u,w) are independent of the choice of vertices u and w at distance i
in I'. Define a; = k — b; — ¢;. Note that, for a distance regular graph, by is the degree of the
graph and a; is the degree of the local subgraph (the neighborhood of the vertex). Further, for
vertices x and y at distance [ in the graph I', denote by péj (z,y) the number of vertices in the
subgraph I';(z) N T'j(y). The numbers pﬁj(az,y) are called the intersection numbers of I' (see [2]).
In a distance-regular graph, they are independent of the choice of x and y.

A Shilla graph is a distance-regular graph I' of diameter 3 with second eigenvalue #; equal to
a = as. In this case, a divides k and b is defined by b = b(I") = k/a. Morover, a; = a —b and I" has
intersection array {ab, (a+1)(b—1),b2;1,c2,a(b—1)}. Feasible intersection arrays of Shilla graphs
are found in [6] for b € {2,3}.

Feasible intersection arrays of Shilla graphs are found in [1] for b = 4 (50 arrays) and for b =5
(82 arrays). At present, a list of feasible intersection arrays of Shilla graphs for b = 6 is unknown.
Moreover, the existence of QQ-polynomial Shilla graphs with b = 5 also is unknown.

In this paper, we find feasible intersection arrays of ()-polynomial Shilla graphs with b = 6 and
prove that @-polynomial Shilla graphs with b = 5 do not exist.

!This work was supported by RFBR and NSFC (project Ne 20-51-53013).
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Theorem 1. A Q-polynomial Shilla graph with b = 6 has intersection array
(1) {42t,5(7t +1),3(t + 3);1,3(t + 3),35t}, where t € {7,12,17,27,57};
(2) {372,315,75;1,15,310}, {744,625,125;1,25,620} or {930,780, 150;1,30,775};
(3) {312,265,48;1,24,260}, {624, 525,805 1, 40,520}, {1794, 1500, 200; 1, 100, 1495}  or
{5694, 4750, 600; 1, 300,4745}.

In view of Theorem 2 from [1], a @-polynomial Shilla graph with b = 5 has intersection array
{105¢,4(21¢ + 1), 16(¢ + 1); 1, 4(¢ + 1), 84¢}, ¢ € {3, 4, 19}.

Theorem 2. Distance-reqular graphs with intersection arrays {315,256,64;1,16,252} and
{1995, 1600, 320; 1,80, 1596} do not exist.

Theorem 3. Distance-reqular graphs with intersection array {420,340, 80;1,20,336} do not
exist.

2. Proof of Theorem 1

In this section, I is a Q-polynomial Shilla graph with b = 6. Then (as — 5a — 6)% — 4(5by — as)
is the square of an integer. By [6, Lemma 8], we have

2a < cob(b+ 1) +b* — b —2;

therefore, a < 21cp + 14. It follows from the proof of Theorem 9 in [6] that either k < b3 —b = 6-35
or v < k(20 — b+ 1) = 428k. By [6, Corollary 17 and Theorem 20], the number by + co divides
b(b — 1)be and

—34=-b024+2<03<-b*(b+3)/(3b+1) < —18.

Theorem 2 from [7] implies the following lemma.

Lemma 1. Ifby = ca, then I' has an intersection arrays {42t,5(7t+1),3(t+3);1,3(t+3), 35t}
and t € {7,12,17,27,57}.

To the end of this section, assume that by # ¢ and k > 07 > 03 > 03 are eigenvalues of the
graph I'. Then
6(6b2 + CQ)/(bQ + 62) = —93.

On the other hand, according to [6, Lemma 10], the number ¢y divides (a + 6)bs, 30a(a + 1) and
(a+6)by > (a+ 1)cs.
Lemma 2. If —34 < 03 < —18, then one of the following statements holds:

(1) 5=—-31 and T has one of the intersection arrays {372,315,75;1,15,310},
{744, 625,125;1, 25,620}, and {930, 780,150;1, 30, 775};

(2) 03=—-26 and T has one of the intersection arrays {312,265,48;1,24,260},
{624, 525,805 1,40, 520}, {1794, 1500, 200; 1,100, 1495}, and {5694, 4750, 600; 1,300,4745};

(3) 03 = —21 and T has one of the intersection arrays {42t,5(7t+1),3(t+3);1,3(t+3), 35t} for
t e {7,12,17,27, 57}
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P roof. By [6, Lemma 10], co divides b(b— 1)by = 30b2 and, by [6, Corollary 17|, the smallest
nonprinciple eigenvalue 63 is equal to b(bbs + ¢2)/(ba + ¢2). Therefore, 30(03 + 6)/(03 + 36) is an
integer and 03 € {—34, —33,-32,—-31, —-30, —27, —26, —24, —21, —18}.

Let 03 = —34. Then 3(6by + c2) = 17(b2 + ¢2) and by = 14cy. Further, 03 is a root of the
equation 22 — (a3 + ag — k) + (b — 1)by — ag = 0; therefore, a = 425/28 - c3 — 34. In this case, the
multiplicity of the first nonprincipal eigenvalue is my = 6/5 - (2545¢2 — 5544)/co, a contradiction
with the fact that 5 does not divide 6 - 5544.

Let 63 = —33. Then 2(6bs + ¢2) = 11(by 4 ¢2) and bg = 9co. Further, a = 275/27 - ¢; — 33 and
the multiplicity of the first nonprincipal eigenvalue is equal to m; = 6/5 - (1645co — 5184) /¢, a
contradiction as above.

Let 05 = —32. Then 3(6b2 + c2) = 16(b2 + c2) and 2by = 13cy. Further, a = 100/13 - ¢; — 32 and
the multiplicity of the first nonprincipal eigenvalue is m; = 6/5-(1195¢9 —4836)/c2, a contradiction
as above.

Let 03 = —31. Then 6(6bs + c2) = 31(ba + ¢2) and by = 5¢y. Further, a = 31/5 - co — 31
and the multiplicity of the first nonprincipal eigenvalue is m; = 30(37co — 180)/co = 1110 —
5400/c3. The number of vertices in the graph is 31/5 - (222¢3 — 2005¢ + 4500) /c2; hence, ¢y divides
900 and is a multiple of 5. By computer enumeration, we find that, only for co = 15,25 and
30, we have admissible intersection arrays {372,315, 75;1,15,310}, {744,625,125;1,25,620} and
{930,780, 150; 1, 30, 775}.

Let 03 = —30. Then (6by + c2) = 5(be + ¢2) and by = 4cy. Further, a = 125/24 - ¢ — 30 and the
multiplicity of the first nonprincipal eigenvalue is m; = 6/5 - (745¢o — 4176) /co, a contradiction as
above.

Let 3 = —27. Then 2(6by + c2) = 9(ba + c2) and 3by = Tcy. Further, a = 25/7 - ¢ — 25 and the
multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 - (445¢c2 — 3276)/c2, a contradiction as
above.

Let 05 = —26. Then 3(6b2 + c2) = 13(ba + ¢2) and by = 2cy. Further, a = 13/4 - ¢ — 26 and
the multiplicity of the first nonprincipal eigenvalue is m; = 6(77cy — 600)/co = 462 — 3600/ c2.
The number of vertices in the graph is 13/8 - (231¢3 — 3340cy + 12000)/c2; hence, cp divides
1200 and is a multiple of 4. By computer enumeration, we find that only for co = 24,40, 100,
and 300 we have admissible intersection arrays {312,265,48;1,24,260}, {624, 525,80;1, 40,520},
{1794, 1500, 200; 1, 100, 1495}, and {5694, 4750, 600; 1,300,4745}.

Let 3 = —21. Then 2(6bs + c2) = 7(ba + ¢2) and by = ¢o. Further, a = 7/3 - co — 21 and the
multiplicity of the first nonprincipal eigenvalue is m; = 6(41ce — 360)/co = 246 — 2160/co. The
number of vertices in the graph is 7/3 - (82¢2 — 1335¢cy + 5400)/ca; hence, co divides 1080 and is a
multiple of 3. By computer enumeration, we find that, only for ¢y = 18,30, 45, 60, 90, and 180, we
have admissible intersection arrays {42¢, 5(7t+1),3(t+3);1,3(t+3),35¢} for t € {3,7,12,17,27,57}.
A graph with the array obtained for ¢ = 3 does not exist by [5].

Let 83 = —18. Then 6(6by + c2) = 19(ba + c2), so 3by = 2co. Further, a = 2512 - ¢ — 18 and the
multiplicity of the first nonprincipal eigenvalue is mq = 6/5 - (145¢o — 1224) /¢y, a contradiction.
The lemma, is proved. O

Theorem 1 follows from Lemmas 1-2.

3. Triple intersection numbers

In the proof of Theorem 3, the triple intersection numbers [3] are used.
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Let I' be a distance-regular graph of diameter d. If uq,uo, ug are vertices of the graph I', then
UL UUZ

o the set of vertices

r1,T2,T3 are non-negative integers not greater than d. Denote by {

w € T such that d(w,u;) = r; and by [”1”2“3] the number of vertices in {“1”2”3 } The numbers

r1irar3 r1irar3

[uwzus

yrars ] are called the triple intersection numbers. For a fixed triple of vertices w1, uo, ug, instead

of [iﬁjfﬂ, we will write [rirers]. Unfortunately, there are no general formulas for the numbers

[r1irars]). However, [3] outlines a method for calculating some numbers [ri7ar3].

Let u,v,w be vertices of the graph I', W = d(u,v), U = d(v,w), and let V = d(u,w). Since
there is exactly one vertex = u such that d(z,u) = 0, then the number [0jh] is 0 or 1. Hence
[th] = jWéhV- Similarly, [’LOh] = iW6hU and [2]0] = iU6jV-

Another set of equations can be obtained by fixing the distance between two vertices from
{u,v,w} and counting the number of vertices located at all possible distances from the third:

d
> lijh] = p%, — [0jh]
l
d
E:ﬁ”ﬂ::p%——HOM (3.1)
[
d
> i) = pl} — [i40]
[

However, some triplets disappear. For |i — j| > W or i + j < W, we have pl-V}/ = 0; therefore,
[ijh] = 0 for all h € {0, ...,d}.
We set
d
Sl v,w) = Y QriQuyQun |

r,s,t=0

uvw]
rst 1°

If the Krein parameter qzhj =0, then Sjjn(u, v, w) = 0.
We fix vertices u, v, w of a distance-regular graph I" of diameter 3 and set

iy = { g = |y = ] = ] =[]

Calculating the numbers

uwv vuUw wou
ijh] = ijh]* = ijh|” =
GO ol P T i B e
(symmetrization of the triple intersection numbers) can give new relations that make it possible to
prove the nonexistence of a graph.

4. Graphs with intersection arrays {315,256, 64; 1, 16,252} and
{1995, 1600, 320; 1, 80, 1596}

Let I be a distance-regular graph with intersection array {315,256, 64;1, 16,252}. By [2, The-
orem 4.4.3], the eigenvalues of the local subgraph of the graph I' are contained in the interval
[—5,59/5). Since the Terwilliger polynomial (see [4]) is —4(5z — 59)(z + 5)(z + 1)(xz — 43), then
these eigenvalues lie in [—5, —1]U(59/5.43]. Hence, all nonprinciple eigenvalues are negative and the
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local subgraph is a union of isolated (a; + 1)-cliques, a contradiction with the fact that aqy +1 = 49
does not divide k = 315.
Thus, a distance-regular graph with intersection array {315, 256,64; 1, 16,252} does not exist.

Let T’ be a distance-regular graph with intersection array {1995, 1600, 320;1,80,1596}. Then
I" has 1+ 1995 + 39900 + 8000 = 49896 vertices, spectrum 1995, 39949 1523275 92126125 and the
dual matrix of eigenvalues

495 23275 26125
99 175 275
0 -5 55

—99/4 931/4 —209

Q
I
—=

The Terwilliger polynomial of the graph I" is —20(x + 5)(z + 1)(x — 79)(z — 299); hence, the
eigenvalues of the local subgraph are contained in [—5, —1] U {79} U {394}.

Note that the multiplicity mi = 495 of the eigenvalue 61 = 399 is less than k. By the corollary
to Theorem 4.4.4 from [2] for b = b1 /(61 + 1) = 4, the graph ¥ = [u] has an eigenvalue —1—b = —5
of multiplicity at least k —my = 1500.

Let the number of eigenvalues 79 of the graph 3 be equal to y. Then the sum of eigenvalues of
the graph ¥ is at most —7500 — (494 — y) + 79y + 394; therefore, y > 95. Now twice the number
of edges in X is equal to

786030 = 1995 - 394 = > m,6;
i

but not less than
25 - 1500 + 399 + 95 - 79% + 3942 = 786030.

Hence, ¥ has spectrum 394'.79%, —1399 51500
Now the number ¢ = kxA5;/2 of triangles in ¥ containing this vertex is equal to Y, m;603/(2v).
Therefore,

t="> mib}/(2v) = (394 + 79° - 95 — 399 — 125 - 1500)/3990 = 27021
%

and Ay, = 54042/394 is approximately equal to 137.16, a contradiction.

Thus, a distance-regular graph with intersection array {1995,1600,320;1, 80,1596} does not
exist.

Theorem 2 is proved.

5. Graph with array {420, 340, 80; 1, 20, 336}

Let T' be a distance-regular graph with intersection array {420,340,80;1,20,336}. Then T’
is a formally self-dual graph having 1 + 420 4 7140 + 1700 = 9261 vertices, spectrum
4201, 84420 (7140 _211700 " and the dual matrix of eigenvalues

1 420 7140 1700

1 &4 0 —85
@= 1 0 =21 20

1 =21 84 —64

The Terwilliger polynomial of the graph I' is —20(z+5)(z+1)(x—16)(2—59) and the eigenvalues
of the local subgraph are contained in [—5, —1] U {16} U {79}. If the nonprinciple eigenvalues of a
local subgraph are negative, then this subgraph is a union of isolated (a;+1)-cliques, a contradiction
with the fact that a; +1 = 80 does not divide k = 420. Hence, the local subgraph has eigenvalue 6.
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Lemma 3. Intersection numbers of a graph I' satisfy the equalities
(1) piy =79, pyy = 340, ply = 1360, pyy = 5440, p3; = 340,
(2) p}, =20, p}, = 320, p}; = 80, p3, = 5519, p3s = 1300, p3y = 320;
(3) p3, = 336, pdy = 84, pd, = 5460, pd, = 1344, pd, = 271.

P r oo f. Direct calculations. O

Let u,v, and w be vertices of a graph T', [rst] = [“¥'], @ = I's(u), and let & = Q5. Then ¥ is a
regular graph of degree 1344 on 1700 vertices.

Lemma 4. Let d(u,v) = d(u,w) =3 and d(v,w) = 1. Then the following equalities hold:
(1) [122] = 2r6/5 — 136, [123] = [132] = —2r¢/5 + 472, [133] = 2rg/5 — 388;

(2) [211] = rg/10 — 38, [212] = [221] = —rg/10 + 374, [222] = —1476/10 + 5576,
[223] = [232] = 3r¢/2 — 490, [233] = —3rg/2 + 1834;

(3) [311] = —rg/10 + 117, [312]=[321]=r/10 — 34, [322] = r, [323] = [332] = —11rs/10 + 1378,
333] = 11r6/10 — 1107,

where rg € {1010, 1020, ...,1170}.

Proof. A simplification of formulas (3.1) taking into account the equalities
Sug(u,v,w) = Slgl(u,v,w) = Sgll(u,v,w) = 0. ]

By Lemma 4, we have 1010 < [322] = r¢ < 1170.

Lemma 5. Let d(u,v) = d(u,w) = d(v,w) = 3. Then the following equalities hold:
(1) [122] = —r17 + 336, [123] = [132] = 117, [133] = —r17 + 84;

(2) [213] = [231] = ri7, [212] = [221] = —ri7 + 336, [222] = 39r17/4 + 3444,
[223] = [232] = —35r17/4 + 1680, [233] = 31r17/4 — 336;

(3) [313] = [331] = —ri7 + 84, [312] = [321] = ri7, [322] = —35ry7/4 + 1680,
323] = [332] = 31ry7/4 — 336, [333] = —27r17/4 4 522,

where r7 € {44,48,...,76}.

Proof A simplification of formulas (3.1) taking into account the equalities
Sllg(u,v,w) = Slgl(u,v,w) = Sgll(u,v,w) =0. ]

By Lemma 5, we have 1015 < [322] = —35r17/4 4+ 1680 < 1295.
The number d of edges between ¥ (w) and ¥ — ({w} U A(w)) satisfies the inequalities

359905 = 84 - 1010 + 271 - 1015 < d < 84 - 1170 + 271 - 1295 = 449225,
267.786 < 1343 — A < 334.245,
1008.755 < A\ < 1075.214,

where A is the mean value of the parameter \(X).
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Lemma 6. Let d(u,v) = d(u,w) =3 and d(v,w) = 2. Then the following equalities hold:

(1) [122] = (—64ry5 + 4ryg + 7364)/27, [123] = [132] = (64ri5 — 4rig + 1708)/27,
[133] = (—64ry5 + 416 + 560) /27;

(2) [211] = —r15+20, [212] = [221] = (Tlri5+4r16+6392)/27, [222] = (—17r15—13r16+38311)/9,
[223] = [232] = (—20r5 + 35116 + 26095)/27, [233] = (64715 — 31116 + 8053) /27;

(3) [311] = ri5, [312] = [321] = (=Tlris — 4116 + 2248)/27, [313] = (44115 + 416 + 20)/27,
322] = (115715 + 35116 + 26716) /27, [323] = [332] = (—4dr15 — 31ry6 + 7297)/27, [333] = ry6,

where —10r15 + 4116 + 20 is a multiple of 27, r15 € {0,1,...,20}, and r16 € {0,1,...,235}.

Proof. A simplification of formulas (3.1) taking into account the equalities
5113(u7vaw) - Slgl(ﬂ,’l),?l)) - Sgll(ﬂ,’l),?l)) = 0. U

By Lemma 6, we have
998 < [322] = (115715 + 35r16 + 26716) /27 < 1294.

Let us count the number h of pairs of vertices y and z at distance 3 in the graph €2, where

G{U’U} G{U’U}
YS1s31S S\

On the one hand, by Lemma 4, we have [323] = —11rg/10+ 1378, where r¢ € {1010, 1020, ..., 1170},
therefore
7644 = 8491 < h < 84267 = 22428.

On the other hand, by Lemma 6, we have [313] = (44715 + 4116 + 20)/27, where r15 € {0, 1, ...,20},
ri6 € {0,1,...,235}, therefore

7644 < (445 + 4rig) + 995.55 < 22428,
7
6648.44 < > (4dry + 4rlg) < 21432.45,
7
4.946 <Y “(11r{5 +ris)/1344 < 15.947.

(2

If 115 = 0, then r15 + 5 is a multiple of 27 and g = 22.49, ....
If r15 = 1, then 2r1g + 5 is a multiple of 27 and r1g = 11.38, ....
In any case,

> (A1rly +1i6)/1344 > 22,

(2

a contradiction.
Theorem 3 is proved. O

Conclusion

The following are the main steps in creating a theory of Shilla graphs:
(1) finding a list of feasible intersection arrays of Shilla graphs with b = 6;
(2) classification of @Q-polynomial Shilla graphs with by = c;.
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Abstract: This paper presents a new iterative algorithm for approximating the fixed points of multivalued
generalized a-nonexpansive mappings. We study the stability result of our new iterative algorithm for a larger
concept of stability known as weak w2-stability. Weak and strong convergence results of the proposed iterative
algorithm are also established. Furthermore, we show numerically that our new iterative algorithm outperforms
several known iterative algorithms for multivalued generalized a-nonexpansive mappings. Again, as an applica-
tion, we use our proposed iterative algorithm to find the solution of nonlinear Volterra delay integro-differential
equations. Finally, we provide an illustrative example to validate the mild conditions used in the result of the
application part of this study. Our results improve, generalize and unify several results in the existing literature.

Keywords: Banach space, Uniformly convex Banach space, Multivalued generalized a-nonexpansive map-
ping, Convergence, Nonlinear Volterra delay integro-differential equations.

1. Introduction

A mapping ¢g on a nonempty subset K of a Banach ¥ is called nonexpansive if

lg(z) =gl < [lz —yll, forall z,yecX.

A point z in K is said to be a fixed point of g if g(x) = 2. We denote the set of all fixed points of g
by

T(g) = o € X2 = glo)).
Let R denote the set of all real numbers and N be the set of all natural numbers.

In 1965, Browder [7], Gohde [10] and Kirk [17] independently studied the existence of fixed
points of nonexpansive mappings in Banach spaces. The authors showed that every nonexpansive
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mapping defined on a bounded closed convex subset of a uniformly convex Banach space always has
a fixed point. Recently, many authors have introduced and studied some new classes of mappings
which are considered to be larger than the single-valued nonexpansive mappings.

One of the first extensions and generalizations of single-valued nonexpansive mapping which
has fascinated many authors was introduced by Suzuki [33] in 2008. Such mappings are generally
known as mappings satisfying condition (C). The author proved some existence and convergence
results for such mapping.

Definition 1. A mapping g : X — XK is said to be Suzuki generalized nonexpansive mapping
or mapping satisfying condition (C) if for all x,y € X we have

1 .
sl =gzl < llz =yl implies [lgz — gyl < |z —y]-

In 2011, Aoyama and Kohshaka [5] introduced a new class of single-valued mappings known as
a-nonexpansive mappings and obtained some fixed point theorems for such mappings.

Definition 2. A mapping g : X — X is said to be an a-nonexpansive with o € [0,1) if
lgz — gyl” < allgz =yl + allgy — =[* + (1 = 2a) |z — y|%,
for all x,y € K.

Obviously, every nonexpansive mapping is an a-nonexpansive with a = 0 (i.e., 0-nonexpansive
mapping).

In 2017, Pant and Shukla [29] introduced a new type of single-valued nonexpansive mappings
known as generalized a-nonexpansive mappings and obtained some existence and convergence the-
orems.

Definition 3. A mapping g : X — K is said to be generalized a-nonexpansive with o € [0,1) if

1 o
lle =gzl <llz —yl  implies
gz — gyll < allgz —yll + allgy — =|| + (1 = 2a)[|lz -yl
for all x,y € K.

This class of mappings properly includes nonexpansive and Suzuki generalized nonexpansive map-
pings [29].

Fixed point theory for multivalued mappings has useful applications in control theory, convex
optimization, differential equations and economics. The fixed points of multivalued mappings were
first studied by Markin [20] and Nadler [21].

A set K is said to be proximinal if for each x € ¢, there exists an element y € X such that
|z —y|| = d(x,X), where

d(z,X) = inf{||z — £|| : £ € K}.

We denote by CB(X), C(X) and P(X) the families of nonempty closed and bounded subsets,
nonempty compact subsets and nonempty proximinal subsets of X, respectively. Let 5 be the
Hausdorff metric induced by d of ¢ which is defined as:

%(%,7/):max{sgg(x,“l/),sgg(y,%)}, forall %,¥ € CB(X).
TEU y

An element = € X is said to be a fixed point of a multivalued mapping T : X — P(X) if x € Tz.
Let F(T) = {2z € X : z € Tz} denote the set of all fixed points of T.
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A multivalued mapping T : KX — P(X) is said to be a contraction if there exists a constant
d € [0,1) such that for all z,y € K,

A (Tx, Ty) < 6llz -y, (1.1)
and nonexpansive if
H (T, Ty) < ||z —yl|,

for all z,y € K. The study of fixed points for multivalued contraction and nonexpansive mappings
using the Hausdorff metric was initiated by Markin [20].

In 2011, Abkar and Eslamian [2] gave the multivalued version of Suzuki generalized nonexpan-
sive mappings.

Definition 4. A multivalued mapping T : K — CB(X) is said to be Suzuki generalized nonex-
pansive mappings or said to satisfy condition (C) if for all x,y € K, we have

1
5d(@,T2) < ||z —y|| - implies 7 (Tx,Ty) < ||z —y].

Recently, Igbal et al. [15] introduced a multivalued generalized a-nonexpansive mapping and
obtained some fixed points results in uniformly convex Banach spaces.

Definition 5. A mapping T : X — CB(X) is said to be a multivalued generalized o-
nonexpansive if there exists a € [0,1) such that

1
5d(:ﬂ,‘fﬂ:) <l|lz —vyl| implies
H(Tx, Ty) < ad(z, Ty) + ad(y, Tz) + (1 = 2a)[lz - y|,
for all x,y € K.

It is not hard to see that every multivalued mapping satisfying condition (C') is multivalued gener-
alized a-nonexpansive mapping with e = 0 and also, every multivalued generalized a-nonexpansive
mapping with a nonempty fixed point set is multivalued quasi-nonexpansive.

The fixed point theory of the classes of multivalued nonexpansive mappings is more cumbersome
than the corresponding theory for the classes of single valued nonexpansive mappings. But the
numerous applications of the former have caused several researchers to study not only the existence
and uniqueness of fixed points of different classes of multivalued nonexpansive mappings, but also
approximated the fixed points of different classes of multivalued nonexpansive mappings.

In the course of approximating the fixed points of the classes of nonexpansive mappings, several
iterative algorithms have be introduced and studied. Some of the well known iterative algorithms
in existing literature are given in Mann [19], Ishikawa [16], Noor [22], S [3], Abbas and Nazir [1],
Tharkur [34] and many more.

In 2009, Shahzad and Zegeye [11] studied convergence of the Mann and Ishikawa iterative algo-
rithms for multivalued nonexpansive mappings in a nonempty closed convex subset of a uniformly
convex Banach space. The authors defined

Py(a) ={y € T : [lo — y|| = d(z, Tx)}

for a multivalued mapping T : X — P(X) to make it well defined.
The famous Mann iterative algorithms is defined as:

{$0:$EJ<,

Vn > 1, 1.2
Tn+l = (1 - un)xn + ungna B ( )
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where {u,} is a sequence in (0,1) and ¢, € Pg(x,).
The Ishikawa iterative algorithms is defined as:

rg=x € XK,
Yn = (1 — vp)xpn + vnly, Vn > 1, (1.3)
Tn+1 = (1 - un)xn + unCna

where {u,} and {v,} are sequences in (0,1), ¢, € Ps(y,) and £, € Py(zy,).
The following iterative algorithm which was introduced by Argawal et al. [3], is known as
S-iterative algorithm:

g =1x € K,
Yn = (1 — vp)xpn + vply, Vn > 1, (1.4)
Tnl = (1 - un)gn + ungn,

where {u,} and {v,} are sequences in (0,1), ¢, € Py(y,) and ¢, € Py(x,). The authors proved
that (1.4) converges at the same rate of the Picard iteration and faster than the Ishikawa iteration
for contractions mappings.

In 2018, Gunduz et al. [11] introduced the multivalued version of Thakur iteration process as
follows:

rg=x € X,

zn = (1 = tp)xn + tply,

Yn = (1 - Un)xn + UnWn,
Tnt1 = (1 - un)wn + unGn,

vn > 1, (1.5)

where {u,}, {t,} and {v,} are sequences in (0,1), ¢, € Ps(yn), wn € Py(z,) and ¢, € Py(z,). The
authors proved numerically that (1.5) convergence is faster than each of Mann, Ishikawa, Noor, S,
Abass iteration processes.

Recently, Okeke et al. [28] introduced the multivalued version of Picard-Ishikawa hybrid itera-
tive algorithm which was considered in [26] as follows:

rg=x € X,

Zn = (1 - Un)xn + Upln,
Yn = (1 - un)xn + UpWnp,
Tnt1 = G,

Vn > 1, (1.6)

where {u,} and {v,} are sequences in (0,1), ¢, € Pr(yn), wn € Py(z,) and ¢, € Py(z,). The
authors proved analytically and numerally that (1.6) converges faster than a number of existing
iterative algorithms for quasi-nonexpansive mapping.

On the other hand, a fixed point iteration procedure is said to be stable numerically if small
errors or modifications in the data or procedure has small control on the computed value of the
fixed point.

The concept of stability of fixed point iteration process was rigorously studied by Harder in her
Ph.D thesis which was published in [13, 14].

Definition 6 [13, 14]. Let T : X — P(X). Define a fized point iteration algorithm by
Tp+1 = f(T,xn) such that {z,} converges to a fized point ¢ € T. Let {t,} be an arbitrary se-
quence in 9. Define

en = |ltn — f(T,tn)||, Yn>1.
A fixed point iterative algorithm is said to be T-stable if the following condition is fulfilled:

lim ¢, =0 if and only if lim ¢, =q.
n—oo n—oo
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The notion of stability in Definition 6 has been studied by several authors for both single and
multivalued mappings (see [15, 24, 28] and the references in them).

In [6], Berinde showed that the concept of stability in Definition 6 is not precise because of the
sequence {t,} which is arbitrary taken. To overcome this limitation, Berinde [6] observed that it
would be more natural that {¢,} be an approximate sequence of {z,}. Therefore, any iteration
algorithm which is stable will also be weakly stable but the converse is generally not true.

Definition 7 [6]. Let {x,} C ¥ be a given sequence. Then a sequence {t,} C ¥ is an approzx-
imate sequence of {x,} if, for any k € N, there exists n = n(k) such that

|xn —tull <m, VYn>Ek.

Definition 8 [6]. Let T: X — P(X). Let {x,} be a sequence defined by an iterative algorithm
with xg € 4 and

Tnt1 = f(T,2p), n>0. (1.7)

Let {x,,} converge to a fized point q of T. Suppose for any approximate sequence {t,} C 9 of {x,}

lim ¢, = nlgrolo tni1 — f(T,ta)] =0

n—oo
implies

lim ¢, = q,
n—o0

then we say that (1.7) is weakly T-stable or weakly stable with respect to 7.

In 2010, Timis [35] studied a new concept of weak stability which is obtained from Definition 8
by replacing of the approximate sequence with the notion of the equivalent sequence which is more
general.

Definition 9 [8]. Let {x,} and {t,} be two sequences. We say that these sequences are equiv-
alent if

|zn — tn]| = 0.

lim
n—oo

Definition 10 [35]. Let T: K — P(X). Let {z,} be an iterative algorithm defined for xo € 4
and

Tnt1 = f(T,2p), n>0. (1.8)

Let {x,,} converge to a fixed point q of T. Suppose for any equivalent sequence {t,} C 9 of {x,}
nh_fgo €n = nh_fgo [tn+1 — f(T,t0)[[ =0
implies
lim ¢, =q,
n—o0

then we shall say that (1.8) is weak w?-stable with respect to T.
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Interestingly, the concept of w?-stability has not been consumed by many authors for multivalued
mappings.

Motivated by the above results, firstly, we construct a new four step iterative algorithm for
approximating the fixed points of multivalued generalized a-nonexpansive mappings as follows:

g =2x € K,

spn = (1 = vp)Tn + vply,

zn = (1 — up)ln + unhp, Vn > 1, (1.9)
UYn € (.P‘j‘(Zn),

Tpt1 = Cn,

where {u,} and {v,} are sequences in (0,1), ¢, € Pr(yn), hn € Py(s,) and £, € Py(zy,).

Secondly, we will show that our new iterative algorithm (1.9) is w?-stable with respect to 7.
The stability results are supported with some illustrative examples.

Thirdly, we prove the weak and strong convergence results of the iterative algorithms (1.9) for
multivalued generalized a-nonexpansive mappings in Banach spaces. Furthermore, a numerical
experiment is performed to show that the iterative algorithm (1.9) enjoys a better speed of con-
vergence than all of the iterative processes (1.2)—(1.6) for multivalued generalized a-nonexpansive
mappings.

Finally, as an application, we will utilize the new iterative method (1.9) to find the solutions
of nonlinear Volterra delay integro-differential equations in Banach spaces. An example is also
provided to show that our results are applicable.

2. Preliminaries

The following definitions, propositions and lemmas will be useful in proving our main results.

Definition 11. A Banach space 9 is said to be uniformly convex if for each € € (0,2], there
exists § > 0 such that for z,y € 4 satisfying ||| <1, |ly]| <1 and ||x — y|| > €, we have

r+y

|<1-s

Definition 12. A Banach space ¢ is said to satisfy Opial’s condition if for any sequence {xy,}
in 94 which converges weakly to x € 4 implies

limsup ||z, — z|| < limsup ||z, —y|, Yy €Y with y+#x.

n—o0 n—o0

Definition 13. Let & be a Banach space and X a nonempty closed convexr subset of ¢.
Let {x,} be a bounded sequence in Y. For x € 4, we put

r(z,{x,}) = limsup ||z, — z||.
n—o0
The asymptotic radius of r({x,}) relative to {x,} is defined by
r(K,{z,}) = inf{r(z,{z,}) : z € K}.
The asymptotic center of A({xy}) relative to {x,} is given as:

A(K, {x,}) = {x e X :r(x,{z,}) =r(K, {xn})}
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In a uniformly convex Banach space, it is well known that A(X, {x,}) consists of exactly one point.

Definition 14. A multivalued mapping T : K — P(K) is said to be demiclosed at y € K if
for any sequence {x,} € K weakly convergent to x and y, € Tx, strongly convergent to y, we
have y € Tx.

Definition 15 [31]. A multivalued mapping T : X — CB(X) is said to satisfy condition (I) i
a nondecreasing function f : [0,00) — [0,00) exists with f(0) = 0 and for all v > 0 then f(r) >0
such that d(x,Tx) > f(d(x, F(T)))), for all x € X, where

. F(T) = _inf_ [z~ 2],

Lemma 1 [15]. Let X be a nonempty subset of a Banach space 4 and T : KX — CB(X) be a
multivalued mapping. If T is a generalized a-nonexpansive mapping, then the following inequality
holds:

3
o, 9) < (752 ) da T + o=y, Ve

Lemma 2 [37]. Let {0,} be a nonnegative real sequence satisfying the following inequality:
9n+1 < (1 - O'n)ena

where o, € (0,1) for alln € N and

o0

E op = 00,

n=0

then

Lemma 3 [30]. Suppose ¥ is a uniformly convexr Banach space and {i,} is any sequence
satisfying 0 < p < 1, < q < 1 for alln > 1. Suppose {z,} and {y,} are any sequences of 4
such that

limsup [|z,,]| <b, limsup ||y,| <b
n—oo

n—oo

and
limsup |[¢pzn + (1 = tn)yn|| = b

n—oo

hold for some b > 0. Then lim ||z, —y,| = 0.
n—o0

Lemma 4 [32]. Let T: X — P(X) and
Pr(z) = {y € Tu: |z -yl = dlz, Tw)}.
Then the following are equivalent
(a) w e F(7);
(b) Py(x) = {z};
(c) x € F(Pg).

Moreover, F'(T) = F(Py).
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3. Stability result

In this section, we will show that the iterative algorithm (1.9) is w?-stable with respect to 7.

Theorem 1. Let X be a nonempty closed convex subset of a Banach space 4. Let
T: K — P(K) be a multivalued mapping and Py is a multivalued contraction mapping with [0,1).
Let {x,} be the iterative algorithm defined by (1.9), then {x,} converges to a fized point of T.

P roof In[21], the existence of the fixed point of Py is guaranteed. Now, we show that {x,, }
converges to some fixed point ¢. Using (1.9), we have

[sn = qll = [I[(1 = vn)@n + vnln — 4|
< (1 =vn)llzn —all + vnllln — 4|l
L —vn)l|lzn — gl + vnd(ln, Py(q))
1 —wp)[|zn — ql| + 07 (P (2n), Pr(q))
L —vn)l|lzn — qll + vndl|zn — gl
(L =)llzn — 4l

IN

IN N IA

(
(
(
=(1-uv,

[2n — all = [[(1 = un)ln + uphn — 4

< (1= up)|ln — gll + unllhn — 4

(1 = un)d(ln, Py(q)) + und(hn, Pr(q))

(1 = up) (P (), Pr(q)) + un I (Py(sn), Pr(q))
(1 —un)dllzn — qll + undllsn — ql|

6(1 = upvn(l = 6))llzn — 4l

IN

ININ N DA

lyn — all < (Pg(2n), P7(q))
< 5”271 - QH
< 52(1 — Unn(1 = 6))[|zn —ql|,

[Zn+1 —all = [1Gn — 4|
< H(P3(yn), Pr(q))
< 0llyn — gl
< 31— wnon(1 — ))ln — gl (31)

Since {up}, {vn} € (0,1) and 0 € [0,1), it implies that
(1 — upv,(1—9)) < 1.
Thus, (3.1) yields

1 = qll < 6°|zn — gl

< y*|lz1 - ql- (3.2)

Taking limit on both sides of the above inequality (3.2), we get lim ||z, —¢|| = 0. Indeed, § € [0,1)
n—oo
and so lim " = 0. U

n—oo
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We provide the following example to support our analytical proof in Theorem 1.

Ezample 1. Let X =
T: XK — P(X) by

[0,1] € 4 = R be endowed with the usual norm. Define an operator

x
Tz = [0, —} . 3.3
=05 (33)
Clearly, ¢ = 0 € Tz. Next we show that Pg is a multivalued contraction mapping with § = 1/4.
Now
x
Py = {yE‘J’x: |z — y| :d<x, {O,ZD}
feseiu=le3)
x
— T ey — g — _}
{y ceTe:z—y==x 1
= {y ceTr:y= —}
so that 1
A(Ta,Ty) < eyl

for all z,y € 7.
The iteration algorithm (1.9) associated with the mapping in (3.3) is as follows:

(3.4)

The following Table 1 and Fig. 1 show that lim = 0 = g € T« for different choices of real sequences
n—oo
{un} and {v,} in (0,1).

Table 1. Convergence behavior of iteration algorithm (3.3) for different choices of real
sequences{u,} and {v,} in (0,1).

Step | (3.3) with a

(3.3) with b

(3.3) with ¢

0.9000000000
0.0114257812
0.0001450539
0.0000018415
0.0000000234
0.0000000003
0.0000000000

N O O = W N

0.9000000000
0.0128906250
0.0001846313
0.0000026445
0.0000000379
0.0000000005
0.0000000000

0.9000000000
0.0123046875
0.0001682281
0.0000023000
0.0000000314
0.0000000004
0.0000000000

where a, b and ¢ stand for the cases

1
n+1’

Up = Up =

unzvn:2n+17
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respectively.
1 T T T T T
p
2
0.8 —k—3 i
0
S
< 0.6 i
=
c
Re]
® 04 _
2
0.2 b
0 K * *
4 5 6 7 8

Number of Iteration

Figure 1. Graph corresponding to Table 1.

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied. Then the iteration
algorithm (1.9) is w?-stable with respect to T.

Proof. Let {t,} €KX be an equivalent sequence of {z,}. Define a sequence {¢,} in RT by

€n = ”tn—l—l - mn”7

kn € (‘Pj'(gn)’
o = (1= 1) + tundly, Vn € N, (3.5)

cn = (1 —vp)tn + vprn,

where {u,} and {v,} are sequences in (0,1), m, € Py(ky,), kn € Ps(gn), ™ € Py(z,) and
dy, € Py(c,). Let ILm €, = 0, then from (1.1), (1.9) and (3.5), we have

[tns1 — all < [[tns1 = Zpgall + 01 — gl
< Ntnr = mnll + lmn — znga || + lznss — 4l
= en + [[mn — Gull + |T041 — 4|
< en + H(Pr(kn), Pr(yn)) + 201 — 4|
< €n + 0llkn — ynll + llZn1 — 4|
< en + 07 (P3(gn), Pr(zn)) + l2ns1 — 4l

S €n + 52Hgn - ZnH + Hxn-i-l - QH7 (3'6)
llgn — zall < (1 = upn)llrn — Lol + wnlldn — bl
< (1= up) (Py(tn), Pr(zn)) + unH(Py(cn), Pr(sn))
< (1 = up)dlltn — @pll + undllcn — snll, (3.7)
llcn — sull L—wvp)lltn — 2nl| + unllrn — 1|l

)
L —wvp)ltn — 2n| + un I€(Py(tn), Py(vs))
L —vp)|[tn — 2p|| + v0|tn — 24|
1 —vp(1 = 0)|ltn — xnll- (3.8)

<
<
<

o~ o~ o~ o~
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Using (3.6), (3.7) and (3.8), we get

ltnsr — all < €+ 85(1 = wnon(1 = 6))ltw — 2all + 201 — gl (39)
Since {t,, } € K and its equivalence to {z,} yields lim ||z, —t,|| = 0. We have shown in Theorem 1
n—o0
that lim ||z, — ¢|| = 0, consequently lim ||z, —q|| =0.
n—o0 n—o0

Thus, taking the limit on both sides of (3.9), we get
lim_||¢, — ¢l = 0.
n—o0

Hence, {x,} is w?stable with respect to T. O

We again support the analytical proof in Theorem 2 with the following example.

Ezample 2. Let X, 9 = R and T be same as in Example 1. Let {:U } o’ {xﬁf)};’ozo and

{xﬁf’)}fzo be iterative algorithms corresponding to (3.4) with control parameters

( 1 ) < 1 > ( n+1 n >
Up = Up = Up = Uy = Uy = —————— v, = ————
Y T o4 1)’ " o410 " n241
for all n € N, respectively.

It is shown in Example 1 that {xﬁf )}OO: converges to ¢ = 0 € Tz for each i € {1,2,3}. Clearly,

S I = ] Jgn, ) =0

for each i € {1,2,3}. Taking the sequence {t,}°, to be t,, = 1/(n +4) for all n € N, then we get
0< lim [|z@ —t,] < lim 2@ + Lim ||t,]| =0, foreach i€ {1,2,3},
n—00 n—00 n—o0

which shows that hm 2®) — t,|| = 0 for each i € {1,2,3}, in other words, each of {xn }n 0
i€{1,2,3} and
o 1 >
e e 2
are equivalent sequences.
Let eﬁﬂ), eg) and eg’) be corresponding sequences to the iterative algorithms {mﬁﬂ)};’io,

{xg)}f; and {x } o » respectively. Then we have

6(1)— 1 _1 1 n 1 1 n 1 1 n_ 1 n 1 1 1

no n—|—5 4 n+1 4 n+td n+1 4\n+1 n+td "n+l 4 n+4 ’
6(2) _ _1 1 2n 1 1 1 1 2n _ 1 n 1 1 1

o n+5 4\4\2n+1 4 n—i—4 m+1 4\2n+1 n+t4d 2n+1 4 nt4d ’

and

3) 1/1 (/n?-n+1 1 1 n 1 n 1 n+1 1 1

€ — —_ — + . + - — . .
" n—+ 4\a\Un2+1 4 n+4 n2+1 4\2n+1 ntd "2n+1 4 n+4a

Obviously, lim eg) = 0 for each i € {1,2,3}. Hence, all the iterative algorithms {ng)}oofo,
n—r00 n=
i €{1,2,3} are w?-stable with respect to T.

Remark 1.  Since the notion of w?-stability is more general the concept of simple stability
considered in [15, 24, 28], hence, our result improves and generalizes the corresponding in [15, 24, 28]
and several others.
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4. Convergence results

In this section, we will prove the weak and strong convergence results of our new iterative
algorithm (1.9) for multivalued generalized a-nonexpansive mappings in uniformly convex Banach
spaces.

Lemma 5. Let X be a nonempty closed conver subset of a real Banach space 4. Let
T: XK — P(K) be a multivalued mapping such that F(T) # () and Py is a generalized a-nonexpansive
mapping. Let {x,} be the iterative algorithm defined by (1.9), then lm |z, — q|| exists for all

n—oo

qge F(7).

Proof. Taking ¢ € F(7T), then from Lemma 4, we have P5(q) = {¢} and P(T) = F(Pq).
Since Py is a generalized a-nonexpansive mapping, we get

1
§d(q,3’7(Q)) =0= |z, —ql.

On the other hand,

H (Pr(wn), Pr(q)) < ad(wn, Pr(q)) + ad(q, Pr(2n)) + (1 = 20)||zn — ]|
< allz, — gll + @ (Py(q), Pr(wn)) + (1 = 2a)[lzn — g
< Hxn - QH

Similarly, for any ¢ € F(7), we obtain

(?T(yn)7?T(Q)) < Hyn - QHa
A (Py(2n), Pr(q)) < llzn — qll,
%(?‘T( n)7iP‘J'(Q)) < Hsn - QHa
A (Pr(Cn), Pr(q)) < [I6n —qll-

Now from (1.9), we have
80 = gl = I(1 = vn)zn + valn — 4|
< (I =wva)llzn — gl + onllén — 4l
(1 =wn)llzn = gll + vnd(ln, Pr(q))

IN

< (1 =vp)l|@n — q|| + v (Pr(zn), Pr(q))
< (1 =vn)llzn — qll + vallzn — 4l
=l ~ . b
Also,
l2n — gl = |(1 — un)ln + unhn —q
< (1 = up)lln — gl + unllhn — qll
< (1 = up)d(ln, Pr(q)) + tnd(hn, P (q))
< (1 = up) A (Pyr(20), Pr(q)) + un ' (Pr(sn), Pr(q))
< (1 —up)llzn — gl +unllsn — 4
< Jlan —qll. (42)
Again,

Hyn - QH < %(?‘I(Zn)a ?T(Q))
< |lzn — 4l
< lzn — ql|- (4.3)
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Finally,
[2nt1 =gl =[G —
< A (Py(yn), Pr(q))

< yn — 4|
<llzn —qll.

Thus, {||z, — ¢||} is bounded and non-increasing, which implies that lim ||z, — ¢|| exists for all
n—o0

q € F(7).

Lemma 6. Let X be a nonempty subset of a wuniformly convexr Banach space 4.

O
Let

T: XK — P(K) be a multivalued mapping such that F(T) # () and Py is a generalized a-nonexpansive

mapping. Let {x,} be the iterative algorithm defined by (1.9), then lim d(z,,Tz,) = 0.
n—o0

Proof. From Lemma 5, we have that li_>m |xr, — q|| exists for all ¢ € F(T). We suppose that
n—oo

lim ||z, —¢|| =0 forsome b>0.
n—o0

Now from (4.1), (4.2), (4.3) and (4.4), we have

limsup |[sn, — q|| < b,

n—oo
limsup ||z, —ql| < b,
n—oo
limsup ||y, —q|| < b
n—oo
and
lim |G, — gl < 0.
n—oo
Now, we have the following inequalities

limsup [|6, — g < limsup (Py(2y), Pr(q))
n—oo

n—o0

< limsup ||z, — q|| = b,

n—oo
limsup ||hn — ¢| < lim sup S (Pg(sn), Pr(q))
n—oo n—oo

< limsup |15, — gl < b
n—oo

and

limsup [|Gn, — ¢| < limsup (P (yn), Pr(q))

n—oo n—oo

< limsup ||y, — g <b.
n—oo
Using (1.9) and (4.4), we have
b= lim [lz,1 —gl| = lim [|¢, — ]

< lim 7(Px(yn), Pr(q))

< lim ||y, — 4|

n—oo
< 7111_{20%(?@(%),9’1((]))
<

lim |z, — g]|
n—00

= lim [|(1 = up)ln + tunhyn — ql|.

n—oo

(4.4)
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By Lemma 3, we have
lim ||4,, — hy| = 0.
n—oo

Again, from (1.9) we have

lzna1 —qll = [|¢n — 4|
< A (Pr(yn), Pr(q))
< |lyn — 4l

which gives
b < liminf ||y, — q]|.
n—o0
From (4.7) and (4.11), we obtain
lim {jy, — ql| = b.
n—o0
Again from (1.9), we have

lyn — qll < (Py(zn), Pr(q))
< |lzn — 4,

which yields
b <liminf ||z, — q||.
n—oo
From (4.6) and (4.12), we have
lim ||z, —q|| = 0.
n—oo
By (1.9) and (4.10), we get

Hzn - qH = ”(1 - un)gn + uphy — QH
< | — gqll + unllhn — £nl,

which gives
b < liminf ||£, — ¢||.
n—oo

Using (4.9) and (4.13), we have

lim |4, — g =b.
n—oo
Also,
1€n = qll < [[€n = | + [|Pr — gl
< ”gn - hn” + %(T‘T(sn)7?‘7(q))
< |ln = hall + [[hn — 4l
gives

b < liminf ||s, — q||.
n—oo

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



A Robust Iterative Approach for Solving Nonlinear Volterra Delay 73

From (4.5) and (4.14), we obtain

lim [|s, —¢|| = 0.
n—oo
Finally, from (1.9), we have
lim s, —gf| = lim [[(1 = vn)(zn = ¢) +on(ln = g)l| = b. (4.15)
n—oo n—oo

Now, due to (4.4), (4.9), (4.15) and Lemma 3 we obtain
lim ||z, — ¢,| = 0. (4.16)
n—o0

Since d(xy, Txy) < ||zn — lnl|, we get

lim d(x,,Tx,) = 0.

n—oo

O
Next we prove weak convergence of the iterative algorithm (1.9) to the fixed point of multivalued
generalized a-nonexpansive mapping.

Theorem 3. Let K be a nonempty subset of a uniformly convexr Banach space G which satisfies
Opial’s condition. Let T : KX — P(X) be a multivalued mapping such that F(T) # 0 and Py is a
generalized a-nonexpansive mapping. Let I — Py be demiclosed with respect to zero and {x,} be the
iterative algorithm defined by (1.9), then {x,} converges weekly to a fized point of T.

Proof. Letqe F(T)= F(Py). From Lemma 5 we have that lim |z, — ¢|| exists. Now we
n—oo

show that the sequence {z,} has a unique weak sequential limit in F'(T). To prove this, let p; and
p2 be weak limits of the subsequences {z,,} and {z,,} of {z,}, respectively. From (4.16), there
exists ¢, € Tx, such that nh_)n;O |zy, — £n|| = 0. Therefore, from the demiclosedness of I — Py with
respect to zero, we have p; € F(T) = F(Pgy). Following the same method of proof, we can show
that ps € F(7). Next, we prove uniqueness. To show this, suppose that p; # pe, then from Opial’s
condition we obtain

lim ||z, —p1]| = lm ||z, — p1]]
n—00 n;—00
< lim ||zp, — p2l|
N;—» 00
= lim ||z, — p2
n—oo

= Tim_7a, 2l

< lim g, —pi
N —00

= lim ||z, — pall;
n—00

which is a contradiction, so p; = py. Hence, {z,} converges weakly to a fixed point of 7. O

Furthermore, we state and prove strong convergence theorems of the new iterative algo-
rithm (1.9) for multivalued generalized a-nonexpansive mappings.

Theorem 4. Let K be a nonempty closed convex subset of a real Banach space &4. Let T :
K — P(X) be a multivalued mapping such that F(T) # () and Py is a generalized a-nonexpansive
mapping. If {x,} be the iterative algorithm defined by (1.9), then {x,} converges strongly to a fized
point of T if and only if linniigf d(xn, F(T)) = 0.
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Proof. The necessity is obvious. Conversely, assume that liminfd(z,, F(T)) = 0. By

n—oo
Lemma 5, it is proved that

[2n+1 = all < [l — gl
This yields
d(wns1, F(T)) < d(zn, F(T)).
Thus lim inf d(z,, F'(T)) exists. By hypothesis,

n—oo

liminf d(z,,, F(T)) =0

n—oo

so we must have

lim d(z,, F(T)) =0.

n—oo
Next, we prove that the sequence {z,} is Cauchy in K. We choose arbitrary ¢ > 0. Since
lim d(z,, F(T)) = 0, then there exists ng such that for all n > ny.

n—oo

d(z,, F(T)) <

=~ o

Particularly,
. €
inf{{|zn, —qll - g € F(T)} < 7,

so an element p € F(T) must exist such that
€
00— all <
Now for n, s > ng, we have
€
[@nts = @all < l@nts = Pl + 20 =Pl < 2wng —pl <2(35) =<

Hence, {z,} is the Cauchy sequence in the closed subset X of the Banach space ¢. It follows

that {z,} must converge in K. Now let lim z, = p*, then from Lemma 1 we obtain
n—oo

d(p*, Pr(p*)) < llen = p*ll + d(wn, Py (p))

. 3+«
< flew =11+ (3
—

) d(xp, Pr(xn)) + |Jzn — 2| =0 as n — oc.

This implies that p* € Py(p*) and p* € F(Pg). From Lemma 4, we have p* € F(Pg). Hence, {x,}
converges strongly to a fixed point of 7. O

Theorem 5. Let KX be a monempty compact conver subset of a uniformly convexr Banach
space 4. Let T : KX — P(XK) be a multivalued mapping such that F(T) # O and Py is a gener-
alized c-nonexpansive mapping. Suppose {x,} is the iterative algorithm defined by (1.9), then {x,}
converges strongly to a fized point of 7.

Proof. By Lemma 5, we know that {z,} is bounded and lim d(z,,Tx,) = 0. Since X is
n—o0

compact, it follows that a subsequence {zy,} of {z,} exists such that z,,, converges to some y € X.
Since Py is a multivalued generalized a nonexpansive mappings, then from Lemma 1 we obtain

d(zy,, Pr(y)) < <i) T

Again, since F(T) = F(Pg), by taking the limit as ¢ — oo, we have that y € Ty. Hence, {z,}
converges strongly to y € F(7T). O

) d(xmv‘j(xm) + Hxnz - y”

—
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Theorem 6. Let K be a nonempty closed convexr subset of a real Banach space 4. Let
T: XK = P(K) be a multivalued mapping satisfying condition (I) such that F(T) # 0 and Py is
a generalized a-nonexpansive mapping. If {x,} be the iterative algorithm defined by (1.9), then
{xn} converges strongly to a fized point of T.

Proof. From Lemma 5, lim |z, — ¢| exits for all ¢ € F(T) and therefore {z,} is bounded.

n—o0
Let lim |z, — ¢|| = b for some b > 0. If b = 0, then the result follows trivially. Suppose b > 0,
n—o0

then by Lemma 5 we have

[ent1 =gl < llan — 4
which gives

inf ||z — < inf ||z, —q|.
nt e —all < inf s =l

It follows that
A(@ns1, FT)) < d(wn, F(T)),

so lim d(zy, F (7)) exists. From condition (/) and Lemma 6, we get
n—oo

lim f(d(x,, F(7))) < lim d(z,,Tz,) =0.

n—oo n—oo

Since f is a nondecreasing function and f(0) = 0, it follows that li_>m d(xy, F(T)) = 0. Conclusion

of the result follows from Theorem 4. O

5. Numerical Experiment

In this section, we give an example of a multivalued generalized a-nonexpansive mapping which
does not satisfy condition (C'). We will also compare the convergence of our new iterative algorithm
with the iterative algorithms (1.2)—(1.6) using the provided example.

Ezample 3. Let (R,|| - ||) be a normed space with the usual norm and KX = [2,4]. Define

T: K — P(X) as:
T+ 2 .
_— P”?Ti’ﬁ z € 2,3,
2, if x € (3,4].
Then T is a multivalued generalized a-nonexpansive mapping, but T does not satisfy condition (C).

First, we show that T is a multivalued generalized 1/3-nonexpansive mapping. For this, we
consider the following possible cases:

Case (a): If z,y € [2, 3], then

ad(Ta,y) + adTy.a) + (1= 2l ~yll = | 52— + 3 |52 ~al + 3lo -]
132z 3z 1
Z312 2|ty
1 1
:§\m—y!+§\x—y!
> Lo~y
-2

=7 (Tx,Ty).
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Case (b): If z € [2,3] and y € (3,4], we obtain

ad(Ta,y) + ad(Ty.a) + (1= 2l ~yll = 3| 52 =] + glo =2+ gl ol
> Eer——'Jrllﬂc—y\
— 3|2 2 3
SUTN T
— 312 2 3
1
~ L2
2
= 7 (Tx, Ty).

Case (c): If z,y € (3,4], then we have
d(Ty, ) + ad(Ty, z) + (1 = 2a) ||z — y[| = 0 = (T2, Ty).

Hence, T is a multivalued generalized 1/3-nonexpansive mapping.
Next we show that T does not satisfy condition (C'). Now, take x = 29/10 and y = 19/6, then
we obtain

29 29 9 16
= |z —yl.

1

Sd(z,Tr) = (=, T2 ) = = < = =

g i@, Tz) (10’ 10) = 10 < 60
But,

9 16
H (T, Ty) = 2060 |z —yl.

Hence, T does not satisfy condition (C).
Finally, we will now show that P is a multivalued generalized a-nonexpansive mapping. Note
that ¢ = 2 € Tz. We consider the following cases:

Case (I): If z € [2, 3], then

ye‘Ix:!y—x!:d<x7 [1736;2])}

x—i—Q‘}
2

Pq

yG‘.Tﬂ::|y—x|:‘:c—

m—Q‘
2

-2
yEU‘x:x—y:‘x2 ‘}

x+2}
5 .

{
{
{yE‘.Tx:|y—x|:‘
{

= {y ceJr . y=
Case (II): If x € (3, 4], then we get

Pr={y €T : |y — =z = d(z,{2}}
={yeTe:ly—a|=|r—-2[}
={yeTr:zc—y=a-2}
={yeTe:y=2}

Following the same argument as those in Example 3, one can easily show that P is a multivalued
generalized a-nonexpansive mapping.
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With the aid of MATLAB (R2015a), we will use the above example to show that our new
iterative algorithm (1.9) converges faster than the iterative algorithms (1.2)—(1.6) and the com-
parison Table 2 and Fig. 2 are obtained for various iterative algorithms with control sequences
Up = vy, = t, = 3/4 and initial guess g = 4.

Table 2. Comparison of speed of convergence of our new iterative algorithm (1.9) with
Mann, Ishikawa, S, Thakur, Picard-Ishikawa iterative schemes.

Iteration number

Figure 2. Graph corresponding to Table 2.

Step Mann Ishikawa S Thakur | Picard-Ishikawa New
1 | 4.0000000 | 4.0000000 | 4.0000000 | 4.0000000 4.0000000 4.0000000
2 | 3.2500000 | 2.9687500 | 2.7187500 | 2.6054688 2.4843750 2.1796875
3| 2.7812500 | 2.4692383 | 2.2583008 | 2.1832962 2.1173096 2.0161438
4 | 24882813 | 2.2272873 | 2.0928268 | 2.0554901 2.0284109 2.0014504
5 | 2.3051758 | 2.1100923 | 2.0333596 | 2.0167987 2.0068808 2.0001303
6 | 2.1907349 | 2.0533259 | 2.0119886 | 2.0050856 2.0016664 2.0000117
7 | 2.1192093 | 2.0258298 | 2.0043084 | 2.0015396 2.0004036 2.0000011
8 | 2.0745058 | 2.0125113 | 2.0015483 | 2.0004661 2.0000977 2.0000001
9 | 2.0465661 | 2.0060602 | 2.0005564 | 2.0001411 2.0000237 2.0000000
10 | 2.0291038 | 2.0029354 | 2.0002000 | 2.0000427 2.0000057 2.0000000
11 | 2.0181899 | 2.0014218 | 2.0000719 | 2.0000129 2.0000014 2.0000000
12 | 2.0113687 | 2.0006887 | 2.0000258 | 2.0000039 2.0000003 2.0000000
13 | 2.0071054 | 2.0003336 | 2.0000093 | 2.0000012 2.0000001 2.0000000
14 | 2.0044409 | 2.0001616 | 2.0000033 | 2.0000004 2.0000000 2.0000000
15 | 2.0027756 | 2.0000783 | 2.0000012 | 2.0000001 2.0000000 2.0000000
16 | 2.0017347 | 2.0000379 | 2.0000004 | 2.0000000 2.0000000 2.0000000
17 | 2.0010842 | 2.0000184 | 2.0000002 | 2.0000000 2.0000000 2.0000000
18 | 2.0006776 | 2.0000089 | 2.0000001 | 2.0000000 2.0000000 2.0000000
19 | 2.0004235 | 2.0000043 | 2.0000000 | 2.0000000 2.0000000 2.0000000
% ‘
3.8 —e—gicard-lshikawa ]
T v
3611 —g— Thakur
341
321
5
E 28
26
241
22
ol
2 4 (; 2; 1‘0 1‘2 1‘4 1‘6 1‘8 20
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6. Application

Existence theorem for fixed points of an operator is concerned with establishing sufficient condi-
tions in which the operator will have solution, but does not necessarily show how to find it. On the
other hand, the iteration method of fixed points is concerned with approximation or computation
of sequences which converge to the solution of such operator.

In this section, we will approximate the solution of nonlinear Volterra delay integro-differential
equations by utilizing the following iterative algorithm recently introduced by Ofem et al. [24]:

zg € K,

Sn =1 —vp)zy + v, Txp,

zn = (1 —up)Txy, + uyTsp, Vn > 1, (6.1)
Yn = T'zp,

Tnt1 = TYn,

where {u,} and {v,} are sequences in (0, 1).

Remark 2. We remark that the iterative algorithm (1.9) is the multivalued conversion of the
iterative algorithm (6.1). It is shown in [24] that the iterative algorithm (6.1) has a better speed of
convergence than S [3], Picard-S [12], Thakur [34] and M [36] iteration processes for single-valued
generalized a-nonexpansive mappings.

In particular, we will be interested in the following nonlinear Volterra delay integro—differential
equation (VDIE):
t
2'(t) = f(t,x(t),x(ﬁ(t)),/ p(t,s,x(s),m(ﬁ(s)))ds), tel, (6.2)
0
z(t) =¢(t), te[-r0], (6.3)

where I = [0,k], k> 0 and ¢ € C([-r,0], R).

A function z € C([r,k],R) N C'([0,k],RN) that satisfies the equations (6.2)—(6.3) is called a
solution of the initial value problem (6.2)—(6.3).

Suppose that the following conditions are performed:

(My) Let f € C([0,k] x R3,R), p € C([0,k] x [0,k] x R2,R) and h € C([0, k], [~7,k]) be such that
h(t) < t.

(M) There exists constants Lf, L, > 0 such that

|f(taﬁ1’ﬂ2’ﬁ3) - f(t, blabQ’b3)| < Lf(ml - b1| + |ﬁ2 - b2| + |ﬁ3 - b3|)a
lp(t, 5,81, 82) — ©(t,8,b1,b2)| < Lp(|f1 — b1] + |2 — b2])

forall t,s € I, t;,b; € R (i = 1,2,3).
(Mg) k‘Lf[Q —|—Lfk‘] < 1.

4 e function ¢ : [—r, k] — is positive, nondecreasing and continuous an ere exists
M) The functi k Ry i iti d ing and ti d th ist
4 > 0 such that

/0 " (s)ds < d0(t), € [0.K].
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Clearly, from assumption (M), the initial value problem (6.2)—(6.3) is equivalent to the following
integral equations:

s

z(t) = ¥(0) + /Ot f<s,x(s),x(ﬁ(s)),/0 p(s,T,m(T),x(ﬁ(T)))dT)ds, tel,

x(t) =y(t), te[-r0].
The following existence result for initial value problem is due to Kucche and Shikhare [18].

Theorem 7. If the assumptions (M;)—(My) hold, then the problem (6.2)—(6.3) has a unique
solution and the equation (6.2) is generalized Ulam—Hyers—Rassias stable with respect to the func-
tion .

We now present our main result in section.

Theorem 8. Let {x,} be the iterative procedure (6.1) with w,,v, € (0,1) such that
Yoo UnVy = 00. Suppose that the conditions (My)—(Ms) are fulfilled. Then the initial value
problem (6.2)~(6.3) has a unique solution, say, q in C([r,k],®) N C"([0,k],R) and {x,} converges
to q.

P roof. Consider the Banach space 4 = C([—r, k|, R) with Chebyshev norm || - ||c. Let {z,}

be an iterative sequence generated by the iteration process (6.1) for the operator T : 4 — ¢ define
by

Tx(t):¢(0)+/0 f(s,x(s),:ﬂ(ﬁ(s))’/osp(S,T,g;(q-),x(ﬁ(T)))dT)ds, tel,
Ta(t) = (1), t€[-r0].

Let ¢ stand for the fixed point of 7. We now prove that x, — ¢ as n — oo. It obvious that for
te[-r0], z, — qasn — oo. Next for t € I, we get

[sn — all = |1 = vp)xn + v T2y — Tq||
< (1 = wvp)llzn — qll + vn || T2y — Tql|
= (L —on)|an(t) — q@)] 4 va|T(2n)(t) — T(q)(?)]
= (L —on)|an(t) — q(t)]

+ v, |(0) 4+ /Otf(s,xn(s),xn(ﬁ(s)),/os p(s,T, xn(T),xn(ﬁ(T)))dT>

000 = [ £(s.a)ath6D). [ ol atr).athtr))ar)
< (1 - Un)|xn(t) - Q(t)|

+ v /0 Ly{ mae foa(d) = qld)] + mas [ (i) - a(h(d))

0<d; <

0<d2<

< (1= vn)ln(t ) —q(t)|

+vn/0th{ max |z, (di) — q(di)|+ max |z, (1) — q(m1)]

+/0st[ max [on(da) — q(da)| + s [on(h(da) — a(h(da)) ] dr b

—r<di1<k —r<n <k

—r<d2<

—i—/o L, max i |z (d2) — q(d2)| + _max |z (12) — q(Tg)HdT}ds
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IN

t s
(1= valllen = allc +vn | Le{2len —dlle+2 [ Lollen — dllodr s
0 0

(1 = vp)llzn = gllc + vnkLy(2 4+ Lok)|lzn — qllc
[1—vn(1 = kLf(2+ Lok))] |zn — qllc;

I IA

lzn = all < (1 = un)[[Tzn = Tql| + unl|Tsn — T4

[ 1(ssratermathisn, [

B /Otf(s,q(s),q(ﬁ(s)),/os o(s, 7, q(T),q(ﬁ(T)))dT)

=(1—-up) p(s,T, xn(T),xn(ﬁ(T)))dT>

p(s, T, 8n(7), Sn(ﬁ(T))) dq-)

B /Ot f(s, q(s), q(A(s)), /Os o(s,7,q(7), q(ﬁ(T)))dT)

< (1) / Ly{ max Joa(d) = gld)] + max [oa (i) — a(h(dr))

+ /Os Lp[ogcllax |zn(d2) — q(do)| + onax |z, (R(d2)) — q(ﬁ(dg))”dT}dS

s [ L s [sa) = ala)] + mas s (i) = a(i)|

+ /OS Lp[ogéax |sn(d2) — q(da2)| + pnax |sn(R(d2)) — q(ﬁ(dg))”dT}dS

g(l—un)/o Lf{ max |z, (dy) —q(di)| + max_ ‘xn(Tl)_q(Tl)’

—r<di1<k —r<71

[ Lol fon(d) =)+ [on () = a()Jdr s

t
o [ L ma Jsala) = o)+ _max [sn(m) = a(n)

—|—/0st[ max. |sn(d2)—q(d2)|—i— max |5n(7'2)—q(7'2)|]d7'}d8

—7’<d 7’< 2<

<(1-un) /O Lr{2lan —alc+2 [ Lolle, - alcdr s

t s
s [ Le{2lsn—dle +2 [ Lollsn —alcdr s
0 0

< (1= up)kLp(24 Lok)||zn — qllc + unkL(2 4+ Lok)|sn — g¢llc
= kL(2+ Lok) [(1 = un)||zn — qllo + unllsn — qllc];

l2n = qll = [[Tzn — T4qll

[ 1 (st [

_ /Ot f(S,Q(S)7Q(ﬁ(8)), /O s p(s,T,q(T),q(h(T)))dT>

< [ nef s () = )|+ [z (i) = aCha)

s

p(s, 7, 2n(T), zn(ﬁ(T))) dr)

(6.5)
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o [ Lol mas Jaa(d) — atda)] + Lo (hld) - a(hld)Jar s

t
< [ ref e Jenla) = a@)l+_max n(m) =gt

—r<di1<k

+/OS Ly max |zn(d2) —q(da)| + n<1ax< |2 (T2) —q(Tg)HdT}ds

77’<d2
t s
< [ 2el2lm—dle +2 [ Lollz— alcdr s
0 0
< KL;(2 4 Lokl — e (6.

201 — gl = | Tyn — T4
_ ‘/0 f(s,yn(s),yn(ﬁ(s)),/os@(S’Tayn(T)’y”(ﬁ(T)))dT>
- /Otf(s,Q(S),Q(ﬁ(S)),/OS@(SaT’Q(T)’Q(ﬁ(T)))dT)‘

< / Lf{ogldax () = a(d)| + mas [y () — a(i(d))

+

ol maxlyn(d) = a(da)] + max [yn(hi(da)) — a(h(d2)]dr s

Lf _juax lyn(d1) — q(d1)| + _max |y (1) — a(71)]

IN

+

\_,o\..o\_,o\..

L e Jyn(da) —q(dr)| +_max Jyn(72) — a(m2)[]dr s

S
(ol —alle +2 [ Lol allcdr} i

k‘ L2+ Lok)llyn — dllc- (6.7)
Using (6.4), (6.5), (6.6) and (6.7), we get
lzns1 = gl < [FLp(2 + Lok)P[1 = unva (1 = kL§(2 + Lok))]l|zn — gllc-

Using assumption (Ms), we obtain

[Zn1 = qll <[ = upon(1 = KL§(2 4 Lok))]ll2n — dlle- (6.8)
Now define

on = upvp(1 —kLf(24+ Lok)) <1
then o, € (0,1) such that ) ° 0, = oo and set 0,, = ||z, — ¢||c. Then (6.8) can be rewritten as
0n+1 = (1 — O'n)(g

Therefore, all the conditions of Lemma 2 are satisfied. Hence, lim |z, —¢|| = 0. O
n—oo

Now, we furnish the following example in support of the above claims in Theorem 8.

Ezample 4. Consider the following nonlinear delay Volterra integro-differential equations:

2 =1+ t“’;(;) - mg“)) + % /O %[ﬂc(s) — o(h(s))ds, te 0,3,
z(t) =0, te[-1,0],

where A(t) = t/3, t € [0,3]. Obviously, we have that h(t) =t/3 <t, t € [0,3].
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(i) Define p:10,3] x [0,3] x & x R — R by

p(t,s,x(s),2(h(s))) = z[z(s) —x(A(s))], ¢ s€]0,3].

1
)
Then for t,s € [0,3] and ;,b; € R (i = 1,2), we have

|p(t’5’ﬂl’ﬁ2) - p(t’S,blyb2)| < (Hil - b1| + Hj? - b2|)

o] =

(ii) Define f:[0,3] x R x R x R — R by

f(vate).atue). |
te(t)  Ttz(h(t)) 1 [t1
25 50 10/0

te(t)  Tta(A(t) | 1

25 50 +E/O p(t,s,x(s),z(h(s))ds, t€[0,3].

=14+

=1+

Then, for any t,s € [0,3] and #;,b; € R (i = 1,2, 3), we have

1 7 1
|f(t, 81,82, 83) — f(t,b1,02,b3)] < %Iﬁl —bo| + %Hb — bl + E|ﬁ3 — b3

7
< w51 =2+ B2 = b2| + |23 — bs]).
Thus the above defined functions f and @ satisfy the assumptions (A/;) and (Mz) with Ly = 7/50,
L, =1/10. Further, we see that

7 1 483

=2 <1
50 10) = 500 ©

Thus condition (M3) holds. Now, if we take u,, = n/(n + 1) and v,, = 1/n, it follows that

oo
g UpUp = OO.
n=0

In addition, we notice that the exact solution of the problem (6.2)—(6.3) is the function

t, if telo,3],
a(t) =
0, if te[-1,0].

Indeed, for z(t) =t, ¢t € [0,3] and h(t) =t/3, t € [0, 3], we get

te(t) Ttz(h(t) | 1

b1 2 1 [t s
1 S qa(s) — a(h(s)ds=14+———— 4+ = [ = [s—Zldas=1=2'().
35 50 +5/0 o (#(8) — @(Als))Jds=1+5 150+5/0 10 [5 3] s z(®)

Thus, all the conditions of Theorem 8 are fulfilled. Hence, Theorem 8 is applicable.
Remark 3. For any fixed r > 0, define

mt)=t—r, tel0k].
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Then we get the following special case of the Problem (6.2)—(6.3) as follows:

Z(t) = fi <t,x(t),x(t —r), /Ot p1(t, s, z(s),z(t — r))ds), t €0, k], (6.9)
xz(t) =¢(t), te[-r0], (6.10)

which is the initial value problem for a nonlinear Volterra integro—differential equation.

The approximation of solution the problem (6.9)—(6.10) has been studied by several authors for
p1(t,s,z(s),z(t —r)) = 0 (see for example [4, 9, 12, 23, 25-27] and the references there in). Hence,
our result in Theorem 8 generalizes the corresponding results in [4, 9, 12, 23, 25-27] and several
others.

7. Conclusion

In this paper, we have studied the stability result of our newly introduced iterative algo-
rithm (1.9) for a wider concept of stability known as w?-stability instead of the simple notion
of stability considered in [15, 24, 28]. A numerical example is also used to support the analytical
proof of our stability theorem. We have also proved the weak and strong convergence theorems
of our new iterative algorithm (1.9) for fixed points of multivalued generalized a—nonexpansive
mappings. In addition, a numerical experiment was also carried out to illustrate the advantage
of our iterative method over some well known iterative methods in the literature. Further, as ap-
plication of our new iterative algorithm (1.9), we approximated the solution of nonlinear Volterra
delay integro-differential equations (6.2)—(6.3). A nontrivial example of a nonlinear Volterra de-
lay integro-differential equation which satisfies all the mild conditions used in obtaining our re-
sult has been provided. We have also seen that the class of delay differential equation studied
in [4, 9, 12, 23, 25-27] is a special case of the class nonlinear Volterra delay integro-differential
equation considered in this article. Hence, our results generalize, improve and unify the corre-
sponding results in [4, 9, 12, 15, 23-28] and several others in the existing literature.
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Abstract: Let G = (V, E) be a simple graph and H be a subgraph of G. Then G admits an H-covering,
if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a,d) — H-antimagic
total labeling of G is bijection f : V(G) U E(G) — {1,2,3,...,|V(G)| + |E(G)|} such that for all subgraphs
H' of G isomorphic to H, the H' weights w(H') = 37, cv (g f(v) + Xecpnr) f(e) constitute an arithmetic
progression {a,a + d,a + 2d,...,a + (n — 1)d}, where a and d are positive integers and n is the number
of subgraphs of G isomorphic to H. The labeling f is called a super (a,d) — H-antimagic total labeling if
F(V(G)) =1{1,2,3,...,|V(GQ)|}. In [5], David Laurence and Kathiresan posed a problem that characterizes the
super (a,1) — Ps-antimagic total labeling of Star Sy, where n = 6,7,8,9. In this paper, we completely solved
this problem.

Keywords: H-covering, Super (a,d) — H-antimagic, Star.

1. Introduction

Let G = (V(G),E(G)) and H = (V(H),E(H)) be simple and finite graphs. Let |V (G)| = vg,
|E(G)| = eq, |V(H)| = vy and |E(H)| = eg. An edge covering of G is a family of different
subgraphs Hy, Hy, Hs, ..., Hy, such that any edge of E(G) belongs to at least one of the subgraphs
H;, 1 < j < k. If the H}s are isomorphic to a given graph H, then G admits an H-covering.
Gutienrez and Lladé [2] defined H—magic labeling, which is a generalization of Kotzig and Rosa’s
edge magic total labeling [4]. A bijection f: V(G)U E(G) — {1,2,3,...,vg + eq} is called an H-
magic labeling of G if there exists a positive integer k such that each subgraph H’ of G isomorphic

to H satisfies
= > W+ D fle

veV (H') e€E(H')

In this case, they say that G is H-magic. When f(V(G)) = {1,2,3,...,vg}, we say that G
is H—super magic. On the other hand, Inayah et al. [3] introduced (a,d) — H-antimagic total
labeling of G which is defined as a bijection f: V(G)UE(G) — {1,2,3,...,vg + e} such that for
all subgraphs H' of G isomorphic to H, the set of H'-weights

= > fw+ Y. fe

VeV (H) ecE(H')

constitutes an arithmetic progression a,a + d,a + 2d,...,a + (n — 1)d, where a and d are some
positive integers and n is the number of subgraphs isomorphic to H. In this case, they say that
G is (a,d) — H—antimagic. If f(V(G)) = {1,2,3,...,vg}, they say that f is a super (a,d) — H-
antimagic total labeling and G is super (a,d) — H-antimagic. This labeling is a more general case of
super (a, d)-edge-antimagic total labelings. If H & K5, then we say that super (a, d) — H-antimagic
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labelings, which is also called super (a, d)-edge-antimagic total labelings and have been introduced
in [6]. They studied some basic properties of such labeling and also proved the following theorem.

Theorem 1 [3]. If G has a super (a,d) — H-antimagic total labeling and t is the number of
subgraphs of G isomorphic to H, then G has a super (a’,d) — H-antimagic total labeling, where
a =|[(vg+ 1Dvg + (2ug + eqg + Deg| —a— (t — 1)d.

Several authors are studied antimagic type labeling of graphs see [1]. In 2015, Laurence and
Kathiresan [5] obtained an upper bound of d for any graph G, and they investigated the existence
of super (a,d) — Ps-antimagic total labeling of star graph S,,. First, they observed that S,, admits
a Pp—covering for h = 2,3, and the star .S,, contains

=(2)

subgraphs Py, h = 2,3, which is denoted by P}{, 1 < j < h. In 2005, Sugeng et al. [7] investigated
the case h = 2 using super (a,d)-edge-antimagic total labeling. In 2015, the case of h = 3 was
investigated by Laurence and Kathiresan [5]. Here they observed that if the star S,,,n > 3 admits a
super (a,d)— Ps-antimagic total labeling then d € {0, 1,2}. Now, they proved the star S, n > 3 has
super (4n + 7,0) — Ps-antimagic total labeling and Sy, n > 3 admits a super (a,2) — Ps-antimagic
total labeling if and only if n = 3. Also, they proved the following theorems and posed a problem.

Theorem 2 [5]. If the star S,, n > 3 has super (a,1)-Ps-antimagic total labeling, then
3 <n <9. Moreover, the star S, admits a super (a,1)-Ps-antimagic total labeling, where a = 19,
forn=3 and a = 21, for n = 4.

Theorem 3 [5]. For n =5, the star S, has no super (a,1)-Ps-antimagic total labeling.

Problem 1. [5] For eachn,6 <n <9 characterize the super (a,1)— Ps-antimagic total labeling
for the star S,.

In this paper, we present the complete solution to the above problem.

2. Main Results

Let S, = K1 ,,n > 1 be the star graph and let vy be the central vertex and let v;,1 <i < n be
its adjacent vertices. Thus S;, has n + 1 vertices and n edges.

Theorem 4. The star Sg has no super (a,1) — Ps-antimagic total labeling.

Proof. Let V(Ss) = {vo,v1,v2,v3,v4,v5,06} and E(Sg) = {vov1, vova, Vovs, Vov4, UoVs, VoUs }
be the vertex set and the edge set of Star Sg. Suppose there exists a super (a,1) — Ps-antimagic
total labeling f : VUE — {1,2,3,...,13} for Sg and let vy be the central vertex of Sg. In the
computation of P3 — weights the label of the central vertex vy, f(vg) is used 15 times and label of
other vertices and edges say ¢ are used 5 times each. Therefore,

13 15
10f(vo) +5 > (i) = - [20+14],
=1

which implies a = (70 4+ 2f(vp))/3. Since 1 < f(vg) < 7, it follows that a = 24 if f(vg) =1, a = 26
if f(vg) =4 and a = 28 if f(vg) = 7.
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Figure 1. There is no possible to obtain Ps-weight 27.

Case (i): f(vg) = 1. Then a = 24 and the P; — weights of Sg are given by W =
{24,25,...,38}. Now, the P3 — weight 24 is getting exactly two possible 5 elements sum
(1,2,4,8,9) or (1,2,3,8,10) and hence the label of edges e; = vyv; and es = wvovg or vove is
f(e1) =8 and f(e2) =9 or 10.

Subcase (i): f(ea = vovs) = 9. Then a = 24 and hence the label of the vertices and edges
are f(vo) = 1, f(v1) = 2, f(vs) = 4, f(ex = vov1) = 8 and f(ea = vovs) = 9. Now, the P3 —
weight 25 is getting exactly one possible 5 elements sum (1,2,3,8,11) and hence the label of an
edge e3 = vgvy is f(esz) = 11. Also,the P3 — weight 26 is getting exactly one possible 5 elements
sum (1,2,5,8,10) and hence the label of an edge eq = vgvy is f(eq) = 10.

Let x = vgvs and y = vovg be two edges of Sg (see Fig. 1). Clearly, the label of the edges x and
yis f(z) =12 or 13 and f(y) = 13 or 12. If f(z) = 12 then f(y) = 13 and hence there is no P;
— weight 27. Also, if f(z) = 13 then f(y) = 12 and hence there is no P; — weight 27, which is a
contradiction.

A similar contradiction arises, if the edges e; = vov; and e3 = vgvg with f(e; = 9) and f(e2) =8
for the P3 — weight 24 is used to getting the P3 — weight 27.

Subcase (ii): f(e2 = vov2) = 10. Then a = 24 and hence the label of the vertices and edges
of Py — weight 24 is f(vg) = 1, f(v1) = 2, f(v2) = 3, f(e1 = vov1) = 8 and f(e2 = wvgvy) = 10.
Now, the P3 — weight 25 is getting exactly one possible 5 elements sum (1,2,5,8,9) and hence the
label of an edge es = vovy is f(eg) = 9. Also, the Py — weight 26 is getting exactly one possible 5
elements sum (1,2,4,8,11) and hence the label of an edge e4 = vovz is f(eq) = 11. Let z = vgvs
and y = vovg be two edges of Sg (see Fig. 2). Clearly, the label of the edges z and y is f(x) = 12
or 13 and f(y) = 13 or 12. If f(x) = 12 then f(y) = 13 and hence there is no P; — weight 27.
Also, If f(z) = 13 then f(y) = 12 and hence there is no P; — weight 27, which is a contradiction.

A similar contradiction arises, if the edges e; = vpv; and es = wvove with f(e;) = 10 and
f(e2) = 8 for the P; — weight 24 is used to getting the P35 — weight 27.

Case (ii): f(vg) = 7. Then a = 28. Now, if f is a super (28, 1) — Ps-antimagic total labeling of
Sg, then by Theorem 1 [3], f is a super (24, 1) — Ps-antimagic total labeling, which does not exist
by Case (i).

Case (iii): f(vg) = 4. Then a = 26 and hence the P; — weights of Sg are given by W =
{26,27,...,40}. Now, the P; — weight 26 is getting exactly four possibles 5 elements sum such as
(4,1,2,8,11), (4,1,2,9,10), (4,2,3,8,9) and (4,1,3,8,10) and hence the edges e; = vgv; or vyvy
and ey = vouy or vovg with f(e;) =8 or 9 and f(e2) =9 or 10 or 11.

Subcase (i): f(e; = vov1) = 8 and f(ea = vovz2) = 11. Then a = 26 and hence the label of
the vertices and edges of P3 — weight 26 is f(vg) = 4, f(v1) = 1, f(v2) = 2, f(e1 = vov1) = 8 and



Note on Super (a, 1) — Ps-antimagic Total Labeling of Star S, 89

Figure 2. The possible edge labels = and y are obtain Ps-weight 27.

Figure 3. There is no possible to obtain Ps-weight 30.

f(e2 = vgve) = 11. Now, the P; — weight 27,28 and 29 are getting exactly one possible 5 elements
sum (4,1,5,8,9),(4,1,3,8,12) and (4, 1,6, 8,10). Hence the label of the edges es = vgvs, €4 = vgvy,
es = vous and eg = vovg is f(es) =12, f(eq) =9, f(e5) = 10 and f(eg) = 13. From Fig. 3, there is
no P3 — weight is 30, which is a contradiction.

A similar contradiction arises, if the edges e; and ey with f(ez = wvovy) = 11 and
f(e2 = vova) = 8 for P3 — weight 26 are used to getting the P3 — weight 33, for more details
see Fig. 4.

Subcase (ii): f(ex = vov1) = 9 and f(e2 = vov2) = 10. Then a = 26 and hence the label
of the vertices and edges of P3 — weight 26 is f(vg) = 4, f(v1) = 1, f(v2) = 2, f(e1 = vov1) =9
and f(es = vovy) = 10. Now, the P3 — weight 27 is getting exactly two possibles 5 elements
sum such as (4,2,3,10,8), (4,1,5,9,8) and hence the label of the edges es = vgvs or wvovy is
fles) = 8. If an edge e3 = vovz with f(e3) = 8 then we get the P3 — weight as sum of 5
elements (4,1,3,9,8) is 25, which is a contradiction. If an edge es = vovy with f(e3) = 8 then
we get the P3 — weights from 28 to 32 are getting exactly one possible 5 elements sum such as
(4,1,3,9,11), (4,2,5,10,8), (4,2,3,10,11), (4,3,5,11,8) and (4,1,6,9,12). From Fig. 5, there is no
P3 — weight 33, which is a contradiction.

A similar contradiction arises, if the edges e; = vgv; and ey = vove with f(e; = vovy) = 10
and f(ea = vove) = 9 for the P3 — weight 26 is used to getting the P3 — weight 27, which is a
contradiction.

Subcase (iii): f(e; = wvovy) = 8 and f(ea = vovs) = 9. Then a = 26 and hence the label
of the vertices and edges of P3 — weight 26 is f(vg) = 4, f(v2) = 2, f(v3) = 3, f(e1 = vov2) = 8
and f(ea = vovg) = 9. Now, the P; — weight 27 is getting exactly one possible 5 elements sum
(4,1,3,9,10) and hence the label of an edge e3 = vgv; is f(e3) = 10. Thus, we get a P; — weight
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Figure 4. The possible edge label is obtain to Ps-weight 33.

Figure 5. There is no possible to obtain Ps-weight 33.

as sum of 5 elements (4,1, 2,10,8) is 25, which is a contradiction.

A similar contradiction arises, if the edges e; = vgve and es = vovs with f(e; = vovz) = 9 and
fle2 = vgu3) = 8 for the P3 — weight 26. The P3 — weight 27 is getting exactly one possible 5
elements sum (4,1,2,11,9) and hence the label of an edge f(es = vov1) = 11. Thus, we get the
P3 = (v, v1,v3, €3 = vov1, €2 = vov3) with weight (4+1+3+11+8) is 27, which is a contradiction.

Subcase (iv): f(e; = vov1) = 8 and f(e2 = vov3z) = 10. Then a = 26 and hence the label
of the vertices and edges of P3 — weight 26 is f(vg) = 4, f(v1) = 1, f(vs) = 3, f(e1 = vov1) = 8
and f(ea = vovsz) = 10. Now, the P3 — weight 27 is getting exactly two possibles 5 elements sum
such as (4,1,2,8,12), (4,1,5,8,9) and hence the label of the edges e3 = vgvy or vouy is f(e3) = 12
or 9. If an edge e3 = vgvg with f(e3) = 12 then the P; — weights 28 and 29 are getting exactly
one possible 5 elements sum (4,1,6,8,9) and (4,1,5,8,11). From Fig. 6, there is no P; — weight
30, which is a contradiction. If an edge es = vovg with f(es) = 9 then the P3 — weight 28 is
getting exactly one possible 5 elements sum (4, 1,2,8,13) and hence the label of an edge e5 = vgva
is f(es) = 13. From Fig. 7, there is no P; — weight 29 when x = 11 or 12 and y = 12 or 11, which
is a contradiction.

A similar contradiction arises, if the edges e; = vgv1 and es = vovg with f(e; = vovy) = 10
and f(ea = wovs) = 8 for the P; — weight 26 are used to getting the P; — weight 27,
which is a contradiction. O

Theorem 5. The star S7 has no super (a,1) — Ps-antimagic total labeling.

Proof. Let V(S7) = {vg,v1,v2,vs,v4,0v5,06,v7} and E(S7) = {vov1, vova, vovs, v, Vs,
vovg, Uov7 } be the vertex and edge set of star S7. Suppose there exists a super (a, 1) — Ps-antimagic
total labeling f : VUE — {1,2,3,...,15} for S7 and let vy be the central vertex of S;. In the
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Figure 6. There is no possible to obtain Ps-weight 30.

Figure 7. There is no possible to obtain Ps-weight 29.

computation of P3 — weights the label of the central vertex vy, f(vp) is used 21 times and label of
other vertices and edges say i are used 6 times each. Therefore,

15 21
15f(vo) +6 > (i) = 5 [2a+20],
i=1

which implies that we get
. 15f(vo) + 510
B 21 '

Since 1 < f(vg) < 8, we have only two values a such as a = 25 if f(vg) = 1 and a = 30 if f(vg) = 8.

Case (i): f(vg) = 1. Then a = 25 and the P; — weights of S7 is given by W = {25, 26, ...,45}.
Now, the P; — weight 25 is getting exactly one possible 5 elements sum (1,2,3,9,10) and hence
the label of edges e; = vov; and ey = vove is f(e1) = 9 and f(ez) = 10. Since the minimum
possible sum of vertices labels for P3 — weight is 7, it follows that there is no P; — weight 26,
which is a contradiction. A similar contradiction arises, if the edges e; = vgv1 and es = vgve with
f(e1) =10 and f(e2) =9 for the P — weight 25 is used to getting the P3 — weight 27.

Case (ii): f(vo) = 8. Then a = 30. Now, if f is a super (30, 1) — P3-antimagic total labeling of

S, then by Theorem 1 [3], f is a super (25,1) — Ps-antimagic total labeling, which does not exist
by Case (i). O

Theorem 6. The star Sg has no super (a,1) — Ps-antimagic total labeling.
Proof. Let V(Ss) = {vg,v1,ve,vs,v4,0s,v6,v7,v8} and E(Sg) = {vgv1, vova, vovs, Vo4, Vs,

vovg, VoU7, VoUs } be the vertex and edge set of star Sg. Suppose there exists a super (a,1) — Ps-
antimagic total labeling f: VUE — {1,2,3,...,17} for Sg and let vy be the central vertex of Sg.



92 S. Rajkumar, M. Nalliah and Madhu Venkataraman

In the computation of P; — weights the label of the central vertex vg, f(vg) is used 28 times and
label of other vertices and edges say i are used 7 times each. Therefore,

17 28
21f(vo) +7 ) (i) = 5 (20 +27,
=1

which implies that we get

21 f(vo) + 693

a=———
Since 1 < f(vg) <9, we have only two values a such as a = 27, if f(vg) = 3 and a = 30, if f(vg) = 7.
Case (i): f(vg) = 3. Then a = 27 and the P; — weights of Sg is given by W = {27,28,...,54}.
Now, the P; — weight 27 is getting exactly one possible 5 elements sum (3,1,2,10,11) and hence
the label of edges e; = vgv; and e; = vovy is f(e1) = 10 and f(ez) = 11. Since the minimum
possible sum of vertices labels for P3 — weight is 8, it follows that there is no P3 — weight 29,

which is a contradiction. A similar contradiction arises, if the edges e; = vgv1 and e; = vgvg with
f(e1) =11 and f(ez) = 10 for the P; — weight 27 is used to getting the P; — weight 29.

Case (ii) f(vo) =7 Then a = 30. Now, if f is a super (30, 1) — P3-antimagic total labeling of

Sg, then by Theorem 1 [3], f is a super (27,1) — Ps-antimagic total labeling, which does not exist
by Case (i). O

Theorem 7. The star So has no super (a,1) — Ps-antimagic total labeling.

Proof. Let V(Sg) = {vg,v1,v2,vs3,v4, 05,06, 07,08, V9} be the vertex set of star Sg. Suppose
there exists a super (a,1) — Ps-antimagic total labeling f : VUFE — {1,2,3,...,19} for Sy and
let vy be the central vertex of Sy. In the computation of P3 — weights the label of the central
vertex vp, f(vg) is used 36 times and label of other vertices and edges say i are used 8 times each.
Therefore,

19 36
28f(vo) +8 Y (i) = 20 +35),
=1

which implies that we get
~ 14f(vo) + 445
B 18 '
Since 1 < f(vg) < 10, we have that a is not an integer, which is a contradiction. O

From Theorem 2-3 [5], Theorem 4-7, we get the following result.

Theorem 8. The star S,,n > 3 admits a super (a,1) — Ps-antimagic total labeling
if and only if n = 3 and 4.

3. Conclusion and Scope

In [5], they investigated the existence of super (a, d)-Ps-antimagic total labeling of star S,, and
posed the Problem 1 [5]. This paper proved the star .S, has no super (a,1)-Ps;-antimagic total
labeling, where n = 6,7,8,9. Therefore, we have entirely solved Problem 1 [5].
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Abstract: In this paper, we study the well-known problem of Isaacs called the “Lifeline” game when
movements of players occur by acceleration vectors, that is, by inertia in Euclidean space. To solve this problem,
we investigate the dynamics of the attainability domain of an evader through finding solvability conditions of
the pursuit—evasion problems in favor of a pursuer or an evader. Here a pursuit problem is solved by a parallel
pursuit strategy. To solve an evasion problem, we propose a strategy for the evader and show that the evasion
is possible from given initial positions of players. Note that this work develops and continues studies of Isaacs,
Petrosjan, Pshenichnii, Azamov, and others performed for the case of players’ movements without inertia.

Keywords: Differential game, Pursuit, Evasion, Acceleration, Strategy, Attainability domain, Lifeline.

1. Introduction

Differential game theory deals with conflict problems in systems expressed by differential equa-
tions. As a result of developing Pontryagin’s maximum principle, it became apparent that there
was a link between optimal control theory and differential games. Actually, problems of differential
games describe a generalization of optimal control problems in cases where more than one player
is involved.

The study of differential games was initiated by American mathematician R. Isaacs. His re-
search was published in the form of a monograph [20] in 1965, in which a great number of examples
were considered, and theoretical questions were only affected. Differential games have been one of
the basic research fields since 1960, and their fundamental results were gained by Pontryagin [29],
Krasovskii [23], Bercovitz [5], Dar’in and Kurzhanskii [9], Elliot and Kalton [10], Isaacs [20], Flem-
ing [11], Friedman [12], Hajek [14], Ho, Bryson and Baron [15], Petrosjan [28], Pshenichnii [30, 31],
Subbotin [40, 41], Ushakov [42], Chikrii [8], and others.

The monograph of Isaacs [20] includes certain game problems that were discussed in detail and
put forward for further study. One of these problems is called the “Lifeline” problem, which was
initially formulated and solved for certain special cases [20, Problem 9.5.1]. A simplified analytical
solution to this problem in the half-plane was proposed by Isaacs in [20]. For the case when
controls of both players are subjected to geometric constraints, this game was rather thoroughly
considered by Petrosjan [28] based on approximating measurable controls with the most efficient
piecewise constant controls that realize the parallel convergence strategy. Later, this approach to
control in differential pursuit games was termed the II-strategy. The strategy proposed in [28], for
a simple pursuit game with geometric constraints, became the starting point for the development
of the pursuit method in games with multiple pursuers [6, 13, 39]. In 1986, a simplified analytical
solution of the “Lifeline” problem was suggested by A. Azamov [3]. Later on, for the cases when
controls of both players are subjected to integral, Gronwall or mixed constraints, this game was
investigated in the works of Samatov [4, 32-37].
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Based on the fundamental approaches in the theory of differential games developed by Pontrya-
gin [29] and Krasovskii [23], a differential game is considered as a control problem from the point
of view of either pursuer or evader. According to this view, the game reduces to either pursuit
(convergence) problem or evasion (escape) problem. The main technique for solving the pursuit
and evasion problems is constructing optimal strategies of players and defining the value of the
game. The works [16-19, 21] are devoted to studying differential games of simple motion and by
optimal strategies of players, it was proved that the value of the game exists.

In [24, 25], the classic time-optimal differential games with a lifeline were investigated. The
first player seeks to lead the system to a given closed terminal set with a smooth boundary, and
the second player strives to guide the same system to another given set whose boundary is also
smooth and is also called a lifeline. To solve this problem, the authors adhered to the formalization
of positional differential games proposed by N.N. Krasovskii and A.I. Subbotin.

In the present paper, we discuss the pursuit—evasion problems and the “Lifeline” game for the
inertial movements of players. We impose geometric constraints on controls of the players. In order
to solve a pursuit problem, we suggest the Il-strategy for the pursuer and prove that this is an
optimal strategy. After that, necessary and sufficient condition of pursuit is originated and optimal
pursuit time (guaranteed pursuit time) is determined. To solve an evasion problem, we propose
a strategy for the evader and show that the evasion is possible from given initial positions of the
players. Here, any closed set given in the space is considered as a lifeline. In this case, the first
player (a pursuer) aims to coincide with the second player (an evader) as quickly as possible and,
by this occurrence, a trajectory of the evader shouldn’t intersect the lifeline. The aim of the evader
is to reach the lifeline by the time of the coincidence or is not to encounter the pursuer during the
game. To solve the “Lifeline” problem, conditions of monotone embedding in respect to time for an
attainability domain are given. In this paper, the statement and solution method of a differential
game with a lifeline differ significantly from those from the works [24, 25]. Results of the paper
rely on the works [1, 7, 22, 26-29, 42, 43] and adjoin the works [2—4, 20, 38, 41].

2. Statement of problem

Assume that in the space R™ a controlled object P, called a pursuer, chases another object E,
called an evader. Denote by x a state of the pursuer and by y that of the evader in R™.

Let the motion dynamics of the players be generated by the following differential equations and
initial conditions respectively:

P: i=wu, z(0)=uz9, z(0)=ux, (2.1)
E:g=v, y(0) =y, 9(0)=u,

where x,y, o, Yo, 1, y1, 4, v € R™® n > 2; x¢ and yq are initial states of the players, and x; and y;
are their initial velocity vectors, respectively. We suppose that zg # yo and x1 = y1.

Here the temporal variation of u must be a measurable function u(-) : [0,00) — R", and we
impose a geometrical constraint on this vector-function (briefly, G-constraint) in the form

lu(t)] < a almost everywhere ¢ >0, (2.3)

where « is a given positive parametric number, which means the maximal acceleration value of the
pursuer.

In a similar way, the temporal variation of v must be a measurable function v(-) : [0,00) — R™,
and we impose on this vector-function a G-constraint in the form

lv(t)] < B, almost everywhere ¢ >0, (2.4)
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where 3 is a given non-negative parametric number, which means the maximal acceleration value
of the evader.

The control parameters of the players are the acceleration vectors u and v, which depend on time
t > 0. We denote by U and V the set of all control parameters u and v satisfying conditions (2.3)
and (2.4), respectively.

Definition 1. We call the measurable function u(-) (v(-)) that satisfies the condition (2.3)
(the condition (2.4)) an admissible control of the pursuer (the evader) of the class U (the class V'),
where the pair of classes of admissible controls introduced (U, V') defines a differential game.

By means of the equations (2.1) and (2.2), each triplet (xg,z1,u(-)) and (yo,y1,v(-)) generates
the trajectories of motion

x(t) =z + 21t + | (t — s)u(s)ds, (2.5)

y(t) = yo +yit + [ (t —s)v(s)ds (2.6)

Ot~ T —

of the pursuer and evader respectively.

Suppose that a closed subset M called a lifeline is given in the space R™. The main goal of a
pursuer P is to catch an evader E, that is, to achieve the equality z(t*) = y(t*) at some time ¢*,
t* > 0, while the evader remains in the zone R\ M. The goal of the evader is to reach the zone M
before being caught by the pursuer or to maintain the relation z(t) # y(t) for all ¢, t > 0. We
should note that M does not restrict the motion of the pursuer. Further, it is assumed that the
initial states zg and gy are given under the conditions zg # yo and yo & M.

It is known that control functions depending only on the time parameter ¢, ¢t > 0,, are insufficient
for the pursuer to solve the pursuit problem, and suitable types of control must be strategies. There
are several methods for defining such a concept. Below we will give some concepts to define.

First, we introduce the following notation:

z2(t) =z(t) —yt), z0==z0—y0, £(0)=2z1—y1.

Definition 2. A function u:R" x Sg — S, is called a strategy of the pursuer if the following
conditions are valid.

(a) wu(zo,v) is a Borel measurable function in v, v € V.

(b) Admissibility: The inclusion uw(zo,v(:)) € U holds for each v(-) € V' on some time interval
[0,t]. In this case, the function u(zg,v(-)) is called a realization of the strategy w(zop,v).

(¢) Volterra property: If vi(s) = va(s) almost everywhere on [0,t] for every vi(-), va(-) € V, and
t, t >0, then ui(s) = ua(s) almost everywhere on [0,t], where u;(-) = w(zo,v;(+)), 1 = 1, 2;
S and Sg are the balls with radit o and 3, respectively, centered at the origin of the space R™.

Definition 3. A strategy u = u(zo,v) is called a parallel pursuit strategy, or I-strategy if, for
any v(-) € V, a solution z(t) of the Cauchy problem

Z=wu(z,v(t)) —v(t), =z(0)=z), 2(0)=0 (2.7)
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can be expressed as
z(t) = 20A(t, v(-)), A0, v()) =1,
where A(t,v(:)) is a scalar function of t, t > 0. Usually, this function is called a convergence

function in the pursuit problem.

Definition 4. In the pursuit problem, it is said that a Il-strategy guarantees catching an evader
on the time interval [0,t,] if, for every v(-) € V,

(a) there exists some time t*, t* € [0,t4] that generates the equality z(t*) = 0;
(b) the inclusion u(zg,v(-)) € U is satisfied on the time interval [0,t*].

Here, the number ty is called a guaranteed pursuit (or capture) time.

Definition 5. We call the function v* : Ry — R"™ a strategy of the evader if v*(t) is a Lebesgue
measurable function in t.

Now we will consider the game (U, V') from the standpoint of an evader.

Definition 6. In the evasion problem, it is said that a control v*(-) € V guarantees escaping
if, for any u(-) € U, a solution z(t) of the Cauchy problem

Z=u(t) —v(t), z(0)=2zp, 2(0)=0 (2.8)
is nonzero, that is, z(t) # 0 for all t > 0.

This paper is dedicated to solving the following problems when the controls of the players are
subject to constraints (2.3) and (2.4), respectively.

Problem 1. Pursuit problem: Construct a Il-strategy of the pursuer and find the guaranteed
capture time in the game (U, V).

Problem 2. Evasion problem: Construct a strategy of the evader and evaluate how to vary
distance between the players.

Problem 3. Solve the “Lifeline” game.

3. A solution of the pursuit problem

In a great number of mathematical problems with parameters, an interesting property of the
final analytic results is their explicit dependence on these parameters, which are regarded as con-
stants in the solution. However, these parameters can help to determine feasibility conditions for
these problems. In this section, we are going to present necessary and sufficient feasibility conditions
for the pursuit problem in the game (U, V).

If the pursuer and evader choose admissible controls u(-) € U and v(-) € V, respectively, then,
depending on equation (2.7), we obtain the solution

z(t) = 20 + /(t — s)(u(s) —v(s))ds. (3.1)
0

In the new notation introduced, the goal of the pursuer is now to fulfill the equality z(¢t*) = 0
at some time t*, t* > 0. As for evader’s goal, it is to maintain the relation z(t) # 0 for all ¢ > 0.
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For the pursuer, it is not enough to achieve his goal only by program strategies, i.e., admissible
controls depending only on time t. Therefore, similarly to [4], in the case under consideration,
the strategy of the pursuer can also be determined depending only on the current states of the
acceleration function v(t), t > 0, and given constants zo and «.

For solving the pursuit problem, suppose that at the current time ¢, the pursuer is aware of
the initial parameters xg, yo, -1, ¥1, and the constants «, £, the current time ¢, and the value of
evader’s control v(t).

Definition 7. Assume that « > 3. Then, in the game (U,V'), we call the function

u(20,v) = v — A(20,v)&o, (3.2)

a parallel pursuit strategy (briefly, Il-strategy) of the pursuer, where

A(z0,v) = (v,&) + v/ (v,&)2 + a2 — o2, & = 20/20l, (3.3)

and (v,&y) is the scalar product of the vectors v and & in R™. The function \(zo,v) is usually
called a resolving function.

Now we will indicate some important features for the strategy (3.2) and the resolving func-
tion (3.3).

Lemma 1. The strategy (3.2) is defined and continuous for all v € Sg, and the equality
|u(z0,v)| = a holds during the pursuit game.

Lemma 2. The resolving function (3.3) is defined, continuous, and non-negative for allv € Sg,
and this function is bounded as follows:

Q—IBS)\(ZO,’U)SC!—FIB.

Definition 8. If o > (3, then the scalar function

At o() = —io/t—s (20, 0(s))ds (3.4)
0

is called a convergence function of the players in the game (U,V).

Lemma 3. Let o > 3. Then
(a) for allv(-) € V, the function (3.4) is monotone decreasing with respect to t, t > 0;

(b) the function (3.4) is bounded for all t € [0,t4] as follows:
Arl) < Al 0() < Ao(t), (35)

where
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Proof. (a) According to Lemma 2, it follows that

dA(t t
(7?): /)\zo, ))ds < ——(a— ) < 0.

dt [0l

(b) Relying on the minimum lemma in the elementary optimal control problem [1, p. 360], we
get the following estimation:

t

1
A(t,v(-) <1— wvl(q;lenvo/(t — )N (z0,v(s))ds <1 —

2

min A(zo, As(t).
2‘2’0’|v|<ﬁ (0 ) 2()

On the other hand, by Lemma 2, we have

t

t2 1
=1 g A ) = 1= mféxv/( $)A(z0,v(s))ds < A(t,v(-))
This completes the proof. .

Theorem 1. Let o > (3 in the game (U, V). Then the Il-strategy (3.2) guarantees catching the
evader on the time interval [0,t4], where tg = \/2|2|/(ax — B).

P r oo f. Assume that the evader chooses some control v(-) € V' while the pursuer implements
the II-strategy (3.2). Then, by (3.1), we obtain the function

t
=20 + / t— S 207 ))godsa
0

which can be written as follows:
z(t) = zoA(t, v (), (3.6)

where A(t,v(-)) is the players convergence function of the form (3.4). Taking into account the
right-hand side of (3.5), we conclude that the function As(t) is equal to zero at t = t,. Therefore,
there exists some t* € [0,,] such that A(t*,v(-)) = 0, and this (see (3.6)) results in z(t*) = 0.
Theorem 1 is proved. O

4. A solution of the evasion problem

In this section, we will suggest an admissible strategy for the evader, which guarantees escaping
in the evasion problem. Using this strategy, we will prove that the strategy (3.2) is an optimal
pursuit strategy and ¢, is an optimal pursuit time.

Definition 9. We call the control function
v'(t) = —B% (4.1)

a strategy of the evader in the game (U, V).

Definition 10. It is said that the strategy v*(t) guarantees escaping on the time interval [0,1,)
if for any control function of the pursuer u(-) € U, the relation z(t) # 0 is valid for all t € [0,t,),
where z(t) is the solution of the Cauchy problem (2.8).
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Theorem 2. (a) Let a > 3. Then the strategy (4.1) guarantees escaping on the time interval
[0,t5) in the game (U,V'), where t, is the guaranteed pursuit time (see Theorem 1).

(b) Let a < 3. Then the strategy (4.1) guarantees escaping on the time interval [0, 400) in the
game (U, V), and the distance between the players is estimated as follows:

12(8)] > ol (a — B) voa=p
= =P a<n

|z0] —

Proof. (a) Assume that @ >  and the pursuer picks a control u(-) € U while the evader
applies the strategy (4.1). In accordance with (3.1), it follows the function

t ¢
2(t) =z0+ [ (t —s)u(s)ds + [ (t — s)BEuds. (4.2)
e

Estimate the absolute value of (4.2) as follows:

—~

z(t)] > ‘zo + /(t— s)ﬁ{ods‘ — ‘/(t — s)u(s)ds| >
0 0

t

t2 t2
> Jal (1 - %) _ /(t ~ s)ads = [z0] — (@ B).
0
Relying on Theorem 1, we can write the estimation
a— B)t?
2] 2 20l - 20 5

forall t, 0 <t <t,.
(b) Suppose that a < /3. In this case, a proof is similar to the proof of item (a), i. e.,

(a = B)t?
2
for all t € [0, +00). Theorem 2 is proved. O

[2(5)] = |z0] = > |20/ >0

5. An attainability domain of the pursuer

In accordance with Theorem 1, if a > (3 then, by the Il-strategy (3.2), the evader is captured
at some point in the space R™. In the considered game, we will construct a set of meeting points
of the players for the case o > .

Let a triplet (yo,y1,v(+)), v(-) € V, generates a trajectory of an evader F in the form (2.6) while
a triplet (xo,z1,u(20,v(+)), u(zo,v(-)) € U, generates a trajectory of a pursuer P in the form

t
x(t) =x0+ 1t + / t — S ZO, ))ds7 (5.1)
0

where ¢ € [0,t*], 0 < t* < t,4, and t* is the encounter time of the players, that is, the equality
x(t*) = y(t*) holds. Thus, for each pair (z(t),y(t)), we form the set

W(t) =W(x(t),yt) = {w: |w—a@t)] = (/B)lw -y}, (5.2)
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on [0,t*]. Note that

W(0) = W (zo,y0) = {w: |w— 20| > (a/B)lw —yol}.

Since |z(t)| > 0 on [0,¢*], it is obvious that the inclusion y(t) € W (t) is valid on this time interval.

Remark 1. Note that the trajectories z:(¢) and y(t) of the players and the multi-valued mapping
W (t) directly depend on the choice of a control v(-) € V. This dependence is omitted for brevity.

Lemma 4. The multi-valued mapping W (t) can be expressed as
W (t) = a(t) + AL, v(-)) [W(0) — o], (5.3)

where A(t,v()) is the convergence function of the form (3.4) and

a220 aﬁ\zo\
W(O) = X9 — C(ZO) + R(ZO)S, C(Zo) = m, R(Zo) = 2 182’ (54)
and S is the unit ball centered at the origin of the space R™.
P roof. First, write the set (5.2) as follows:

W(t) = 2(t) +{w: o] > (o/B)lw + 2O} = x(t) — c(2(1)) + R(2(1))S,

e 20 (1)
az(t af|z(t
c(2(t)) 2k R(z(t)) = Wl
Now, by (3.6) and (5.4), the functions c¢(z(t)) and R(z(t)) can be written in the form
c(2(t)) = c(20)A(t, v(")), R(2(t)) = R(z0)A(t,v(:)).

Hence, we derive the validity of formula (5.3). O

Corollary 1. Lemma 4 implies that, for each t € [0,t*], the multi-valued mapping W (t) is a
ball of radius R(zo)A(t,v(-)) centered at the point x(t) — c(z9)A(t,v(:)) and the set W(0) is a ball
of the radius R(zy) centered at the point x(0) — c(z0).

Lemma 5 (The main lemma). The multi-valued mapping W (t) — tx1 is monotone decreasing
in t € [0,t*] with respect to embedding, i.e., if t1,ta € [0,t*] and t1 < ta, then

W(tg) —tox1 C W(tl) —t1x1.

P roof. From the statement of the problem, we have geometric constraint of the form (2.4)
on values of the evader’s acceleration vector. As a consequence, we find that

,82
pepl

From the form of the resolving function (3.3), it is easy to ensure in the validity of the equality

a? — [u(®)* = Az, v(t)) (M(z0, v(t)) = 2(v(t), ) -

() < o = o(t)?) . (5.5)
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Due to this, inequality (5.5) takes the form

2 2
P 0.\ o(0) < 5

Completing the square in this inequality, we obtain the following inequality:

N2 (20, 0(t))-

o()” +

2

0lt) + 5 Ao ()6 <

However, for all 1) € R™, |¢| = 1, the relation

A(z0,v(1)). (5.6)

af
a? — 32

2 2

p
=z < =
<v(t) + oA (), ¢> < ‘v(t) P R CO)I:
holds. Then, using the inequality (5.6), we find that

2 «
(v(t) + %ﬁﬂw(f))&), v) < fﬁ/pm,v(f)).

Integrate both sides of this inequality over the interval [0, ¢]:

/<v(s) + %2@)\(2070(8))507 1/1>ds < aza_ﬁﬁQ /)\(zo,v(s))ds. (5.7)
0

0

For the left-hand side of (5.7), we can write the following equalities:

O/ (o) + 2\ v(o)o, w)ats = | <v<s>+(a;+2ﬁ2—1> (20,0(5))60, ¥ )ds =

0

/t Alz0,v(s))éo, 7/)>ds+< 250, /A 20,0
0

By the definition of II-strategy (3.2) and in view of the form of the vector ¢(zp) in (5.4), the latter
equality takes the form

t t
/<v(s) + a2ﬁ_ Az0,v(8))&0, ¥ ds = /u 20, v(s))ds, 1/)>
0 0

t
!Zo\ O/A 20,V

Taking into account the form of R(zp) in (5.4), for the right-hand side of inequality (5.7), we obtain

af / _R(zo)t o o(s)\ds
az_ﬁQO/)\(zo,v(s))ds— = 0/)\( o0, 0(s))ds. (5.9)

Thus, by (5.7), (5.8), and (5.9), we have the relation

/tuzo, ))ds, ¢> {clz0), /t)\zo, ))ds < 0. (5.10)
0 0

|Zo|
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Applying the properties of the support function [7]

E(W, ) = sup (w,)

weWw

in ¢ € R", |¢| = 1, and using formulas (3.4), (5.1), (5.3), and (5.4) we can find the derivative of
W (t) in t as follows:

d —F(W(t),v) = %F xo + x1t +/ t — s)u(zo,v(s))ds + A(t,v(+)) [R(20)S — ¢(20)], 1/;) =
0

t

u(zo,v(s))ds, w> {elz0), /)\ (z0,v

.%'1, ‘ZO’
0

o\ﬂ

d
From this and inequality (5.10), we get EF(W(t) —txy,79) < 0 for all ¢ € R™, [¢p| = 1. This

completes the proof of Lemma 5. U
Corollary 2. Lemma 5 implies the inclusion W (t) C W(0) + txy for all t € [0,t*].
By Lemma 5, we obtain an attainability domain of the evader.

Lemma 6. The inclusion
y(t) € W(0) + tzy (5.11)

holds for all t € [0,t*].

P roof. The inclusion (5.11) easily follows from the form of the multi-valued mapping (5.2)
and Corollary 2. O

Corollary 3. Lemma 6 implies that, if the initial velocities of the players are equal to zero,
i.e., x1 = y1 = 0, then the boundary of the attainability set of the evader is the Apollonius sphere
of the form (5.4) in R™.

To solve the “Lifeline” game in favor of the pursuer, using (5.11), one can define the set

p = (W) + 11},
t=0

which is obviously convex and closed. Here

tg = v2|20l/(a = B)

(see Theorem 1). We call the set Wp the attainability domain of the pursuer.

6. A solution of the “Lifeline” game

In this section, the “Lifeline” game will be considered only in the case @ > § and z1 = y;.
Hereinafter, we will omit these conditions in statements for brevity.

Definition 11. We say that the l-strategy (3.2) provides winning for the pursuer in the “Life-
line” game on the time interval [0,ty] if there exists a time t* € [0,t4] such that the following
conditions are valid:
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(a) (t*) = y(t*);
(b) y(s) & M for all s € [0,t*].

Theorem 3. If the attainability domain Wp of the pursuer does not intersect the set M, i.e.,
WpN M =0 in the “Lifeline” game, then the I-strategy (3.2) provides winning for the pursuer P.

P r o o f follows immediately from Theorem 1, Lemma 5, and Lemma 6. U

Now let us consider a solution of the “Lifeline” game in favor of the evader E.

Definition 12. [t is said that a control v*(-) € V provides winning for the evader in the
“Lifeline” game if, for any control of the pursuer u(-) € U, at least one of the following conditions

holds:

a) there exists a finite time T satisfying the inclusion y(r) € M and the relation x(t) # y(t) for
allt € [0,7);

b) x(t) # y(t) for allt > 0.

Consider the set
Wg = {w* twt = 2w —yol/fr1 +w, we W(O)}
We call the set W the attainability domain of the evader.

Theorem 4. If the attainability domain Wpg of the evader intersects the set M, i.e.,
Wp N M # 0 in the “Lifeline” game, then there exists a control v*(-) € V that provides winning for
the evader E.

P r o o f. Depending on the theorem conditions, there exists a point w* € Wg N M such that
the following equality holds:

w* =/2|w —yol/Bzr1 +w, we W(0).

Then we prescribe the constant control of the form

vt = Bw = yo)/lw = yol (6.1)

for the evader E.
First of all, let us show that, by means of the control (6.1), the evader E reaches the chosen
point w* at the time 7 = y/2|w — yp|/5. To this end, substituting (6.1) into (2.6), we form

T

2

-

y(1) =yo + i1+ /(T —s)vds = yo + 17 + ?v*. (6.2)
0

From (6.1) and (6.2) and taking into account the equality x; = y1, we obtain

y(1) = yo + 21/ 2|lw — Yol /B +w —yo = w".

Now let us prove that condition (a) of Definition 12 holds, that is, the evader remains uncaught.
Suppose the opposite, i.e., that there is some control u*(-) € U of the pursuer, the implementation
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of which satisfies the equality x(t) = y(t) at time # less than 7, i.e., # < 7. Then, by equation (3.1),
we can write

i
= 29 +/ —v")ds = 0.
0

Thus, for the right-hand side of z(f), we can write the absolute estimations:

e
0

or

1< a—. (6.3)

Introducing the notation n = #2/2 in (6.3) and taking into account that |v*| = 3, we obtain the
quadratic inequality in terms of 7 in the form

(a? = B2)n? + 2n(z0,v*) — |20> > 0.

It follows that

t? 1 .
n="5 2 (V0,02 + (@@ = BP0l - (20,v")) (6.4)
2 o —f
By the assumption
2 72
5= |w — yol/B > 2

and (6.4), we determine the relation

|w—yo|

p 52 <

According to the control of the evader (6.1) and by inequality (6.5), we get
a
B

Goo, 02 + (@ = B[z — (20,0} (6.5)

lw — yo| > |w — x0],

i.e., the inclusion w € W (0) (see (5.2)) does not hold, which contradicts our assumption. Theorem 4
is proved. ]

Remark 2. Using the definitions of the attainability domain Wp of the pursuer and the
attainability domain Wg of the evader, it is not difficult to ensure that the inclusion Wy C Wp is
valid in the “Lifeline” game.

7. Examples

Ezample 1. (Problem for the case with a lifeline). Let the game (2.1)—(2.4) be given as follows:

i=u, x0=(0,0), =z =(0,1), |ult)<V2 t>0, (7.1)
:ij =0, Yo= (07 _1)7 Y1 = (07 1)7 ‘U(t)’ < 17 t>0.

Then, according to Theorem 1, we have t; = v/ 21v/2 4+ 2. By Lemma 4, we can write the set

W) ={w:|lw—c <R, ¢c=(0,-2),R = \/_}
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-25

Figure 1. The case where the pursuer P wins in the “Lifeline” game (7.1)—(7.2)

The boundary of W(0) is

OW (0) = {& = (&1, w9) : O + (&o +2)? =2},
and the following equality is valid for these points:

(7.3)

~

| —yol = \/@f + (@2 +1)2. (7.4)
By (7.3) and (7.4), we obtain the set

WE:{W*:(@L@)I@:\/2\/?%/7@%1\/2—@%—2}

Fig. 1 and 2 show the shapes of the sets Wp and Wg in the “Lifeline” game (7.1)—(7.2).

Ezample 2. (Attainability domain in the case of many pursuers and one evader). Consider the
following game example:

where p; > 1 and x;0 # Yo, ¢ = 1, m.
By Lemma 6, we have

(7.5)
t>0,

y(t) € ﬂ Wio + tn,
where

2
Wio = xio — cio + RioS, cio =
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W

-14 -1.2 -0.8  -0.6 -0.4 -0.2

-1

Figure 2. The case where the evader E wins in the “Lifeline” game (7.1)—(7.2).

The attainability domain of the pursuers in the game (7.5)—(7.6) has the form

T* m
Wp = U [ﬂWiO+t77]a
t=0 i=1
where
2 .
T* = min [7i0]
i=Tm \| Hi — 1

8. Conclusion

In this paper, we have considered the pursuit—evasion problems and the “Lifeline” game of one
pursuer and one evader for the inertial movements when the initial velocity vectors of the players
are the same. We have imposed geometric constraints on the controls of the players. The Il-strategy
was suggested for the pursuer and given optimal pursuit time in the pursuit problem. We have
proposed a specific strategy for the evader. By this strategy, it was proved that the Il-strategy
is optimal and the evasion is possible from the given initial states. As the main result, we have
obtained the main lemma (Lemma 5) and applied this lemma to solve the “Lifeline” game.

A “Lifeline” game of many players, when geometric constraints are imposed on controls of
players, can be studied in further research.
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Abstract: We suggest an explicit continuation formula for a solution to the Cauchy problem for the Poisson
equation in a domain from its values and values of its normal derivative on a part of the boundary. We construct
the continuation formula of this problem based on the Carleman—Yarmuhamedov function method.

Keywords: Poisson equations, Ill-posed problem, Regular solution, Carleman—Yarmuhamedov function,
Green’s formula, Carleman formula, Mittag—Leffler entire function.

1. Introduction

In this paper, we continue the research provided in [12]. We propose an explicit formula for
the reconstruction of a solution of the Poisson equation in a bounded domain from its values and
the values of its normal derivative on a part of the boundary, i.e., we give an explicit continuation
formula for a solution to the Cauchy problem for the Poisson equation.

Let us introduce the following notation: R3 is a three-dimensional real Euclidean space,

x2(.7]1,.%'2,1’3), y:(y17y27y3) €R37
z' = (.%'1,.%'2), y, = (y17y2) € R27
s=a? =y =2’ = (y1 — 21)* + (32 — 22)°,

T
2 =5+ (y3 —x3)% = ly — 2, T=tgg, P> 1

G,={y: V| <tys, ys>0}, 9G,={y:y|=rys, y3 >0}, ép =G,U0G,,
€, €1, and €9 are sufficiently small positive constants,
G={y: [y <tlys—e)}, G, ={y:ly|=7(ys—¢)}, G,=G,U0G;,

and (2, is a bounded simply connected domain whose boundary 052, in R? consists of a part of the

conic surface T' = 0G, and a smooth surface S lying inside the cone Ep. The case p = 1 is the limit

case. In this case, G is the half-space y3 > 0,0G is the hyperplane y3 = 0, and €2 is a bounded

simply connected domain whose boundary consists of a compact connected part of the hyperplane

ys = 0 and a smooth surface S in the half-space y3 > 0, ﬁp = Q,U00,, and Sy is the interior of S.
The Poisson equation or potential equation [15]

E

VU _ fw) (1.1)

S =
T

3
~AU(z) = _Z

is a classical example of second-order elliptic partial differential equations and a mathematical
model for some important physical phenomena. Let H A(Qp) be the set of real functions of the class

)
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CQ’)‘(QP) N CY(Q,) satisfying the Poisson equation. Let a function f be Hélder continuous with
exponent A € (0,1), i.e., f € C¥N9Q,) and s € Z,.

Problem 1. Assume that we know the Cauchy data for a solution to equation (1.1) on the
surface S:

v = ). B =), yes (12)

where n = (n1,n2,n3) is the outward unit normal to the surface 08, at a point y, and fi and fo
are continuous functions. Given fi(y) and fa(y) on S, find U(x), x € ,.

Problem 2. Let fi and fs be given on S. Find conditions on f1 and fs that are necessary and
sufficient for the existence of a solution to system (1.1) satisfying (1.2) and from the class H(,).

It is well-known that the Cauchy problem (1.2) for the Poisson equation (1.1) is ill-posed [3, 5].
Hadamard [17] noted that a solution to Problem 1 is not stable. The possibility of intro-
ducing a positive parameter o, depending on the accuracy of the initial data, was noticed by
M.M. Lavrentev [23]. The uniqueness of the solution follows from the general theorem by Holm-
gren [6]. It has applications in many different areas such as plasma physic, electrocardiography,
and corrosion non-destructive evaluation (e.g., [7, 9, 10, 13, 19]). Traditionally, regularization tech-
niques, such as Tikhonov regularization [44] and the quasi-reversibility approach [22], were used to
provide robust numerical schemes [18].

We suppose that a solution to the problem exists (in this event, it is unique) and is continuously
differentiable in the closed domain, and the Cauchy data are given exactly. In this case, we establish
an explicit continuation formula. This formula enables us to state a simple and convenient criterion
for the solvability of the Cauchy problem.

The result established here is a multidimensional analog of theorems and Carleman-type for-
mulas [4] by G.M. Goluzin, V.I. Krylov, V.A. Fok, and F.M. Kuni in the theory of holomorphic
functions of one variable [14, 16].

The method for obtaining these results is based on an explicit form of the fundamental solution
of the Poisson equation which depends on a positive parameter that vanishes together with its
derivatives on a fixed cone and outside it, as the parameter tends to infinity, while the pole of the
fundamental solution lies inside the cone. Following to M.M. Lavrent’ev, a fundamental solution
with these properties is called a Carleman function for the cone [8, 23]. Having constructed a
Carleman function explicitly, we write a continuation formula. The existence of a Carleman function
follows from S.N. Mergelyan’s approximation theorem [28]. However, this theorem shows no way
for writing the Carleman function explicitly.

The Carleman function of the Cauchy problem for the Laplace equation and some close prob-
lems, in the case when 0, \ S is a part of a conic surface, was constructed in [45]. Mergelyan [28]
suggested a method to construct the Carleman function of the Cauchy problem for the Laplace
equation in the case when S is a part, with a smooth boundary, of the boundary of a simply-
connected domain. Based on [28] and approximative theorems, the Carleman matrix for elliptic
systems was constructed in [41].

In [1], some theorems of existence of the Carleman matrix and a solvability criterion for a
wider class of boundary value problems for elliptic systems were established. It was proved earlier
in [1, 41] that, for every Cauchy problem for elliptic systems, the Carleman matrix exists if the
Cauchy data are given on a boundary set of positive measure.

Following Tikhonov [21, 43], we call the family of functions U,s(z) the regularized solution to
the Cauchy problem for equation (1.1). The regularized solution determines the stability of the
approximate method.
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In the paper, based on results from [23, 45-48] on the Cauchy problem for the Laplace and
Helmholtz equations, we construct the Carleman—Yarmuhamedov function in an explicit form. We
use it to prove the Carleman formulas and a criterion for the solvability of the Cauchy problem.

In recent decades, interest in the classical ill-posed problems of mathematical physics has been
preserved. This direction of investigation of the properties of solutions to the Cauchy problem for
the Laplace equation was started in [2, 20, 23, 24, 42] and was further developed in [25-27, 30—40].

2. Construction of a Carleman—Yarmukhamedov function

According to [45], we define the Carleman—Yarmukhamedov function ®(y,x) by the equality

T K(w) du ,
212K (0)®(y, ) = O/Im [ ” } it w=1Vs+u?+ys — x3. (2.1)

Here, K (w) is an entire function of complex variable that takes real values for real w (w = a+1b,
a and b are real numbers) such that K(a) # oo, |a|] < oo, K(0) #0, VR >0, 3Cr >0

sup (]K(w)] + Imw||K'(w)| + \Imw\le”(w)]) < 00.
[Rew|<R, Imw<—-Cgr

For real w, since K(w) is real, we have K(w) = K(w). Then (2.1) implies that YR > 0

|RSU‘I><R{IK(w)I + (1 + [Imw])[K' (w)] + (1 + [Imw]*)[ K" (w)[} < oo. (2.2)

Now we write (2.1) in the form

22K (0 7{ ys = x3)Im K(w) _ ReK(w)} _du (2.3)
0

where

Im (M)ZL{M @}:MU wK (w)

w 2i w w 2i(r? + u?) 1
_ (s —w3)ImK(w) — Vs Tu’Re K (w) .
r2 4 u?

From (2.2) and (2.3), it follows that, for y # =, the integral in (2.1) converges absolutely.
If K(w) = 1, then the function ®(y,x) is the classical fundamental solution to the Laplace
equation, i.e.,
O(y,x) = Po(r) = 1/(4nr).

Theorem 1 [45]. The function ®(y,x) defined by (2.1) or (2.3)~(2.4) is representable in the
form

(I)(ya CC) = (I)O(T) + G(y’ x)’ (26)

where ®o(r) = 1/(4xwr) and the function G(y,x) is harmonic in the variable y in R3, including
y =z
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From Theorem 1 it follows that the function ®(y, x) of the variable y is a fundamental solution
of the Poisson equation. Therefore, for the function U(y) € H(f2,) and for every point x € €2, the
Green’s formula is valid [15]:

Uw) = [ ooy - [ |0 e - a0 G2 as, (2.5)

Q, 89,

where f(z) € C*(Q2,), A € (0,1), is bounded, i.e., the former integral on the right-hand side of (2.5)
satisfies equation (1.1) in the domain.

3. The Mittag-Leffler entire function

The continuation formulas below are expressed explicitly in terms of the Mittag-Leffler entire
function; therefore, we now present its basic properties without proof. These properties as well as
detailed proofs can be found in [11, Chapter 3, §2], [47].

The Mittag-Leffler entire function is defined by the series

p>0, weC, E(w)=e",

o wn
w) = _
)= 2 Wi+l
n=0
where I' is the Euler gamma-function. Hereinafter, we suppose that p > 1. Let
T
7:7(1’5)5 0<ﬁ<;a P>1,

be the contour in the complex w-plane that consists of the ray argw = —f, |w| > 1, the arc
—p < argw < ( of the circle |w| = 1, and the ray argw = 8, |w| > 1, which is passed so that
arg w does not decrease. The contour ~ splits the complex domain C into the two simply connected
infinite domains 2~ and Q7 lying to the left and to the right of v, respectively. We suppose that

1<ﬁ<z, p> 1.
2p p

Under these conditions, the following integral representations are valid:

E,(w) = pe*” +1,(w), we€QT,
E,(w) =,(w), E;(w) = Q,Z);)(w), we N,

where

o [ oy P e’
Pp(w) = ﬁ/g_wd@ Y(w) = ﬁ/md@ (3.1)
Y Y

Since E,(w) takes real vales for real w, we obtain

_ ) +9,@) _ p [ ' (C—Rew)
Re%(w)—%—gm/(g = w)dC,
) =@ il
Im e, (w) = =- 2% = 271 /(C—w)(f—@)dg’
(w) o QeCPQ Re w)

Tm Imw T omi 2(¢ —w)? 74

v
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Hereinafter, we take

/8: + ) p>1a
2p

in the definition of the contour (1, 3). It is clear that, if

% +e2 < |largw| <, (3.2)
then w € @, and E,(w) = 9, (w).
Define ;
P Pe
T = — d k=1,2,... =0,1,....
k,p(w) 2 / ( — U))k( _m)k Ca y 4y , P 0, )
v

The following inequalities are valid for w/(2p) + &2 < |argw| < 7:

Cl 02
|Ep(w)] < T o]’ B, (w)] < TH [P (3.3)
Cs
‘Tk,p(w)’ S 1 I |w|2k7 k= 1727 T (34)

where C1, Cq, and C3 are constants independent of w. Take in (2.1)
s £9 ™
——+2 <, p>1
p 2p * 2 P P

Then E,(w) = 1,(w), where ¥,(w) is defined by (3.1). Moreover, note that cospf < 0 and the
integral converges:

/|<|PeC°SP5|<|”|d<| <oo, p=0,1,.... (3.5)

4. Carleman formulas

Let the Mittag-Leffler entire function be the function K (w) in (2.1):
K(w) = e“szp(aw),

where
p>1, w=ivs+ul+ys—x3, K(0)=E,(00=1, a>0 o>0.

Denote by ®,(y,x) the corresponding fundamental solution and by ®,(y — x) its derivative with

respect to the variable o
dd,
v —x) = — ).
oly —2)=——>(y—2)

It follows from Theorem 1 that W, (y — z) satisfies the Poisson equation in R3. Then

(o @]
e B (ow)|  du
—o7? D, (
0/ Vs + u?
4.1
( ) efas au2 ( )
_ a —T
— e®Y3—Z3 /gpa(y’x,u)md%

0



Carleman’s Formula of a Solutions of the Poisson Equation 115

where
0oy — x,u) = [(\y/:;;—-fz) Im E,(ocw) — Re Ep(aw)} cos(vv/ s + u?)
+ [Im E,(ow) + % R Ep(aw)] sin(vy's+u?), v=2a(ys— x3),
dd r : du
U,(y—z)= —Z(y—x)= [ Im |e™ E/(cw) . (4.2)
do 0/ [ P ] Vs +u?

Lemma 1 [47]. Let M be a compact set in G, and let § be the distance from M to 0G,. Then,
for o >0, the following inequalities are valid for x € M and y € R3\G, (|y'| > Tys):

) oL Cy(p,d)r

D,y — — Dy (y — 5 Po(y — 7)) < =5

B0y =) + |5 oy = 2)| + | 5 5 @oly =) < P (4.3)
r>6>0, ,=0,1, k,j=1,23.
9 oG Cs(p,0)r

U, (y — T, (y — o Yoy — )| S —

Woly = )|+ |5 Voly = 2)| + |5 5 Woly = )| < 005 (4.4)

r>86>0, i=0,1, kj=123,
where the constants Cy and Cs are independent of x,y, and o.

Theorem 2. Let f be bounded and locally Hélder continuous in Q,, U(y) € H(S,), and

U = hly) o) = hl), e,

where f1(y) and fa(y) are given functions of the class C(S). Then the Carleman formulas

0 U(x) _ lim 0 Ug(x)
6m§ o—00 8::3}
i /f( )aiq>a(y_x)d /{f( ) & 0%,y — ) h )a@a(y_x)}ds (4.5)
= 1m _— — _—_— _—
o—00 J 895;- 4 1y Bx} on 2\ Bx} v
Q, 5
are valid for every x € €, where 1 = 0,1, j = 1,2,3,
U, o,
= Ug, = ®,,
8569 u 63:?

and the convergence in (4.5) is uniform on compact sets in Q.

P roof. From Green’s formula (2.5), for every = € §2,, we obtain

02;]33(;) _ /f(y)%%f@dy_ / [fl(y)a(?; 9%o(y — ) —f2(y)%¢g(y—x)]d5y, (46)
Qp

A on
o0, J J

09, =5U (09, \ S). According to [47], let us estimate

0, 9 0®,
dy;  Oxk dy;

¢0'7
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Lemma 1 yields the assertion of Theorem 2. Indeed, if M is a compact set in 2, then M C G,,.
Therefore, the inequalities in Lemma 1 for ®,(y — z) and its derivatives remain also valid in the
case where x € M C Q, and y € 09,\S C 9G, (in this case, ¢ is the distance from the compact
set M C Q, to 052,). Now, let o tend to infinity. The proof of Theorem 2 is complete. O

We can write (4.5) in the following equivalent form:

U (x o 0D (r
w_[Z J(a,m>+/f<y> olr) g
6xj axj 6xj
% (4.7)
9" 0Py(r) ai%(r)
— — . Q
/[fl( )axz an f( ) ax; dSy7 T E P
S
where
0" oV, (y—=x o' oV, T OV, (y —x
)= [ 1T RE= D gy [ i) D)) PR,
ox’ oxt ox’ on ozt
j % ’ s ’ ! (4.8)
° i 2w, g
Q, i=01 j=12 g 9% _p,. Yo _g 22 _ g
T e P 1 07 ] j 9 737 8.%'9 Ua 8.%'9 0, ({91'2] o ax? J

The functions ¥, (y — x) and ®y(r) are defined by equalities (4.2) and (4.1), respectively. The
proof of (4.7) follows from the formulas

lim 6<P(0,:c):/ 8‘M—l— 84P(:c)
0

o—so00 Ot

J

and

) 7 7 )
8xj ij J ij on j

reQ, i=01, j=123;

= apéc;,x) N /f(y)wcﬁ/—/ [fl(y) T oy —a) - foly) 2o (y — )| dS,
Qp

moreover, the differentiation under the integral sign is legal and

9" OP(o,x) B ot
Bxé Jo ot

Theorem 3. Let S C C?, fi(y) € C*(So) NL(S), f2(y) € C(So) NL(S), and let f be bounded
and locally Hélder continuous in Q,. Then for the existence of a function U(y) € H$,) N C(Sp)

such that oU
Uly) = fiy), 5 W) =rfaly), €&, (4.9)

it is mecessary and sufficient that the following improper integral converge (uniformly on compact

sets in G) for each v € G:
' /J(U,x)da
1

where J(o,x) is defined by (4.8). If (4.10) is satisfied, then harmonic continuation is performed by
equivalent formulas (4.5) and (4.7).

< 00, (4.10)
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P roof. Necessity: Let
U(y) € H(Q,) NCHQ, U Sp) N L(S)

satisfy (4.10). Let M be a compact set in G, and let € > 0 be such that M C Eie C E; C G, It
is clear that the distance from M to aGi is at least em; and the distance from 8G§5 to aGi is emy.
Now, let y € R*\ G5 (/| < 7(ys —¢) and y3 > ¢) and z € M (|2/] < 7(x3 — 2¢) and x3 > 2e).
Then argw = arg(ow) = arg(itvVu’ + s + Tys — 7x3) and

Tw =iV U2 + s+ TYs — T3 = \/uz—i-s(itgl—i-M), u>0, p>1,
20 Vu?+s

Tys — T3 _ |y|— |2/ —eT , , T ‘ T
< <1-¢q, x, argla £ttg—)| > —; a< 1.
T S ] o 1, Y # 8( g2p) %

Therefore, (2.5) is valid for argw; moreover, if 3/ = 2/, then Rew < 0, and this inequality
also holds. Consequently, ®,(y — x) and ¥, (y — z) satisfy estimates (3.2)—(3.5) from Lemma 1,
where § > e77. Define S, = @; N .S; in this case, the part S. C S together with the part T, of the
cone surface an form a closed piecewise smooth surface S, U T (with the consistent direction of
the outer normals) which is the boundary of a simply connected bounded domain. Represent the
integral on the right-hand side of (4.8) as the sum of two integrals according to the representation
S = S:U(S\ S:). Since ¥, (y — x) is a regular solution of the Poisson equation, by Green’s
formula, the integral over the part S. is equal to the integral over T;; moreover, ¥, (y — x) satisfies
inequalities (4.7) and (4.9) for y € T, and x € M, and the extended function U(y) together with
its gradient is bounded by a constant depending on e. Therefore, the modulus of the integral over
the part S. does not exceed the quantity

const >
1+ 6202’ o 20,

with a constant depending on p,¢,d, and the diameter of the domain ©,. Since |y| > 7(y3 — ¢),
y3 > e, wheny € S\ S: and z € K and fi(y), fo(y) € C(So)NL(S), these inequalities remain valid
for the modulus of the integral over S\ S; (of course, with other constants). Hence, we have (4.10).

Sufficiency: Under the assumptions of the theorem, define functions U(zx), z € G, \ So, by
the right-hand side of (4.7). Consider the first term on the right-hand side of (4.7). Since ¥, (y)
satisfies the Poisson equation in G, for o > 0, the function J(o,x) satisfies the Poisson equation
with respect to x in G, for o > 0. Therefore, we conclude from (4.10) that the first term on the
right-hand side of (4.7) satisfies the Poisson equation in G, as the limit of the uniformly converging
sequence of the solutions of the Poisson equations

n

Un(x):/J(a,x)da, n=12....
0

The second and third terms are the potential difference of the volume, single, and double layers
and represent one solution of the Poisson equation in 2, and another in Q; =G, \ﬁp. Therefore,
the right-hand side of (4.7) defines two different solutions of the Poisson equations U™ (z) and
U~ (z) in Q, and Q. If x! and 22 are two points on the normal at x € Sy symmetric with respect
to x, then

@)~ Y )| = pw), ze S

lim [Ut(z') -~ U (2] = fi(z), lim ot on

rloz oz | On
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moreover, the limit relations hold uniformly in x on each compact part Sp. If maxys < x3, where
y € Sandz € G,, then Rew = y3—x3 < 0 and ®,(y—x) and its derivatives satisfy inequalities (4.6)
and (4.3). Now, from formula (4.5), which is equivalent to (4.7), we see that U~ (z) = 0 and
U~ (z) =0, x € Q,, by the uniqueness theorem. It is clear that U~ (z) extends smoothly to ;,U So.
Then U™ (z) extends smoothly as a function of the class C1(Q, U Sp) (see [29]). Consequently,

n oUu+
U (1’) = fl(x)a a—(x) = f2(1'), x € 5.
n
Now, we set U(z) = UT(z), z € Q, U Sp. Theorem 3 is proved. O
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Abstract: A subset H C V(G) of a graph G is a hop dominating set (HDS) if for every v € (V' \ H) there is
at least one vertex u € H such that d(u,v) = 2. The minimum cardinality of a hop dominating set of G is called
the hop domination number of G and is denoted by ~;(G). In this paper, we compute the hop domination
number for triangular and quadrilateral snakes. Also, we analyse the hop domination number of graph families
such as generalized thorn path, generalized ciliates graphs, glued path graphs and generalized theta graphs.

Keywords: Hop domination number, Snake graphs, Theta graphs, Generalized thorn path.

1. Introduction

Domination in graphs is fascinating topic in the field of graph theory. It is one of the most
effective mathematical models for a variety of real world problems. A simple undirected finite graph
G holds a vertex set V(G) with vertices and an edge set F(G) whose members are unordered pair
of vertices called lines or edges of G. The degree of a vertex v, denoted by d(v), is the number of
edges that are incident with v and the distance d(u,v) between any two distinct vertices u and v
is the length of the shortest path connecting u and v in G. We use the symbol [n] = {1,2,...,n}.
For any other graph theory terminology not defined here, we follow [3].

In a graph G, a subset D C V(@) is said to be a dominating set if every vertex not in D is
adjacent to at least one vertex in D. The minimum cardinality of a minimal dominating set of
G is the domination number v(G). In the last three decades, several domination parameters have
been established and they have been intensively investigated with applications in communication
networks, facility location problems, game theory, mathematical chemistry, and so on. For a
detailed study on domination concepts, one may refer [8—10].

Ayyasamy et al. [1] defined a new distance-based domination parameter called the hop dom-
ination number of a graph G. A subset H C V(G) of a graph G is a hop dominating set (HDS)
if for every vertex v not in H, there exists at least one vertex u € H such that d(u,v) = 2. The
minimum cardinality of a hop dominating set of GG is called the hop domination number of G and
is denoted by v,(G). The hop degree of a vertex v in a graph denoted by dj(v) is the number of
vertices at distance= 2 from v. The hop graph H(G) of a graph G is the graph having same vertex
set and two vertices u, v are adjacent in H(G) iff dg(u,v) = 2. Also, Ayyasamy et al. [2] obtained
some bounds on hop domination number for trees and characterized trees attaining those bounds.
Natarajan et al. [13] found characterization results for hop domination number equals other domi-
nation parameters like total domination number, connected domination number for several families
of graphs. Many scholars have explored this parameter in the years thereafter, leading to novel
versions such as connected hop domination, total perfect hop domination, Roman hop domination,
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Global hop domination, etc., [11, 12, 15-18, 20]. In 2018, Natarajan et al. [14] discussed hop
domination number for some special families of graph like central graph, middle graph and total
graph. Recently, Packiavathi et al. [6] obtained the hop domination number of a caterpillar graph
P.(l1,ls,...,1,) (a caterpillar is a graph obtained from the path by attaching leaves I; to i’ vertex
of the path P,) and the domination number for some special families of snake graphs which occur
as hop graph of P,(1,1,...,1) and P,(2,2,...,2). We refine their result on caterpillar graph and
present an elegant result.

2. Main results

In this section, we study the hop domination number of snake graph families like triangular,
alternate triangular, quadrilateral and alternate quadrilateral snakes. In addition, the hop domina-
tion number of some generalized structures like generalized theta graphs, generalized thorn paths
and generalized ciliates graphs GC(p, ¢,t) for p = 3 and p = 4 are determined.

Definition 1 [7]. Let [y,l3,...l, be n positive integers. Then the thorn graph
G' = G'(ly,ls...1,) is obtained from a graph G by attaching l; pendant vertices (thorns) to each
vertez v; of G, i € [n].

In 2020, Getchial Pon Packiavathi et al. [6] obtained the following result on caterpillar graphs.

2r, if n=2r;

Theorem 1 [6]. v,(P,(1,1,...1)) = Wh(Pn(Q,Q,...Q)):{ o +3. if n—2r+1.

First, we observe that the result given in Theorem 1 is wrong. For example, v, (Py(1,1,1,1)) =2
whereas from their computations it is 4. So, we refine the result by taking the more generalized
version of caterpillar called thorn path P..

Theorem 2. Forn > 1,

L"_1J+1, if n=0,1,3 (mod 4);

Wm(Pr) =14 tpd
{§—| +1, if n=2 (mod 4).
Proof. Letvy,vo,---,v, be the vertices of the central path P, in Pﬁ (see Fig. 1).

Case 1: n =2 (mod 4). In this case, any ~yp-set is of the form

{vil]i=1 (mod4), 1<i<(n—-2)}U{v;]j=2 (mod4), 2<j<(n—1)}U{va1}.

Thus,
n
m(Py) < | 5] +1
and it is easily seen that
n
mPy) = | 5]+ 1.
Therefore,
n
W(P) = {51 +1

Case 2: n=0,1,3 (mod 4). In this case, any ,-set is of the form

{vili=2 (mod4), 2<i<(n—-2)}U{v;|j=3 (mod4), 3<i<(n—1)}U{va1}.
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I(n-1)m

Thus,

and it is easily seen that

Therefore,

0

In [4], Derya Dogan et al. obtained some results for weak and strong domination in thorn
graphs. Inspired by their results, we study our parameter namely, hop domination number for
thorn rod given in [4], as well as for other generalized graph structures.

2r, if n=6r;
Lemma 1 [1]. v, (P,) =< 2r+1, if n=06r+1;
2r+2, if n=6r+s, 2<s<5.

Rewriting Lemma 1 in terms of congruence, we have

LgJ, if n=0 (mod 6);
n(Po) = L%J 41, if n=1,34,5 (mod 6);

LgJ—i—Z if n=2 (mod 6).

Definition 2 [4]. A thorn rod is a graph P,; which is obtained by taking a path on n > 2
vertices and attaching (t — 1) leaves, known as thorns, at each of the end of P,.
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Figure 2. Thorn rod P, ;.

Note that P ; is a star graph Ky ;1.

Ln_?)loJJrG’ if n=0 (mod 6);
Ln—lo

3

V‘_gloj +4, if n=4 (mod 6).

Theorem 3. 7,(Pn) = J 45, if n=1,2,3,5 (mod 6);

P roof. Let uslabel the vertices of central path P, as vy,vs...v,. Let the leaves or thorns
at the vertex v be x1,x2,... 21 and the thorns at the vertex v, be y1,y2,...y:_1.

From Fig. 2, it is clear that to hop dominate 2(¢ — 1) leaves and their support vertices, any
Yp-set must include the vertices vo, v3, V1, Un_2.

Now, the subgraph induced by P, —{v1, va, V3, V4, U5, Up—4, Un—3, Un—2, Un—1, Up }, is clearly a path
on (n — 10) vertices.

By Lemma 1,

—10

VL J, if n=4 (mod 6);
; 10

Mm(Pact0) = |F5—| +1, i n=0,1,35 (mod 6);

—10

VL 3 J—i—2, if n=2 (mod 6).

and hence v, (G) = 4 4+ v,(Pr—10). Thus, the result follows. O

Definition 3. A glued path GP(n,t) is a graph obtained by gluing t copies of a path P,(n > 2)
at a common vertex v such that v is the initial vertex in each copy of P,.

o33

(

2 t, if n=0,5 (mod 6);

2| = |t +1, if mn=1 (mod 6);

T
—

Theorem 4. v,(GP(n,t)) = n

ﬂt—l] +1, if n=4 (mod 6);

2

2| =t +2, if mn=2,3 (mod 6).

|3

P roof. Let us arrange the vertices of GP(n,t) row-wise subject to the following conditions:
(i) Place the common vertex in the 1%¢ row Rj.

(ii) First vertex of each copy of the path P, be placed in the 2" row Rs.
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Ry

R,

Rs :

R, Vn—1'§ Vi1 Vo1t
Rn.+l Vn' V“"

Vnt

Figure 3. Glued path GP(n,t).

(iii) In general, n'* vertex of each copy in the (n + 1) row R, 1.

From Fig. 3, it is clear that, each row R; has ¢ vertices except the first row. That is, V(R;) =
{vi, v;/, . ,v§t)}, 2 <i < (n+1). To hop dominate all those leaves and support vertices, all the
vertices in R,,—1 and R,_2 must be selected from a vu-set of GP(n,t). This choice will also hop

dominate all of the vertices of R,,_3 and R,,_4.

Case 1: n =0 (mod 6). In this case, any 7,-set contains 2[n /6]t vertices from the following
rows R = {R(n71)7 R(n72)7R(n77)7 R(nfg), cee ,R4, Rg}. Thus,

Wm(GP(n,t)) < 2{2175.

It is easy to observe that any hop dominating set of GP(n,t) contains at least 2[n/6|t vertices.
Therefore,

m(GP(n,t)) =2 {%]t

Case 2: n = 5 (mod 6). In this case, any 7,-set includes 2[n/6|t vertices from the rows
(R\ R3)U{v1}. Thus,

M (GP(n,t)) <2 % t.
Also, N

m(GP(n,t)) > 2 % t.
Therefore, o

(GP(n,t)) =2 % t.

Case 3: n =1 (mod 6). In this case, any ~p-set includes vertices from the following rows

R = {R(n71)7 R(n72)7R(n77)7 R(nfg), ..., Rs, R4} U {1)1}. Thus,

m(GP(n,t)) < 2[%Jt+ 1.
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One can observe that

m(GP(n,t)) > %%Jt Y

Therefore,
(GP(n, 1)) = 2 L%Jt +1.

Similarly, the proof follows for other cases. O

The generalized thorn path can be defined as follows,

Definition 4. The graph obtained by taking a path P, and attaching t copies of P, to every
vertex of Py, is said to be a generalized thorn path and denoted by G(n,r,t),n > 1.

Y (Py) + nt LgJ, if =0 (mod 6);

Theorem 5. v,[G(n,rt)]=¢ n+nt EJ, if r=1,2,3 (mod 6);
ntqu —i—l), if r=4,5 (mod 6).

Proof. LetS = {v; :1<i<r 1<j <t} denote the vertices of the ith copy of P, as

shown in Fig. 4.

J

Vi
e ’ Vn
Vit ¢ LTI T
v
21 '
V22 Vot
V' EVI
n-1)1g - -1)2 !
oD N2 Vit
V' ] ]
r Viz Vit

Figure 4. Generalized thorn path G(n,r,t).

Case 1: 7 =0 (mod 6). In this case, the set
H' = {t(n-2)j Yn-1)3 Yn-8)s> Vn—o)j - Vaj» V3 1L ST <1}
hop dominates all vertices in each copy of P.. In order to hop dominate the vertices of the path

P, any yp-set of G(n,r,t) should contains ~, (P, ) vertices. As a result,

Vh[G(nﬂa?t)] < Vh(Pn) + ’H/’ =Y (Pn) +nt LgJ .

It is easily seen that

WG, )] = Y (Pn) + [H'| = () + nt LgJ
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Therefore,

’Yh[G(’I’L,T’,t)] = 'Yh(Pn) + |H/| = ’Vh(Pn) + nt LgJ .

Case 2: r =1, 2, 3 (mod 6). Here, any ~;,- set contains the set

H' = {{_9)1 Vn—3)j> Vn—g)j> Vin—0)j - - - V2j> V1j» L <J <1}
and so H' UV (P,) forms a y,-set of cardinality n + |H'|.

Case 3: r =4, 5 (mod 6). In this case, vertices in attached ¢ copies are sufficient for a ~,-set
of G(n,r,t). Therefore,

WG n.r,0)] = ni(F) < ni( | 5] +1).

Also, any minimal HDS of G(n,r,t) requires at least

|G (n,7,8)] = ntyp(Pr) > nt(@ + 1)

vertices. Hence,

YR[G(n,m,t)] = ntyp(Pr) = nt(LgJ + 1).

O

Definition 5 [19]. A generalized theta graph 8[nP(m)] is a graph obtained from n-internally
disjoint paths, in which each path P(m) contains m internal vertices and these paths share common
end vertices u and v (see Fig. 5).

Figure 5. Generalized theta graph 8[nP(m)].

4+ LmT_GJ’ if m=0(mod6);
Theorem 6. v,(0[nP(m)])=< 4+ nHmT_(SJ + 1], if m=1,3,4,5(mod 6);
m—=6

4+nHTJ +2|, if m=2(mod6).

Proof. Let us denote §[nP(m)| by G for convenience. Clearly, {u,v} should be included in
any yp-set and any one vertex from column C; and C), is enough to hop dominate the vertices in
Cy and Cy,. The induced subgraph (G — {u,v} UC; UCyUC),—1 UCy,) is a collection of n-distinct
paths P,,_4. As a consequence of Lemma 1, the result follows. O
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Figure 6. Triangular snake T}.

Definition 6 [5]. A triangular snake graph T), is a graph obtained from the path P, by replacing
each edge by a cycle of length 3. For example, a triangular snake Ty is shown in Fig. 6

A double triangular snake DT, consists of two triangular snakes that have a common path.

That is, a double triangular snake is obtained from a path vi,va,...,v, by joining v; and v;+1
to a new vertex x; fori=1,2,...,n—1 and to a new vertex y; fori=1,2,...,n—1. For example,
a double triangular snake DTy is illustrated in Fig. 7.

A triple triangular snake T'T,, is a graph in which three triangular snakes have a common path.

Similarly, a four triangular snake F'T,, is a graph in which four triangles share a common path.

<
(&)

Y4 y2 Y3 y4

Figure 7. Double triangular snake D7Tg.

Remark 1. ~,(T,) > 3.

Theorem 7.

S
|
w

J, if mis odd(n # 3),

Y (Tn) = W (DTy) = y(TT,) = w(FT,) =
J, if mis even (n # 6).

P r o o f. First, we observe that any ~,-set of T}, will also be a ~-set for DT,,,TT,, and FT,
because they share a common path.

For n = 3 and 6, y,(T3) = 4 (Ts) = 3.

Let us label the vertices of the common path as {v1,vs...v,} and the remaining vertices of T,
be S ={z;i+1}, 1 <7< (n—1) as shown in Fig. 8.
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Figure 8. Triangular snake 7,.

Xn—z, n-1

Case 1: n is odd and n > 5. While finding any ~yp-set of T}, the vertices vy and v,_o are taken
and the remaining vertices from the subset S C .S where

Sk =A{ziit1/i=0 (mod 2), 2

Clearly, |Si| = (n — 3)/2. Thus,

W(Tn) <2+
It is easily seen that

W (Tn) =2+
Therefore,

(Tn) =2+

i < (n—3)).

Case 2: n is even and n # 6. Note that any common vertex say x;;+1 hop dominates the
vertices v;_2 and v; of Py, j_2;_1, Tiy1,42. Equivalently, the hop degree of any vertex is at most 4.

Hence by choosing vertices from the set

S]/g = {xi,i-i-l‘ 1=0 (mod 2), 2 < ) < (n— 2)} Q S,

any yp-set can be obtained which includes the non-hop dominated vertices vo and v, _1 too. Thus,

(1) <2+
It is observed that

(1) > 2+
Therefore,

W(Tn) =2+

n—2
2

n—2
2

n—2
2

0

Definition 7 [5]. An alternate triangular snake AT, is a graph obtained from the path P,, in
which every alternate edge of a path is replaced by o cycle C5. For example, an alternate double

triangular snake is shown in Fig. 9.

An alternate double triangular snake AD(T,) is obtained from two alternate triangular snakes
that share a common path. For erxample, an alternate double triangular snake is illustrated in

Fig. 10.

An alternate triple (four) triangular snakes AT (T,,)(AF(T,)) consists of three (four) alternate

triangular snakes that share a common path.
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X
X, Xy 3
V. V,
V V 3/\\/

Figure 9. Alternate Triangular snake ATg.

Figure 10. Alternate Triangular snake ADTs5.

Theorem 8.

g, if n=0,2 (mod 4);
Y(AT,) = W (AD(T,)) = m(AT(Ty)) = m(AF(T},)) = " _2|_ 17 if n=3 (mod 4);
n;l, if n=1 (mod 4).

Proof. Let us follow the labeling of vertices as described in Theorem 7. Here, d(v;) = 3,
1 # 1,n and any vertex of path P, hop dominates at most 3 vertices. In any ~y,-set, it is clear that
central vertices of P, alone appear consecutively (see Fig. 11-12).

Case 1: n is even.

Case 1.1: n =0 (mod 4). Here, any ~yp-set is of the form
S={v]i=2 (mod4), 2<i<(n—-2}U{v|j=3 (mod4), 3<j<(n—1)}.

Thus, y,(AT,) < n/2. It is easily seen that, y,(AT},,) > n/2. Therefore, v4(AT,) = n/2.

Case 1.2: n =2 (mod 4) In this case, v,_o must be chosen in any ~,-set and the remaining
vertices are chosen from {ve,vs, v, v7, ... V4, n—3}. Thus, v,(AT,) < (n—2)/24+1=n/2. Tt is
easily seen that v, (AT,) > n/2. Therefore, v,(AT,) = n/2.
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12 ! n—‘l,n

n-1

Figure 12. AT,,, when n is odd.

Case 2: n is odd.

Case 2.1: n =1 (mod 4). In this case, any y,-set are chosen from {vg, v3, vg, V7, ... Vn—3,Vn—2},
with cardinality (n —1)/2.  Thus, Y (AT,) < (n—1)/2 and it is easy to verify that
Yo(AT,) > (n —1)/2. Therefore, v4(AT,) = (n —1)/2.

Similarly, the case for n = 3 (mod 4) follows. O

Definition 8. A Quadrilateral snake @ is a graph obtained by replacing each edge of a path
P, by a cycle of length 4.

An alternate quadrilateral snake AQ, is obtained from the path P, by replacing its alternate
edges with Cy.

2
n—21— , if n=0,2 (mod 4);
Proposition 1. (i) (Qn) = n _2|_ 3, if n=1 (mod 4);
1
n—21— , if m=3 (mod 4).
1
n—2|— , if m=1,3 (mod 4);
(1) (4@ ={ 2,
5 if n=0,2 (mod 4).

Definition 9. Ciliate is a graph C(p, s) obtained from p disjoint copies of the path Py by linking
one end point of each such copy in the cycle C,. For example, a Ciliate C(3, 3) is shown in Fig. 13.
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$ '

) ®
Figure 13. Ciliate C(3, 3).

Remark 2. y,[C(p,q)] =p ’Yh(Pq)-

Definition 10. A generalized ciliate GC(p, s,t) is obtained by attaching t-copies of path Ps to
each vertex of the cycle C,,.

2+ 3t g , if s=0 (mod 6);

3+3¢]2 , if s=1,3 (mod 6);
Proposition 2. v,[GC(3,s,t)]= s -5

3t bJ +1, if s=4,5 (mod 6);

3_|_3tf, if s=2 (mod 6).

2+4t§ , if s=0,1 (mod 6);

Theorem 9. 7,[GC(4,s,t)]= 4+4tE , if s$=2 (mod 6);

4tEJ, if s=3,4,5 (mod 6).

Proof. Let usdenote the vertices in the i*® copy of the path P, as {v},vi... vl :1 <i<t}.
as shown in Fig. 14. Clearly, to hop dominate the leaves and its support vertices in every i*" copy
of Ps, the vertices v¢_, and v%_; (1 <i <t) have to be chosen for any v,-set of GC(4, s, t).

Case 1: s = 0,1 (mod 6). To hop dominate v;’s and the vertices of the cycle, any ~,-set
includes ug,us. The remaining vertices in each copy of Ps; in GC(4,s,t) will induce a path, thus
it is sufficient to add to {v!_5,v! 4, v _g, vl _o... 05, v}, 1 < i < s to yu-set of GC(4,s,t). Thus,
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Figure 14. Generalized ciliate GC(4, s, t).

YIGC (4, s,t)] < 2+ 4ty (Ps) < 4t|s/3] and it is easily seen that v,[GC(4,s,t)] > 2 + 4ty (Ps).
Therefore,
’WL[GC(ZL’ S, t)] =2+ 4t’7h(Ps)

Case 2: s =2 (mod 6). Any 7j,-set comprises u,us, uz, 4 to hop dominate v and v} as well
as the vertices of the cycle. Each copy’s remaining vertices will induce a path on (s — 2) vertices.
As a result, {vi_, vl 4, vl ¢ vl g... 0 vi} are required to form a v,-set of GC(4,s,t). Thus,
MIGC(4,s,t)] <4+ 4t|s/3] and it is easy to show that v,[GC (4, s,t)] > 4 + 4t|s/3|. Therefore,

MWIGC(4,s,t)] = 4 + 4t|s/3].

Case 3: s = 3,4,5 (mod 6). When s = 3,5 (mod 6), H = {v]_,, vl 5,08 g v o... 05 vi}
forms a v,-set of GC(4,s,t), whereas for s = 4 (mod 6), H = {vi_,, vl 5,0l ¢ vl o... 05 vi}
forms a ~p-set. Thus, 1,[GC(4,s,t)] = 4ty (Ps) < 4t(|s/3] + 1). It is easily seen that
Y[GC(4,s,t)] > 4t(|s/3] + 1). Therefore,

WIGC(4,s,t)] = 4t(|s/3] + 1).
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3. Conclusion

In this study, we computed hop domination number for some special families of graphs like

triangular, quadrilateral, alternate triangular, alternate quadrilateral snake graphs and examined
hop domination number for some generalized graph structures like generalized theta graph, glued
path graph. In future, the result obtained for generalized ciliates p = 3,4 may be extended to p > 4.
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Abstract: The paper is devoted to the problem of classification of edge-transitive distance-regular antipodal
covers of complete graphs. This extends the classification of those covers that are arc-transitive, which has been
settled except for some tricky cases that remain to be considered, including the case of covers satisfying condition
c2 = 1 (which means that every two vertices at distance 2 have exactly one common neighbour).

Here it is shown that an edge-transitive distance-regular antipodal cover of a complete graph with co =1
is either the second neighbourhood of a vertex in a Moore graph of valency 3 or 7, or a Mathon graph, or a
half-transitive graph whose automorphism group induces an affine 2-homogeneous group on the set of its fibres.
Moreover, distance-regular antipodal covers of complete graphs with ca = 1 that admit an automorphism
group acting 2-homogeneously on the set of fibres (which turns out to be an approximation of the property of
edge-transitivity of such cover) are described.

A well-known correspondence between distance-regular antipodal covers of complete graphs with co = 1
and geodetic graphs of diameter two that can be viewed as underlying graphs of certain Moore geometries,
allows us to effectively restrict admissible automorphism groups of covers under consideration by combining
Kantor’s classification of involutory automorphisms of these geometries together with the classification of finite
2-homogeneous permutation groups.

Keywords: Distance-regular graph, Antipodal cover, Geodetic graph, Arc-transitive graph, Edge-transitive
graph, 2-transitive group, 2-homogeneous group.

Introduction

A distance-regular antipodal cover of a complete graph can be defined as a connected graph
whose vertex set admits a partition into n classes (called fibres) of the same size r > 2 such that each
class induces a coclique, the union of any two distinct classes induces a perfect matching, and any
two non-adjacent vertices from distinct classes have exactly co > 1 common neighbours. According
to [8], such a graph will be referred to as an (n,r, cz)-cover. One can see that an (n,r, cy)-cover is
indeed a cover (or a covering graph) of the complete graph K, in the topological sense (see [8] or
[7]), and that its diameter is 3.

To date, almost all arc-transitive (n, r, ca)-covers have been classified (see [14, 15, 19-22]), except
for the following two tricky cases: when an arc-transitive automorphism group induces an affine
permutation group on the set of fibres (see [22]) or ¢; = 1 (see a discussion below in this section).
Note that an arc- or, more generally, edge-transitive automorphism group of an (n,r,cs)-cover
induces a 2-homogeneous action on its fibres. The purpose of this paper is to study the (n,r,1)-
covers whose automorphism group acts 2-homogeneously on the set of fibres, and to describe those
that are edge-transitive.

IThis work was supported by the Russian Science Foundation under grant no. 20-71-00122.
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The afore-mentioned interplay between edge-transitivity and 2-homogeneity allows us to base
our arguments on the classification of finite 2-homogeneous permutation groups, which follows from
the classification of finite 2-transitive permutation groups and the Kantor’s fundamental result [11].
To investigate admissible groups of automorphisms, we also exploit a remarkable correspondence
between (n,r, 1)-covers and geodetic graphs of diameter two (see [2]) that are equivalent to certain
Moore geometries. The classification of involutory automorphisms of these geometries that is due
to Kantor [12] together with the Higman’s technique for studying automorphisms of association
schemes (e.g., see [4, Section 3.7]) turn out to be effective tools for their description.

Main results of this paper are presented by the following two theorems.

Theorem 1. Let A be a (k+ 1,r,1)-cover with s :=k —r+1> 1, let ¥ be the set of fibres of
A, and G = Aut(A). Denote by K and G* the kernel and the image of the induced action of G on
3, respectively. Then k = cs and r = cs — s+ 1 for some ¢ € Z, and the following statements hold:

(1) if G* is a 2-homogeneous, but not 2-transitive group, then

G¥ <ATLi(q), k+1=q¢=3 (mod4), es+(s/2-12¢7Z,
and either K =1, s=2 and ¢ = (¢ —1)/2, or s is odd,;

(2) if G* is an almost simple 2-transitive group, then either K =1, s = 2, ¢ = 27!, Soc(G) ~
L2(29) and A is a Mathon graph, or G acts intransitively on vertices of A;

(3) if G* is an affine 2-transitive group, then G acts intransitively on arcs of A.

Theorem 2. Suppose A is an edge-transitive (k+ 1,r,1)-cover, let ¥ be the set of fibres of A,
and G = Aut(A). Denote by K and G* the kernel and the image of the induced action of G on %,
respectively. Then either k =r € {2,6} and A is the second neighbourhood of a vertex in a Moore
graph of valency k + 1, or k > r and one of the following statements holds:

(1) G* is an almost simple 2-transitive group, K = 1, Soc(G) ~ Ly(2°) and A is an arc-transitive
Mathon graph of valency k = 2°;

(2) G* is an affine 2-homogeneous group and A is a half-transitive graph.

Recall that the only Moore graphs of valency 3 or 7 are the Petersen graph or the Hoffman-
Singleton graph, respectively (see [10]). Note that for each admissible k the resulting graph in
Theorem 2 (1) is unique (up to isomorphism) and its construction is due to Mathon (e.g., see
[3, Proposition 1.17.3]).

We also remark here that in [6, Proposition 4] it was claimed that each (k + 1,7, 1)-cover with
s > 1 that possesses a group of automorphisms acting 2-homogeneously on the fibres necessarily
has valency k = 2¢ and s = 2. Unfortunately, the proof of this result (see an exposition in [16])
is flawed; Theorem 1 shows that it holds under the additional assumption of arc-transitivity of
the graphs under consideration. Thus, compared together with previous results (see [14, 15]), the
classification of arc-transitive (n,r, cz)-covers in the almost simple case is complete.

The organization of the paper is as follows. In Section 1 we recall some basic definitions and
facts on (n,r,1)-covers. In Section 2 we obtain general results on automorphisms of such a graph.
Section 3 is devoted to the proofs of Theorems 1 and 2.
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1. Preliminaries

Throughout the paper we consider only finite undirected graphs without loops or multiple edges.
By a subgraph of a graph I' we mean a vertex-induced subgraph, and we also identify a subset X
of vertices of I' with the subgraph of I' that is induced by X. The distance between vertices x and
y of a graph I' is denoted by Or(z,y), or simply 9(x,y) if ' is clear from the context. For a vertex
a of a graph I', we denote by I';(a) the i-th neighbourhood of a, that is the subgraph of I' induced
by the set {b € ' | dr(a,b) = i}. The number of neighbours of a vertex a, i.e., the size of I';(a), is
the valency of a in T'. For a fixed graph I' and any its vertex a, the subgraph I'1(a) is also denoted
by [a] if the graph T is clear from the context; we also put a’ := {a} U[a]. A graph is said to be
regular if all its vertices have the same valency; a graph is said to be biregular if it is not regular
and every of its vertices has one of two possible valencies.

A graph is geodetic if every two of its vertices are joined by a unique shortest path. A biregular
geodetic graph of diameter two that is not contained in a' for any its vertex a is referred to as a
BRG-graph.

A connected graph I' of diameter d is called distance-reqular if there are integers c;, a; and b;,
for all i € {0,1,...,d}, such that for each pair of vertices z and y with dr(x,y) = 4, the following
equalities hold:

¢i=|Tici(x) NT(y)], ai=|Ti(x)NTi(y)| and b = [Tiy1(z) NTi(y)l,

where by = ¢o = 0 by definition; in particular, |T'y(z)| = by = ¢;+a;+b; holds for any ¢ € {0, 1, ..., d}.
The sequence {bg,b1,...,bg_1;¢1,...,cq} is called the intersection array of I'.

A distance-regular graph of diameter 2 is also called strongly reqular. A graph is said to be edge
reqular if it is regular and there is a non-negative integer A such that every two adjacent vertices
have exactly A common neighbours; a graph is said to be amply reqular if it is edge-regular and
there is a non-negative integer p such that every two vertices at distance 2 have exactly p common
neighbours.

If the binary relation “to be at distance 0 or d” on the set of vertices of a connected graph I’
of diameter d is an equivalence relation, then the graph I' is called antipodal; the classes of this
relation are called antipodal classes or fibres of I'. We will say that an antipodal graph I' is an
antipodal cover of a graph A, if I' is not a complete graph and the following three conditions are
satisfied: (i) every fibre of I induces a coclique, (i7) the union of any two distinct fibres of I' induces
a coclique or a perfect matching, and (i4i) A is isomorphic to the graph I' defined on the fibres
of I', in which two vertices are adjacent if and only if the union of corresponding fibres forms a
matching in I'. By the Smith’s theorem [3, Theorem 4.2.1], non-cyclic distance-regular graphs fall
into families of primitive, bipartite or antipodal graphs. Every graph of diameter d from the latter
family is a complete graph or a complete multipartite graph with parts of equal sizes if d = 1
or 2, and it is an antipodal cover of a distance-regular graph of diameter |d/2] when d > 3 [5].
Hence distance-regular antipodal covers of complete graphs are precisely antipodal distance-regular
graphs of diameter 3. They do not have a universal construction and form a large infinite class of
graphs that is closely related to many interesting combinatorial objects, like projective planes or
generalized quadrangles; we refer the reader to [3, 8, 16] for more background.

For a subset X of a group acting on a set 2, by Fixq(X) we denote the set of points in € that
are fixed by every element of X. When X = {g}, we write “Fixq(g)” instead of “Fixq({g})”. We
also write Fix(X) = Fixq(X) if © is clear from the context. In what follows, for a graph I" and a
subset X C Aut(T"), we identify the set Fix(X) with the subgraph of I" that is induced by Fix(X).

A graph is called vertez-transitive or edge-transitive, if its automorphism group acts transitively
on the set of its vertices or on the set of its edges, respectively. A graph is called arc-transitive, if
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its automorphism group acts transitively on set of its arcs (ordered pairs of adjacent vertices). A
graph is called half-transitive, if it is vertex- and edge-transitive, but not arc-transitive.
Our other terminology and notation are mostly standard and follow [1, 3].

Further in this section, we provide some auxiliary results that are used in the proofs of Theo-
rems 1 and 2.

Throughout the rest of the paper, A is an (k + 1,r,1)-cover, ¥ is the set of fibres of A and
s: =k —r+ 1. By [8, Theorem 3.4] there is an integer ¢ such that c¢s = k, the number cs + 1 is
odd and s < ¢. Put

v={(cs+1)(cs—s+1) and D=cs—s+1+s*/4=cs+ (s/2—1)%
Then v is the number of vertices of A and its distinct eigenvalues are
Bo=cs, 01=(s—2)/24+VD, Oy=-1, 63=(s—2)/2—VD

of respective multiplicities

mo = 1, ml:(cs+1)2(cs—s)<1_;;52>’ S m32(65+1)2(05_8)(1+;;52).

Due to a result of Gardiner [5, Proposition 5.1] the eigenvalues of A are integral if s # 2. Hence
for odd s the number 2v/D is an odd integer (since D = cs + 1 — s + s2/4), while for even s > 2
already the number v/D is an integer.

Let us construct a graph A by adding a coclique A to A, whose vertices are identified with the
fibres of A, together with a vertex b such that ﬁ(i)) = A, and assuming that a vertex F' € A is
adjacent to just those vertices of A which belong to the fibre F' € X. Note that each vertex from
A has valency r + 1 in A.

It is easy to see that Ais a geodetic graph of diameter two and hence by [3, Theorem 1.17.1]
cither A is a strongly regular graph and s = 1, or Ais a BRG-graph with valencies r+ 1 and k+ 1,
r < k, s > 2 and the following statements hold:

(1) if A and B denote the sets of vertices of A of valencies r + 1 and k + 1, respectively, then A
is a coclique, for each vertex a € A the subgraph [a] is a coclique, and if z and y is a pair of
adjacent vertices from B, then |[z] N[y]| =k —r =s5—1;

2) A=+ (k+1)+1.

Moreover, each geodetic graph of diameter two that has no vertex adjacent to all others, can be
viewed as the underlying graph of a Moore geometry, i.e. an incidence system of points and lines
which satisfies the following axioms:

(i

(ii

) there is at least one line, and each line has at least two points;

) two points are on at most one line;

(#97) no point is collinear with all others;

(iv) two non-collinear points are both collinear with exactly one common point;

)
)

(v) a point not in a line is collinear with at most one point of the line;
)

(vi) there are no triangles or quadrangles of lines.
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Also, by [5, Proposition 5.2], if s = 1, then A is a Moore graph (and ¢ € {2,6,56}). In what follows
we assume that s > 2, so Aisa BRG-graph, and its corresponding Moore geometry is said to have
type (cs + 2,¢s — s+ 3,5+ 1) in this case (see [12, p. 314]).

We say that A has type D,, if there is a projective plane (X, L) of order « = r + 1 with a
polarity 7 such that Ais isomorphic to the graph on X, in which two vertices x and y are adjacent
if and only if x € y™ (wherein £k = r + 1 and A coincides with the set of absolute points of the
polarity ).

Lemma 1. The following statements hold:

(1) ¢ > 2, the number cs + 1 is odd, s < ¢, and the neighbourhood of each vertex in A is the
disjoint union of c isolated cliques of size s;

(2) if ¢ = 2, then A is a unique distance-reqular graph with intersection array {4,2,1;1,1,4}
(the line graph of the Petersen graph) and A has type Dy;

(3) if 2 < ¢ <1000, then either s =2 and A has type Do, or the pair (s; D) is one of: (4; 25),
(4; 49), (3; 169/4), (6; 100), (9; 625/4), (4; 81), (11; 1225/4), 4; 121), (18; 784), (4; 169),
(35: 8649/4), (4: 225), (10; 676), (4; 289), (4: 361), (21; 7921/4),(46; 4900), (4; 441),
(11; 5625/4), (4; 529), (4; 625), (26; 4356), (14; 2500), (4; 729), (4; 841), (4; 961),
(4; 1089), (4; 1225), (8; 2601), (15; 20449/4), (4; 1369), (5; 7569/4), (4; 1521), (9; 14161/4),
(4; 1681), (152; 70225), (4; 1849), (4; 2025), (20; 10201), (4; 2209), (4; 2401), (144; 93025),
(4; 2601), (56; 38025), (44; 30625), (114; 81796), (4; 2809), (4; 3025), (4: 3249), (4; 3481),
(7; 25281/4), (4; 3721), (4; 3969).

P roof. The first two statements follow by [3, Proposition 1.17.3] and [8, Theorem 3.4].

To prove the third statement, first observe that the number of cliques of size s + 1 of A equals
(cs+1)(es —s+1)e/(s+1). Then, for 2 < s < ¢ < 1000, the computer check in GAP (which uses
integrality conditions for the eigenvalues of A and their multiplicities together with the condition
of integrality of the number (¢s + 1)(cs — s+ 1)¢/(s + 1)) gives just those feasible pairs (s; D) that
are listed in (3). The lemma is proved. O

The above restrictions for parameters of A will be frequently used in following arguments, in
particular, the list of feasible parameters from Lemma 1 (3) will be needed in Section 3 to rule out
the existence of A in a series of special cases.

Lemma 2. Let ® be an amply reqular graph with u =1 and suppose there is an automorphism
g of ® such that for a (g)-orbit ¥ each vertex x € ¥ is adjacent to x9. Then ¥ is a cycle or a
clique.

Proof. Suppose ¥ is not a clique. Denote by 4 the least number in {2, ..., |¥| — 1} such that
the vertices  and x9" are not adjacent. Then {z9,29 '} C [#] N [29'] and hence i = 2. Now let

j denote the least number in {3, ...,|¥| — 1} such that the vertices z and 29" are adjacent. Then
{297, 29’} C [x]N[2¢ '] and hence j = |¥| — 1. Thus, we conclude that ¥ is a cycle.
The lemma, is proved. O

Recall that (x,y) denotes the greatest common divisor of  and y.

Lemma 3 [16, Lemma 2.2.1]. The graph A has ezactly cs + 1 fibres, each of size cs — s + 1,
and the following statements hold:
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(1) s + 1 divides c(c — 1)(c — 2) and each odd prime divisor of D divides
(s —2,¢)(4c+1,s —4)(c — 1,8 + 4);

(2) if ¢ > 2, then there is a divisor d of cs such that s = d(d — 2)/(c — d) and
VD = (d+ c(d —2)/(c — d))/2, and if an odd prime p divides (D, s — 2), then the p-part of
d is less than p-part of c;

(3) if cs =2", then s = 2;

(4) if s =2, then A has type Dae.

P roof. Notethat A has exactly cs + 1 fibres, each of size cs — s + 1.

(1) Since there are exactly c(cs + 1)(es — s+ 1)/(s + 1) cliques of size s + 1 in A, s + 1
divides ¢(c¢ — 1)(¢ — 2). Let p be an odd prime divisor of D. Then p divides (cs + 1)(cs — s)(s — 2),
(p,c) = (p,s—2) and (p,cs+1) = (p, s%/4—s) = (p,4c+1). So, we conclude (p,c—1) = (p,1+52/4).

(2) Let ¢ > 2. Put D =y? and y — s/2+ 1 = d. Then
y?—(s/2—1)*=cs, y+s/2—1=cs/d.

Further,
y=(d+cs/d)/2, s/2—1=(cs/d—d)/2,

hence
s=dd-=2)/(c—d), y=(d+c(d—-2)/(c—d))/2.

Suppose an odd prime p divides (D, s — 2). As
s—2=(d*-2¢)/(c—d),
we get that p-part of d is less than p-part of c.
(3) Let ¢s = 2™. Suppose s > 2. Then
"4 (s/2—-1)2=D
is a square of a positive integer y. Hence
y—s/24+41=2" y4s/2—1=2""1 y=o7tpon-iml g _gnl_ol 4o

Since s is a power of 2, we find l =n — [ or [ = 1. If | = 1, then s = 2”1, which implies ¢ = s = 2,
while if ] = n — [, then s = 2, a contradiction in both cases.

(4) If s = 2, then by [3, Proposition 1.17.2] A has type Dy, (and thus it can be constructed on
the points of a projective plane of order ¢ = 2¢ = D with a polarity 7, whose absolute points form
a line A).

The lemma, is proved. O
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2. Automorphisms of (k+ 1,7, 1)-covers

In this section, we prepare some technical results about automorphisms of A, which will be
needed for the proof of Theorems 1 and 2.

The permutation representation of a group G < Aut(A) in its natural action on the vertex set
of A gives rise to a matrix representation G — GL,(C). Recall that C is the orthogonal direct
sum of the eigenspaces Wy, ..., W3 of the adjacency matrix of A, where W; corresponds to the
eigenvalue 0;. As each W; is a G-invariant subspace, it affords a character, say x;, of G. We can
calculate values of this character using the theory of association schemes (see [4, Section 3.7]).
Namely, let @ be the second eigenmatrix of A. (We assume that the first column of @) consists of
the multiplicities m;’s.) Then, for an element g € G, one has

3
Xi(9) =+ 3" Qujao),
=0

where o(g) denotes the number of vertices x of A such that d(x,29) = j. Recall that every
character value must be an algebraic integer; in particular, if the value is rational, then it is an
integer. The second eigenmatrix ) for A was determined in [16].

Lemma 4 [16, Lemma 2.2.2]. If g € Aut(A), then
(VD —s/2+1)
(cs — s +1)(2csv/D)
x(es = s+ 1)ar(g) — (es = 5/2 = VD +1)as(g) )  (es +1)/(2VD),

il = 8+l

xi(g) = <(0232—cs2+s/2+\/5—1)a0(g)+(3/2+\/5_1)x

— 1.

Lemma 5. If az(g) = v for an element g € Aut(A), then s > 2.

Proof. Suppose az(g) =v for an element g € Aut(A). Then by Lemma 4 we have

B _(\/5— /24 1)(es+1)
xi(g) = T .

Now if s = 2, then x1(9) = —(¢s +1)/2 € Z, but ¢s + 1 is odd, a contradiction. The lemma is
proved. ]

Lemma 6. If as(g) = v for an element g € Aut(A), then s = 2.

Proof. Suppose as(g) =v for an element g € Aut(A). Then by Lemma 4 we have

()__cs—i-l
X1\g —2\/5-

If s is even and s > 4, then 2 divides c¢s + 1, which is an odd number by Lemma 1, a contradiction.
Suppose s is odd. Then c is even and 4D = 4(cs + 1) + s(s — 4) divides (es + 1)?, hence

(4(cs + 1)+ s(s — 4))x = (cs + 1)
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for an integer x. Put y = (z,¢s +1). Then z = ay,cs + 1 = by, (s,by) =1 and b > a. Thus

—4
day + M by,
and b divides s — 4. Hence ¢ > s > a and
4a—|—5(8_4)a =b,
by

implying by divides (s — 4)a. But then 52 +1 < cs + 1 < s(s — 4), a contradiction. The lemma is
proved. ]

In Lemmas 7-9 it is supposed that there is an element g € Aut(A) of prime order p and
Q = Fix(g). For a vertex x € A, we put

Ri(z) = {y € [«] [ 0(y,y?) = i},

where i = 0, 1,2,3, and by F(x) we denote the fibre of A containing x.

Lemma 7 (cf. [16, Lemma 2.2.3], [12, Theorem 4.10 (i)—(i7)]). Suppose Q@ = &. Then
ag(g) =(cs —s+ 1)t

with t = |Fixs(g)|, and s = 2 or the number a1 (g) + st/2 — cs — 1 is a multiple of /D; moreover,
the following statements hold:

(1) if p=2, then st is odd, a1(g9) = (cs—s+1)(cs+1—t), and if as(g) < v, thent = s(c—1) and
the set {z € A | O(x,29) = 1} is the disjoint union of cs — s+ 1 isolated cliques of size s+ 1;

(2) ifp=3and (3,s+1) =1, then ai(g9) = 0, the number cs — s + 1 is divisible by 3,

(g) = —(es +1)(VD —5/2+1) + 31(vVD — 5/2)
X1g9) = oD )

where | = (cs +1—1)/3, and (cs +1)(s/2 — 1) — 31s/2 is a multiple of \/D.

P roof. First, note that (cs —s+1,es+1) = 1.
If O(u,u9) = 3 for a vertex u, then F'(u) = F(u9) and hence p divides cs — s + 1 (the size of a
fibre). In particular, if s is even, then p > 2.
By the integrality of x2(g), it follows that as(g) = (¢s — s + 1)t for a non-negative integer ¢.
Further,
( ) _ (Xl(g) —(\/5—8/2)t—(08+1)
X1\g) = 2\/5 )

and if s > 2, then a;(g) — (VD — s/2)t — (cs + 1) is divisible by 2v/D.
(1) Let p =2 and

¢ ={recA|d(x,29) =3}

Note that O(x,z9) # 2 for any vertex x of A (as otherwise [z] N [z9] C Q, which contradicts our
assumption), so that
A\®={zeA|0(zx,29) =1}
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and as(g) = 0. Since ¢s + 1 is odd, g fixes a fibre of A and st is odd. Also, we have
aj(g) =(cs —s+1)(es+1—1t) and

x1(9) = oo Moot ! _t;\;ﬁ(\/ﬁ—s/Q)t— (es+1) € Z.

Suppose z € ®. Then [z] = Ri(z) U R3(z) and |R3(x)| = t — 1. Note that, for each edge
{y,z} C [z], we have z # y9 (otherwise y¥ € [z] N [29], which is impossible by assumption).

If [x] contains an edge {y,z} C A\ ®, then [z9] contains the edge {y?,z9} C A\ @, and,
since {y, 2z} C Ri(x), we get that {z,y,y?, 29} is a 4-cycle or a clique, a contradiction. Hence each
(s+1)-clique that contains an edge from A\ @, is contained in A\ @ itself. Since A\ ® is a regular
graph of valency ¢s — t and a;(g) = |A\ ®|, we conclude that A\ ® is an edge regular graph with
Aa\e = s — 1 and the number of its edges equals (cs +1 — s)(es + 1 —t)(cs —t)/2. It follows that
there are exactly (cs+1—s)(es+1—t)(cs —t)/((s 4+ 1)s) cliques of size s + 1 in A\ ®.

Now suppose that x € A\ ®. Then [z] = Ri(x) U R3(z), |Rs(x)| = t and, as it was proved
above, [z] N [z9] € A\ ®. Note that for each vertex y € Ry(z) \ {9} we have y9 € [29] N [y] and
since {z,y, y9, 29} cannot be a 4-cycle, we get {y,y?} C [z]N[z9]. This implies |R;(x)| = s. On the
other hand, |R;(x)| = ¢s — t, which, by the preceding equality, implies that s(c — 1) = ¢t. Hence,
there are exactly c¢s + 1 — s cliques of size s + 1 in A\ ® and ay(g) = (¢s — s+ 1)(s + 1), which
implies that A\ ® is the disjoint union of ¢s — s 4 1 isolated cliques of size s + 1.

(2) Let p = 3 and (3,s + 1) = 1. Then ai(g) = 0 (otherwise there is a (unique) (s + 1)-
clique L that contains a 3-cycle {u,u? ,u92}, yielding L. = L9, which contradicts the assumption
= @). If 3 divides ¢s + 1, then as(g) = v and by Lemma 6 we obtain s = 2, a contradiction.
Assume that there are exactly 3! fibres that are not fixed by ¢g. Then as(g) = 3l(cs — s + 1) and
as(g) = (es+1—3l)(es — s+ 1). Hence

(a) = —(es +1)(VD —5/2+1) +31(vD — 5/2)
x1(9) = D

and (cs 4 1)(s/2 — 1) — 3ls/2 is a multiple of v/D. The lemma is proved. O

S/

Remark 1. Note that Lemma 7 (1) specifies statements of [12, Theorem 4.10 (7), (¢7)], and
Lemma 7 (2) corrects [16, Lemma 2.2.3] (namely, the condition (3,s + 1) = 1 is missing there).

Lemma 8 (see [16, Lemma 2.2.4], [12, Theorem 4.10 (iv)—(vi)]). Suppose Q # @ and p = 2.
Then one of the following statements holds:

(1) Q is a fibre of A, and either s = 2, or cs> — s2/2 + s — a1(g) is a multiple of \/D;
(2) Qs an (s+ 1)-clique and ¢ = s = 2;

(3) Qisan (ds'+ 1,8 —s" +1,1)-cover, and the parameters ¢, s, and s’ satisfy the following
equality:

c’(s—s’)>;

(s —s+1)(cs —s) = (s +1)(ds —s" +1) <cs —ds+ )

moreover, (i) s' =2 and 2c = (2¢')? if s = 2, and (ii) cs—s+1= (s’ —s'+1)2 if s > ' > 1.
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Proof. Let p=2anda€ Q. Note that, for each vertex e € QN As(a), the valency of e in
coincides with that of a. Indeed, for each vertex = € Qq(a), there is a unique vertex 2’ € [z] N [e],
and 2’ € Q. Conversely, {z} = [2'] N [a].

(1) Suppose that all vertices in €2 are at pairwise distance 3 in A and |Q2| = w. Suppose further
that for some vertex a € Q we have F(a)\ Q # @ and let uw € F(a) \ Q2. Then 9(u,u9) = 3 and
for each vertex = € [u] we get 2t C A\ Q, hence d(x,29) # 2. If O(x,29) = 3 for all = € [u],
then by [8, Corollary 6.3] g = 1, a contradiction. It follows that there is a vertex x € [u] such that
d(z,z9) = 1and s = [[z]N[z9]|+1 is odd. Hence w is even. Now if, for a vertex y € [u], d(y,y9) = 3,
then g fixes a vertex in F'(y) that has a neighbour in €2, which contradicts our assumption. It follows
that Rq(u) = [u]. Since s > 3, we may assume that [u] contains an edge {z,y}. Then [u9] contains
the edge {z9,y9} and, as [u9] N [u] = @, we get that {z9,z,y,y9} is a 4-cycle, a contradiction.

Hence, w = ¢s — s + 1, that is Q = F(a). Then as(g) = 0, as(g) is divisible by 2s, a;(g) =
csw — ag(g) is divisible by 2s, and

 (WD-s/2+1)
ale) = (208\/5)
(cs +1)/(2VD) = ((es — $)(VD — s/2 + 1) + au(g) — es)/(2V/D).

Thus, s = 2 or 2v/D divides s(c — 1)(v'D — 5/2 + 1) 4+ a1(g) — cs.

((¢22 = es? + 5/24+ VD = 1) + (52 + VD — Dau(9)) —

(2) Suppose  is an w-clique. Then 1 < w < s+ 1. Suppose further that there is a vertex
x € A\ Q that has no neighbours in Q. Clearly, 9(x,29) # 2, and if d(z,29) = 1, then, since
[[a]\ 2| = cs—s is even, we get that s is even and [z]N[z9] contains a vertex from (2, a contradiction.
Hence 9(x,29) = 3. Furthermore, each vertex of 2 has exactly cs—w++1 neighbours in A\ 2, among
which there are exactly cs — s vertices that do not belong to the maximal clique of A containing 2.
Hence there are exactly s — w + 1 + w(cs — s) vertices in A\ © that have a neighbour in Q. Thus,
a1(g)+az(g) = s+1—w+w(es—s) and az(g) = w(es—s). Then v = w+s+1—w+w(ecs—s)+w(cs—s),
which implies ¢ = s =2 and w = 3.

(3) Suppose € contains a pair of vertices a and b such that d(a,b) = 2. Put [a] N [b] = {c}.
Then [a] contains a unique vertex e € Az(b) (which, obviously, belongs to ) and €;(b) contains a
unique vertex f € As(a). Further,

[Qu(a) N A2(0) \ e[ = [21(0) N Az(a) \ e .

Let X1, ..., X, denote the fibres that intersect {2. Then a vertex in X1N{2 has a unique neighbour
in each of the fibres Xo, ..., X;,, hence Q is a regular graph of valency n — 1 and |Q| = n|X; N Q|.
Moreover, €2 is a (|€2|/n)-cover of an n-clique, in which any two non-adjacent vertices from distinct
fibres, say 2N X; and N X;, have exactly one common neighbour. It follows by [8, Lemma 3.1]
that Q is an (s’ + 1,¢s’ — s’ + 1, 1)-cover, where /s’ = n — 1 and, clearly,

sS—1=1Q(x)N%U(y)|=s—1 (modp).

Note that there are exactly n(n—s)(cs —'s’) edges between Q and A\ Q, and there are exactly
dn(n—s")/(s'+1) maximal cliques in Q. Hence we find that the number of vertices of A that have
exactly s’ 4+ 1 neighbours in Q equals

Toi1:=cnn—s)(s—s)/(s+1),
and the number of vertices of A that have exactly one neighbour in 2 equals

7 :=n(n—s")(cs — s).
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Clearly, if there is a vertex z € A\  that has no neighbour in €, then F(a) ¢ € for all a € Q,
and, as above, we obtain 9(x,z9) # 2. Put

d={yeA|dy,y)=1 [yJCcA\Q}

First we prove that |Q] +n = s(c — 1) in the case ® # &. Suppose z € ®. Since g fixes the
subgraph [z] N [z9] and [z] C A\ ©, it follows that s is odd. We have |Ry(z)| = s, |R3(x)] = n
(since O(w,w9) = 3 if and only if g fixes a vertex in F'(w)) and |Ra(x)| = ¢s — |Ri(x)| — n.

Let us compare the sizes of the sets Ro(z) and Rs(z). As  contains no vertices from
F(z)UF(29), we get that Q contains a vertex b€ Ag(x) N Ag(z9), and, since the number
pis = s(c —1)(es — 2) is even, the number of vertices in Ag(x) N Ag(x9) N Q is also even. For
the vertex y € [b] N [z] we have y9 € [b] N [z9] and O(y,y9) = 2 (otherwise {z,29,y,y?} is a clique
and [b] N [z] contains y,yY, which is impossible). Pick a vertex w € [z]. If d(w,w?) = 2, then
w,wI € [a] for a vertex a € Q, x has a unique neighbour v € F(a), 29 has a unique neighbour
wd € F(a) = F(u) and {a,w,z,z9, w9} is a 5-cycle. If O(w,w9) = 3, then w € F(w?) and, for
each vertex a € 2 such that a € Ag(x) N Ag(x9) N F(w), we get that {a,u,z,z9,u9} is a 5-cycle,
where {u} = [a] N [z]. Since for each vertex w € R3(x) there are exactly /s’ — s’ + 1 vertices in
QN F(w)(NAz(x)), there are exactly ¢’s’ — s’ + 1 vertices y such that {y} = [x]N[a] C Ra(z), where
a € QN F(w). Hence,

Ra()] = (¢s' — &' + )| Ry(a)],

which implies
s=cs—n(ds'—s+2), and cs—s=n(ds —s +2),

that is
Q) +n=s(c—1).

Now consider the BRG-graph A and note that its corresponding Moore geometry G has type
(cs +2,cs — s+ 3,5+ 1) (in notation of [12, p. 314]). Since Q Z z* for any vertex z € A, {b}uQ
induces a subgeometry of G (recall, b denotes the vertex of A isolated in B ), so by Lemma 7 and [12,
Theorem 4.10] we obtain that one of the following three possibilities occurs: (i) ' = 1; (i7) s = §;
(iii) s > s’ > 1 and es — s+ 1 = (s’ — s’ + 1) (or equivalently, s(c — 1) = s'(¢' —1)('s’ — s’ +2)).

Hence ® = & and each vertex in A\ [JX; has exactly one or s’ + 1 neighbours in § and, for all

J

vertices = € A such that z+ C A\ Q we have d(x,29) = 3. Thus,
az(g) = v —|Q =1 — 7oy,
and, on the other hand,
as(g) = (s +1)(es —s+1—-(s" +s 1),
which together give

M o
(es—s+1)(es —ds') = (s +1)(ds —s" +1) <cs —ds+ %)
In particular, if s = 2, then, since s’ < s and

s—1=Q@)NNUy)=s—1 (mod 2),

we get s’ =2 and
cs—s+1=(ds+1)(ds -5 +1),
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so that
2c—1=(2¢ +1)(2¢ —1) and 2c=(2)%

The lemma, is proved. O

Remark 2. Note that Lemma 8 specifies statements of [12, Theorem 4.10 (iv)—(vi)] and of
[16, Lemma 2.2.4]. Also, the proof of Lemma 8 fills a gap in the proof of [16, Lemma 2.2.4 (3)], in
which the case ® = @ was not excluded properly.

Lemma 9 [16, Lemma 2.2.5]. If Q # @& and p > 2, then one of the following statements holds:
(1) Q is contained in a fibre of A;
(2) Q is an w-clique and w < s+ 1;

(3) Qisan (ds'+1,ds"—s'+1,1)-cover, where ¢'s'+1 is the number of fibres of A intersecting €2,
and ' —1=1Q1(x) N Q1 (y)] =s—1 (mod p).

Proof. Letae€ 2 Then for each vertex e € QN As(a) we have |Q;(a)| = |Q1(e)].

Clearly, if € consists of vertices that are at pairwise distance 3 in A, then the statement (1) is
true, while if © is a w-clique, then w < s + 1 and the statement (2) holds.

Now let  contain two vertices a and b such that d(a,b) = 2. Then [a] contains a unique vertex
that belongs to As(b) (and, obviously, to ) and ;(b) contains a unique vertex that belongs
to Az(a). Put [a] N [b] = {z}. Then |Qy(a) N Az(b) \ x| = [Q1(b) N Az(a) \ 2.

Let Xq,...,X,, denote the fibres of A that intersect 2. Then each vertex in X; N has a
unique neighbour in each of the fibres X5, ..., X,;, hence € is a regular graph of valency n — 1 and
Q] = n|X; N Q. Moreover, Q is a (|2|/n)-cover of a n-clique, in which any two non-adjacent
vertices from distinct fibres, say 2N X; and 2N X, have exactly one common neighbour. Thus,
the remaining claims of (3) follow by [8, Lemma 3.1].

The lemma is proved. O

3. Proofs of Theorems 1 and 2

In this section, we prove Theorems 1 and 2.

From now on we assume that there is a subgroup G < Aut(A) that induces a 2-homogeneous
permutation group G* on the set ¥ of fibres of A and we denote by K the kernel of the induced
action of G, so that G/K ~ G*. We also put m := |%| = cs + 1.

Note that by [8, Corollary 6.3] K is semiregular, in particular, as(g) = v for each non-trivial
element ¢ € K. It also implies that K acts semiregularly both on the set of arcs of A and on
the set of its cliques of size s + 1. For each subgroup X < K, we denote by AX the graph on
the set of X-orbits, whose edges are the (unordered) pairs of X-orbits that are joined by an edge
of A. In particular, if 1 < |X| < r, then by [8, Theorem 6.2, Corollary 6.3] AX is a non-bipartite
(m, (es — s+ 1)/|X],|X|)-cover.

First, in Lemma 10, we consider the case, when the group G* is 2-homogeneous, but not
2-transitive.

Lemma 10. If the group G* is not 2-transitive, then G* < ATL1(q), |Z| = ¢ = 3 (mod 4),
VD ¢ 7, and either s =2, ¢ = (¢ — 1)/2 and A is a graph of type Dy_1, or s is odd.
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Proof. Suppose that G induces 2-homogeneous, but not 2-transitive permutation group
G* on X. As m > 5 is odd, it follows by [11, Theorem 1] that G/K ~ G* < AT'Li(q) and
I¥| = ¢=3 (mod 4). If VD € Z, then ¢s = D — (s/2 — 1) is an even difference of squares, which
is impossible in this case. Hence v'D ¢ Z and either s = 2 or ¢ = (¢ — 1)/2 is odd, or s is odd. Fi-
nally, if s = 2, then by Lemma 3 we obtain that Aisa graph of type D,_1. The lemma is proved. [

Further in Lemmas 11-14, we assume that the group G* is 2-transitive; in this case by a Burn-
side’s theorem, the group G~ is either almost simple, or affine, and we consider the corresponding
cases in course, basing our argument on the classification of finite 2-transitive permutation groups
(e.g. see [9, Theorem 2.9]).

Lemma 11. Suppose the group G is almost simple. Then either c = 2" 1, s = 2, Aisa graph
of type Dan, Soc(G) ~ La(2") and A is a Mathon graph, or the group G acts intransitively on the
vertices of A.

Proof Supposethat G induces an almost simple permutation group G* on ¥. Then the
socle H of G* is a non-abelian simple group. In view of Lemma 1, we may assume that s = 2 (and
the size of a fibre is m — 2) or [¥| > 25. Fix F€ ¥ and a € F.

If H = Spy,(2), then the number m € {2"1(2" £ 1)} is even, a contradiction.

In the case H = 2Ga(q) we have ¢ = 3%*! and m = ¢® + 1 is even, a contradiction.

In the case H = U3z(q) we have m = ¢ + 1, hence ¢ = 2°. By Lemma 3 we have s = 2 and A
is a graph of type Dysc. Then by Lemma 5 we have K = 1 and, since Gy contains no subgroup
of index ¢3 — 1, G cannot act transitively on the vertices of A.

In the case H = ?Ba(q) we have ¢ = 22! and m = ¢*> + 1. By Lemma 3 we get s = 2 and
A has type Doz(2e+1). By Lemma 5 it follows that K =1 and, since Gy contains no subgroup of
index ¢?> — 1, G cannot act transitively on the vertices of A.

If H is a Mathieu group M,,, then (since m is odd) m € {11,23} and, by Lemma 1 we have
s =2.

If the pair (H,m) is one of (Lg(11),11), (Mj1,12), (Alt7,15), (L2(8),28), (HiS,176), or
(Cos, 276), then (since m is odd) m = 11, H = Ly(11) or m = 15, H = Alt7 and, by Lemma 1 we
have s = 2.

If m = 23, then by [8, Theorem 5.4] (=1)°"!(2¢ — 1) = 21 = 2% (mod 11) for some z € Z and
by the Euler’s criterion 21° = 1 (mod 11), a contradiction.

Similarly, for m = 15 by [8, Theorem 5.4] we get (—1)°"!(2¢ — 1) = 13 = 2% (mod 7) for some
z € Z and by the Euler’s criterion 133 =1 (mod 7), a contradiction.

If m = 11, then by Lemma 5 we have G ~ G, and either H = Lo(11) and Hypy >~ Alts, or
H = My and Hypy ~ Altg : Z. But in both cases G contains no subgroup of index 99, hence G
cannot act transitively on the vertices of A.

It remains to consider “alternating” and “linear” cases.

1. Let H = Alt,,. Then H contains an involution g that is a product of two independent
transpositions and the number of the fibres that are fixed by g equals m — 4.

Note that for m = 5 we have ¢ = s = 2 and by Lemma 5 we have Lo(4) ~ Alt; < G* ~ G, and,
moreover, if G is vertex-transitive, then it has a single orbit on arcs of A as well. So let m > 7.

1.1. First, suppose K = 1. Then G ~ G* and we may identify H with the socle of G.

Put Q = Fix(g). If Q2 = &, then by Lemma 7 we obtain m —4 = s(¢—1), that is s = 3,m > 13.
In this case, H contains an involution ¢’ that is a product of four independent transpositions and the
number of the fibres that are fixed by ¢’ equals m — 8, and by Lemma 7 we have Q' = Fix(¢') # @
(otherwise m — 8 = 3(c — 1), which is impossible). Hence ' is distance-regular and its parameters
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satisfy the equality given in Lemma 8(3), which, in view of Lemma 1, contradicts the restriction
m > 13.
Hence by Lemma 8 we obtain that Q is an (¢/s' 4+ 1,¢'s’ — s’ + 1, 1)-cover,

/e o
4(m —s) = (m—4)(m—s')(m— 1 —c’s—l—%)

and m = 7, that is s’ = 2 and Q is a 6-cycle. But s —1 = s’ — 1 (mod 2) and hence A has

intersection array {6,5,1;1,1,6}, which contradicts the assumption s > 1.

1.2. Now let K > 1. If | K| is odd or coincides with the size of a fibre (so that G = K : Go),
then there are involutions g € G \ K with |Fixs(g)] = m — 4 or m — 8, and we proceed as in the
subcase 1.1.

Suppose that 1 < |K| < ¢s — s+ 1 and G acts transitively on vertices of A. Then

Alt,,,—1 < (G{F})E(Z G{F}/K) < Sym

m—1>

and the graph AX admits a vertex-transitive action of G/K, and the size of a fibre in A; = AK is
"= (cs — s+ 1)/|K|. If v’ =2, then G/K is a distance-transitive group of automorphisms of A;
with Alt,,—1 < G, K/K < (Aut(A;)), for some vertex x € A, which implies that A; is bipartite,
a contradiction. Hence 7’ > 3. But the degree of a minimal permutation representation of Alt,, i

is m — 1 unless m < 5, so we obtain either m =5 and s =1, or m > 7 and
Altm,1 S GaK/K S (Aut(Al))m

for some vertex x € Ay (and hence r’ = |Gypy /K : G, K/K| < 2), a contradiction in both cases.

2. Next we assume H = L;(¢q). Then ¥ can be regarded as the set of 1-dimensional subspaces
of V= qu. Note that, since
_(@'-1)
(¢—1)
must be odd, g is even or d is odd.

Let d = 2. Then ¢ = 2", m = ¢+ 1 and by Lemma 3 we have s = 2, which by Lemma 5 implies
La(q) < G < PI'Ly(q). Note if the group G is vertex-transitive, then it has a single orbit on arcs of
A, and moreover, its socle is also arc-transitive (otherwise A would be bipartite or disconnected,
which is impossible), and hence A is a Mathon graph (see [3, Proposition 12.5.3]).

Suppose further that d > 3 and fix a basis ey, €3, ...,eq4 of V.

2.1. Assume first that K = 1. In the argument below, we identify H with the socle of G and
consider various involutions g € H and subgraphs Q = Fix(g) of their fixed points.

2.1.1. Suppose ¢ is odd. Then d is odd and there is an involution g € H such that its preimage
in SL(V) fixes eq and, for all i € {1,2,...,d — 1}, it maps ¢; to —e;, so that

: (¢ -1)
Fixy(g)| = ————= + 1.
Fixs(o)l =5
If Q = &, then s is odd and by Lemma 7 we have
@' -1
—2 +1=s(c—1).
(¢—1) e

But then . .
—1 -1 _1

stc+1—s(c—1)—1:(q )_(q )_2:qd—1_2
(¢—1) (g—1)
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and
(@' -1
(¢-1)
which contradicts the condition ¢ > s > 2.
Hence by Lemma 8 we have that Qis an ((¢** —1)/(¢ — 1)+1,(¢%' —1)/(¢ — 1) — &', 1)-cover
and

(g1 - 1)<(qd— 1) —s) = <(qd1 -1 +1>((q

(¢q—1) (¢—1) (¢—1)

Hence (¢%1 —1)/(q — 1)+1 divides (¢—1)(s+q—1),d = 3and s = (¢+11)/3. But (¢+11,3¢(q+1))
divides 330, which implies that the corresponding equation has no solution in natural numbers, a
contradiction.

+1=(¢"" = 2)(c—1),

d—1 _ 1)

c’(s—s’)).

! /
— S +1><cs—cs+ (s’+1)

2.1.2. Now let g be even.

2.1.2 (a). If d = 2f + 1, then we assume that a preimage of g in SL(V) fixes e; and, for
1 <1¢<d-—1, interchanges e; with e;_1_;. Then

. (@' -1
Fix ==
If QO = &, then s is odd and by Lemma 7 we have
f+1 _ 1
@ Ve
(¢—1)
that is
s:qdfl—i—...—kqurl —1
and .
(¢ =1) d—1 f+1
—_ = —D(e—-1
=1 (@ +..+q )(c—1),

which contradicts the condition ¢ > 2.
Hence, by Lemma 8 we have that Q is an ((¢/*' —1)/(¢ — 1), (¢/T' —1)/(¢ — 1) —s'—1, 1)-cover
and

<(qu+1 -1 _S>qf+1(qf—1) (¢t -1 ((qf“ -1 _S,)< , c’(s—s’))_

@-1 -0 @D V@1 S PRy

Hence
s=¢ '+ +q+1l, s+q =sq+1, c=q(’ +1)

and

(el —1) ((qf+1 —1) ,) ( ;o (s — S’)>
q = —s)\es—cs+ —F— ),
(¢—1) (¢—1) (s"+1)
and, since ¢/ > s > s/, we get f = s = 1, a contradiction.

2.1.2 (b). For d = 2f, we assume that a preimage of g in SL(V') fixes both e4_; and ey, and
interchanges e; with eg_o_;, so that

(¢t =1

Fiss(o) = 7=
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If Q = &, then s is odd and by Lemma 7 we have

f+1 4
(]
(¢—1)
that is
s:qd_1+...+qf+1 —1
and i1
—1
% (T 1) (e— 1),

which contradicts the condition ¢ > 2.
Hence, by Lemma 8,  is an ((¢/*1 —1)/(¢ — 1), (¢/T' = 1)/(¢ — 1) — §',1)-cover and

2f _ f-1_ f+1 _ f+1 _ (s — s
<(ch - 1;) 3 S) e (q(q . 1)1) _ (q(q . 1)1) . ((q(q - 1)1) B S,) <cs s (i/ - 1)))_

If

(@' -1 (@' -1

( 7 )=1
(-1 ~ (¢-1)

then f is even, ¢/ + ... + ¢+ 1 divides s¢®> + ¢+ 1, s¢> = 2(¢f + ...+ q+1) —q—1, ¢* divides z — 1

and

)

s> (P + D' 2+ . +qg+1)+qg+1.
But s <c¢—1and cs = ¢> 1+ ...+ ¢®> + ¢, a contradiction.
Hence, f is odd and
<(qf+1 -1) (' -1
(¢=1) " (-1

It follows that (¢f™! —1)/(¢> — 1) divides s¢> + ¢+ 1, s¢> = 2(¢f + ... + ¢+ 1) — ¢ — 1, ¢ divides
r—1, ¢ divides x — (¢ + 1) and = 2¢® + ¢ + 1 for a positive integer 2. But

>:q+L

2f _ 1 2(of+1 _ 1)2
(g )>52>2(q2 2) > g
(¢—1) (¢*—1)
again a contradiction.

2.2. Now let K > 1. If |K| is odd or coincides with the size of a fibre, then there are involutions
g € G\ K with |Fixx(g)| as in the subcase 2.1, and by a similar argument we come to a contradiction.

Suppose that 1 < |[K| < es—s+1, sis odd and G acts transitively on vertices of A.

Let H denote the full preimage of H(= Soc(G*)) in G and put ¢ = [Hpy : Hy|. We have

G <PTLalq), Hypy/K = (H{ry)” = Eqa-r-SLa-1(9) - Zig-1)/(dq-1)
(e.g. see [18]), and (H,)!% is permutation isomorphic to (H,K/K)*\F}. So
w!%  H = |G H| = |65 HY

divides (¢ — 1)e (where g = p° for a prime p), and \ﬁ{F} . H,K| = t/|K|. Hence H, ~ H,K/K is
isomorphic to a subgroup of Eji-1-SLg—1(q) - Z(g—1)/(d,g—1) With index ¢/| K| dividing

(¢ —1)
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Since H (F} /K contains a normal elementary abelian group R of size ¢?~! that corresponds to a
subgroup of SL(V'), generated by transvections g with g(e1) = e1 and g(u) —u € (e1) for allu € V,
we may assume RN H,K/K # 1 (otherwise ¢?~! divides

(¢* =1

G

_87

a contradiction). N
Let g and d be odd. Then there is an element h € H, of order p such that

(¢! =1
(¢—1)

and, since the valency of 2 = Fix(h) is odd, by Lemma 9 Q is a clique of size

|Fixs(h)| =

(¢ ' -1

M sy,
(¢q—1)

a contradiction. N
Let g be even. Then there is an involution h € H, such that

(¢ ' =1
(¢—1) 7

and, by Lemma 8 = Fix(h) is an ((¢** —1)/(¢ — 1), (¢ —1)/(g — 1) — s/, 1)-cover. Finally, it
is easy to check that the equality given by Lemma 8(3) is not satisfied in this case, a contradiction.
The lemma, is proved. O

[Fixs(h)| =

Lemma 12. If the group G* is affine and the group G acts transitively on arcs of A, then
s+ 1 divides c¢(p®,c— 1), s > 2, |K| =cs — s+ 1 and |K| is divisible by 1 + lp, where cs + 1 = p°©,
p s a prime and | is a positive integer.

Proof Letcs+1=p°foraprime p, and denote by T the full preimage of Soc(G*) in G.
Since K acts semiregularly on each fibre, (|K|,cs + 1) = 1 and hence each element g € T of order
p has no fixed points. Besides, K has a complement Ty in T' that is an elementary abelian group
of order p®, and K = OP(T). Hence, by [1, 37.7], Np(Tp) = Cr(Tp).

Suppose that G acts transitively on arcs of A. Pick F' € 3. Then for each vertex a € F the
group G, acts transitively on [a]. We have T{ry = K and [T : T, = (cs + 1)|K|. Hence T' acts
transitively on the vertices of A if and only if K acts transitively on F'.

Suppose that K acts intransitively on F'. Since T-orbits comprise an imprimitivity system of G,
each T-orbit is a coclique (otherwise, a T-orbit containing an edge induces a subgraph of valency
¢s in A, which is impossible by assumption). Hence as(g) = v for each element g € T' of order p,
and by Lemmas 6 and 5 we have s =2 and K = 1.

Then |F| = 2¢—1, T is a subgroup of order p¢, normal in G, and each T-orbit contains a unique
vertex from every fibre of A. Note that T acts semiregularly on the set of 3-cliques of A. Hence
the number of 3-cliques of A is divisible by 2¢ + 1, which implies 3 divides ¢(c — 2), and p > 3.

Further, there are exactly ¢ (¢t < ¢s — s+ 1) T-orbits that intersect [a], so that cs = tj for some
positive integer j. Let us show that t = ¢. Indeed, G, acts transitively on the set of non-trivial
elements of T and the group T'G, induces 2-transitive permutation group of degree p¢ on a’. Now,
since each vertex of [a] is adjacent to exactly j — 1 vertices from a’ \ {a} and there are exactly
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cs(j — 1) edges between [a] and a \ {a}, each vertex from a” \ {a} is adjacent “on the average” to
j — 1 vertices from [a]. Hence j — 1 =1 and cs = 2t, that is t = c.

Denote by ai,...,a. the vertices of F that have a neighbour in a” \ {a}. Then the set
o = {[a;] N aT}¢_, comprises an imprimitivity system of G, on a®\{a}, and the set 7 = {[a]Na;T }¢_,
comprises an imprimitivity system of G, on [a].

For a block {x,y} € =, there is a 2-element h € G, that interchanges the vertices = and y, so
z=y" and h? € G2y, and hence, G, contains an involution z that fixes {z,y}.

Suppose ¢ > 2. Put Q = Fix(z). Then F \ {a,a1,...,a.} # @ and by Lemma 8 we have either
Q=1F, or Qis an (20’ +1,2¢ -1, 1)—cover and 2c = (2¢)%2. But in the second case by Lemma 4
we obtain x1(g9) = —(2¢+ 1)/(4c') € Z for an element g € T of order p, a contradiction. Hence
(2) £ Gr 9 Gypy and Gy u(= Gary) is a 2'-group, that is h? =1 and we may assume that h = z.
It implies that h also fixes the block {2/,y'} € 7 with {2’} = [a] N [z] and {y'} = [a] N [y], and
(IG])2 divides 2c.

Thus, for each edge {z,2'} C [a], there is a (unique) edge {y,y'} C [a] such that {z,y} € =
and {z/,3'} € . On the other hand, for a block {z,y} € 7, there is an element h € G, such that
d(z,z") = 1, and, since [a] is the disjoint union of edges, h? € Gy ,. Without loss of generality,
we may assume that h is a 2-element. But G, is a 2'-group, that is h is an involution of G,
such that Q = Fix(h) # F (since h interchanges distinct orbits 27 and (2/)7). By Lemma 8 it
follows that Q is an (2¢/ + 1,2¢ — 1,1)-cover and 2¢ = (2¢)?, which together with Lemma 4 imply
x1(9) = —(2¢+1)/(4c) € Z for an element g € T of order p, a contradiction.

Hence ¢ = s = 2 and again by Lemma 4 we obtain x1(g) = —(2¢+1)/(2v/2¢) € Z for an element
g € T of order 5, a contradiction.

Now suppose that K acts transitively on F. Then G(py = K : G and, by Lemma 5 we have
s > 2. Since K acts semiregularly on the set of cliques of size s + 1 of A, the number of cliques of
size s + 1 of A is divisible by ¢s — s 4+ 1 and hence s + 1 divides ¢(p®, ¢ — 1).

Further, in view of Lemmas 6 and 2, for each element g € T of order p there is a (g)-orbit
that is a cycle or a clique. Besides, |Syl,(T')| divides |K|. If | Syl (T)| = 1, then Ty = O,(T’) and,
hence, Ty < G. But in this case, each Tp-orbit contains an edge and hence induces a subgraph of
valency cs of A, a contradiction. Therefore, |K| is divisible by 1 + Ip for some positive integer .
The lemma is proved. O

Further for a finite group X we denote by X(°) the last term of the commutator series of X.

Lemma 13. Suppose that the group G™ is affine. Then the group G acts intransitively on arcs
of A or G* < AT'Lq(q).

Proof. Notethat G* can be identified with a subgroup of AI'L4(q), where q is a power of
an odd prime p. Thus, the socle T' of G* is regarded as the additive group of a linear space V with
dimension d over Fg, cs = g% — 1, and the stabiliser G of the zero vector in G> acts transitively
on the set of non-zero vectors of V. Fix a basis eq,...,eq of V.

First, the case G(®) = Gy(q), as well as the cases Gy € {Altg, Alty, U3(3)} are immediately
ruled out, since m = |X| must be odd.

Suppose further that G acts transitively on arcs of A. Take F' € . Then by Lemma 5 we have
|K| =cs—s+1,5s>2and Gy ~ G /K ~ G, for each vertex a € F, thus we may identify the
groups G, 2] and GV M in what follows.

Since K acts regularly on each fibre, (|K|,cs + 1) = 1. Hence the full preimage T of Soc(G*)
in G contains an element y of order p that has no fixed points, and by Lemma 2 we obtain that
each (y)-orbit containing an edge is a cycle or a clique, while by Lemma 6 we have as(y) < v.
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Note if some (y)-orbit is a clique, then y fixes an (s+ 1)-clique containing it, implying p divides
(c—1,s+1).

1. Suppose Go(>®) = SL4(q) or Spy(q), where d > 2, and take an involution g € G0 that
maps e; to —e; for 1 < i < 2 and fixes e; when i > 3 (in case Go(®) = Sp,(q) we assume that (e, es)
is a hyperbolic pair). Then the number of fibres that are fixed by g equals ¢~2. Put Q = Fix(g).

By Lemma 8 we obtain that Q is an (s’ +1,ds’ — s’ — 1,1)-cover, s’ = g2 —1 and

2 d d—2 / / d(s -5
(" =1)(¢° —s)=(q —s)<cs—cs+m).
Thus, ¢%=2 — s’ divides (¢> — 1)(¢?s’ — s) and 3 # d < 8.

For 5 < d < 8, there is an involution ¢’ € Go® that maps ¢; to —e¢; if 1 <7 < 4 and fixes ¢;
if i > 5 (in case Go™) = Sp,(g) we assume that (eq,es) and (es,es) are hyperbolic pairs). The
number of fibres that are fixed by ¢ equals ¢?~*, and, again by Lemma 8, ' = Fix(¢') is an
("s" +1,c"s" —s' —1,1)-cover, ¢'s" = g% —1 and

/! "
4 d d—4 " " (s —s")
-1 —8) = — S (cs—cs 7),
(" =1)(¢" —s) = (q ) NPy
which contradicts the assumption 5 < d < 8.
If d = 4, then there is an involution ¢’ € Go(®) that fixes both es and e4, and, for 1 < i < 2,
maps e; to —e;, so that there are exactly ¢ fibres that intersect Q' = Fix(¢’), and, by Lemma 8,

Q' is an (¢% ¢* —1—s',1)-cover, ¢* — 1 = ¢"s" and

/! "
4 2 2 m (A I d'(s —s")
(@ =s)a”—1)=(¢"—s )<q —-1-c S+W>-
If " =1,then " =¢>—1and ¢* —s=¢* —1—(¢*> — 1)s + (¢*> — 1)(s — 1)/2, a contradiction. So
s > 1, and
/! "
4 2 2 m (4 " d'(s = ")
(@ —s)a"—1)> (¢ —s )<C] —-1-c S+W>,
again a contradiction.
Hence, d = 2, Z(G((]OO)) contains a unique involution g that, for 1 < i < 2, maps ¢; to —e;, A
is an (¢%,¢% — s,1)-cover and, by Lemma 8, Q = Fix(g) is a fibre. This implies ag(g) = cs — s+ 1
and, by Lemma 4 we have

_ (s = 5)(VD —5/2) — 5+ au(g)
Xl(g) - 2\/5

Suppose s is odd. Then a;(g) = 0 (otherwise g fixes a vertex in [a] for some a € 2, which is
impossible) and ¢ is even. In this case the odd number 2v/D divides

€ Z.

VDs+5*c—1)/24+s=5(VD+s(c—1)/2+1).

Since (s,2v/D) = 1, 2¢/D divides cs — s +2 = ¢> — s + 1. Put 2 = (¢s + 1,2/D). By Lemma 3
we have that x equals 1 or is a power of 3, and, since (cs — s+ 2,¢s —s) = 1 and (z,s —2) = 1,
2v/D divides z(c,s — 2). If 2 = 1, then s — 2 < 2v/D < (¢, s — 2), a contradiction. Hence ¢> = 3°
and there is an element of order 3 in G \ K that has no fixed points. But (3,s 4+ 1) = 1 and, by
Lemma 7 we obtain that 3 divides cs — s + 1 = ¢? — s, which contradicts the fact (|K|,cs+ 1) = 1.

Thus s is even and |K| is odd. It follows that K is solvable and K’ is a normal subgroup of
G that is properly contained in K. Hence the graph A%’ admits an arc-transitive action of G /K,
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and the abelian group K /K’ can be considered as the group of all automorphisms of AKX " fixing its
fibres. But the size of a fibre in AX" coincides with |K/K’| and (|K/K'|,cs+1) = 1, a contradiction
to [9, Theorem 2.5].

2. Let either m = p? and p € {5,7,11,23,19,29,59}, or m = 35 or m = 3%. As it was shown
above, s > 2.

If m = p?, SLa(5) < Gy and p € {11,19,29,59}, then we may assume by Lemma 1 that the
triple (¢;s; D) is one of (30;4;121), (90;4;361), (210;4;841) or (870;4;3481).

If m = 3% = 729 and SLy(13) < Gy, then by Lemma 1 (c;s; D) = (182;4;729).

If G* is solvable, m = p?, SLy(3) <« Go and p € {5,7,11,23}, then by Lemma 1 we may assume
that the triple (¢;s; D) is one of (6;4;25), (12;4;49), (30;4;121), or (132;4;529).

If m = 3* = 81 and G contains a normal extraspecial subgroup H of order 32, then (c;s; D) =
(205 4;81).

Since in all these cases s = 4, there is an (y)-orbit that is a cycle or p =5 and 5 divides ¢ — 1.
Then |K| =m —4, 5 divides ¢(c — 1,p¢) and | Syl (T)| = 1 + Ip divides |K|. It implies m = p? and
p € {5,11,19,29,59} or m = 3%.

Let m = p?. We have p?> — 4 = t(1 + Ip) and (t;p) = (1;5) (otherwise, t = t'p — 4 > 1 and
p = /(1 4+ Ip) — 4, which is impossible). Hence |K| = 21. If K is cyclic, then by [8, Theorem
9.2], 21 divides m, a contradiction. Hence, the subgroup K’ ~ Z7 of K is normal in G. Then the
graph AX" admits an arc-transitive action of G/K’, and K/K’ can be considered as a group of all
automorphisms of AKX’ fixing each its fibre. But K/K’ ~ Zs and hence, by [8, Theorem 9.2], 3
divides m, a contradiction.

Let p = 3. Then K is a cyclic group of order 77 and, by [8, Theorem 9.2], 77 divides m, a
contradiction.

Thus, the only remaining possibility is G* < AI'L;(g). The lemma is proved. U

Lemma 14. Suppose G* < AT'Li(q), where ¢ = p°® for a prime p. Let Hy be the stabiliser
of a fibre F in G*, H = H; N AGL1(q), f and § be two elements of H, whose orders are
2'-part and 2-part of |H|, respectively, and let Z be an involution in (3). Denote by z,f and g
some representatives of the preimages of the elements , f and § in G, respectively. Then Fix(z) is

a fibre,
ao(z) =q—5, a3(z)=0, xi(2)=(a1(2) + (VD —s/241)(cs —s) —¢s)/(2VD)
and the following statements hold.

(1) If K = 1, then s is even, s = 2 or cs is divisible by 4, (vV'D,s) < 2 and |fg| divides o (2),
and, in particular,

(i) if s =4, then ¢ = d(d+2)/4, VD = d+1 for some even integer d, ay(z) = 2(p/%1+2),
where 1 is an even integer, and a1(z) is divisible by (¢ —1)/(e,q — 1);

(i) if p =3, then s+ 1 is divisible by 3.
(2) G acts intransitively on arcs of A.

P roof. First we show that § # 1. On the contrary, suppose that g = 1. Then |H| is odd,
H,/H < Z. and since H; is transitive on ¥\ {F'}, e is even and (e)2 > (¢ —1)2 > 4. If p—1 s
divisible by 4, then (p€ — 1)2 = (e)2(p — 1)2 > (e)2, a contradiction. Hence, (p — 1)2 = 2 and the
number p? — 1 is divisible by 4 and divides p® — 1, and again (p¢ — 1)2 = (e/2)2(p? — 1)2 > (e)2, a
contradiction.
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(1) Let K = 1. Let z, f and g denote some representatives of the preimages of Z, f and § in
G, respectively. Then the involution 2z € Gy does not fix any fibre from ¥\ {F'}. If Fix(z) = &,
then as(z) = 0 and a1 (2) = cs(es+1—s), that is z fixes an (s+ 1)-clique and by Lemma 7 we have
cs = s+ 1 =2, a contradiction. It follows by Lemma 8 that Fix(z) is a fibre, that is Fix(z) = F,
ap(z) = q— s and a3(z) = 0.

Since for each nontrivial element h € (fg) we have ag(h) + as(h) =cs —s+1,

(VD —s/2 4+ 1)(ag(h) — 1) + ay(h) — cs
2v/D ’

xi(h) =

hence
(VD —5/2)(cs —s) +a1(z) — s
x1(2) = :
2v'D
Suppose s is odd. Then «a;(z) = 0 and ¢ is even. In this case, x1(z) € Z and the odd number
2v/D divides

VDs+s*(c—1)/2+ s =s(VD +s(c—1)/2 +1).

As (s, 2\/5) = 1, we also get that 2v/D divides ¢s — s +2 = g — s + 1. By repeating the argument
from Lemma 13, we obtain that 3 divides (s — 1, 2\/5), q = 3° and there is an element of order
3 in G that has no fixed points. But (3,s+ 1) = 1 and, by Lemma 7 we conclude that 3 divides
cs — s+ 1= q— s, a contradiction.

Thus, s is even.

If ¢s is not divisible by 4, then ¢ is odd. But then

D=cs+(s/2—1)2=2 (mod 4),

which yields s = 2. If s is divisible by 4, then D is odd. Hence (v/D,s) < 2.
As the element fg does not fix any vertex u such that u* € [u] and centralizes z, we get that
|fg| divides aq(z).

(17) Let s = 4. Then
c=d(d+2)/4, q=(d+1)? and VD=d+1.

Since x1(z) € Z, 2(d + 1) divides a1(z) — 4 and hence ay(z) = 2(p®/?l + 2) is divisible by (g —
1)/(e,q —1).

Suppose that «;(z) is not divisible by 4. As ¢ > 2, we get a1(z) > 0 and 2(¢ —1,e)2 > (¢ —1)a.
If p—1 is divisible by 4, then (p® —1)2 = (e)2(p — 1)2 > 2(e)2, a contradiction. Hence, (p — 1)y = 2
and the number p? — 1 is divisible by 4 and divides p® — 1, and

(p° —1)2 = (e/2)2(p* — 1)2 > 2(e)a,
a contradiction. Thus [ is even.

(1i3) If y is an element of order p of the socle of G, then a;(y) = 0 for i = 0,3 and x1(y) =
(1 (y) — q)/(2V/D). In the case p = 3 in view of Lemma 7 we conclude that 3 divides s + 1.

(2) Suppose that G acts transitively on arcs of A. Then by Lemma 12 we have |[K| =cs—s+1
and G, ~ G /K (a € F). Let z, f and g denote some representatives of the preimages of the

elements Z, f and g in G,. Then we may assume that z is an involution and it does not fix any
fibre from ¥ \ {F'}. Hence by Lemma 8, Fix(z) is a fibre, ag(z) = ¢ — s and a3(z) = 0.
Since for each nontrivial element h € (fg) we have ag(h) + as(h) =cs —s+1,

B (\/5— s/2)(cs —s) +a1(z) — s
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Suppose s is odd. Then aq(z) = 0 and ¢ is even. In this case, x1(z) € Z, and the odd number
2v/D divides
VDs+s*(¢c—1)/2+ s = s(VD + s(c—1)/2 + 1).

Again, by repeating the argument from Lemma 13, we obtain a contradiction to Lemma 7.

Thus s is even and |K| is odd. It follows that K is solvable and K’ < K. Hence the
graph AKX’ is a non-bipartite antipodal distance-regular graph of diameter 3 that admits an
arc-transitive action of G/K’, and the abelian group K/K’ can be considered as the group of all
automorphisms of AKX’ fixing its fibres. But the size of a fibre in AX" coincides with |K/K’| and
(|IK/K'|,cs +1) =1, a contradiction to [9, Theorem 2.5]. The lemma is proved. O

P r oo f of Theorem 1 follows immediately from Lemmas 10, 11, 13 and 14. O

P r oo f of Theorem 2. Assume A is not a 6-cycle. First note that each edge-transitive group
of automorphisms of A induces a 2-homogeneous permutation group on Y. It is also clear that if
there is an edge-transitive group of automorphisms of A, then it acts transitively on its vertices as
well, because A is a non-bipartite graph whenever (c;s) # (2;1). The case (¢;s) = (56;1) cannot
occur, as otherwise the order of G would be divisible by 57 - 56, which is impossible by [17] (see
also [13]). Thus, it remains to apply Theorem 1. O

4. Open Questions

We conclude with few open questions.
1. Is there a half-transitive (n,r,1)-cover?

2. Is there any (n,r,1)-cover with n —r > 1 that possesses a group of automorphisms acting
2-homogeneously on the fibres when n — 1 is not a power of 2 or n — r > 27
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