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Abstract: In the present paper, we investigate 2-local linear operators on vector spaces. Sufficient conditions
are obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do this,
families of matrices of a certain type are selected and it is proved that every 2-local linear operator generated
by these families is a linear operator. Based on these results we prove that each 2-local derivation of a finite-
dimensional null-filiform Zinbiel algebra is a derivation. Also, we develop a method of construction of 2-local
linear operators which are not linear operators. To this end, we select matrices of a certain type and using
these matrices we construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear
operator constructed using these matrices is not a linear operator. Applying this method we prove that each
finite-dimensional filiform Zinbiel algebra has a 2-local derivation that is not a derivation. We also prove that
each finite-dimensional naturally graded quasi-filiform Leibniz algebras of type I has a 2-local automorphism
that is not an automorphism.

Keywords: Linear operator, 2-Local linear operator, Leibniz algebra, Zinbiel algebra, Derivation, 2-Local
derivations, Automorphism, 2-Local automorphism

1. Introduction

In 1997, P. Šemrl [20] introduced and investigated so-called 2-local derivations and 2-local
automorphisms on operator algebras. He described such maps on the algebra B(H) of all bounded
linear operators on an infinite-dimensional separable Hilbert space H. Namely, he proved that
every 2-local derivation (automorphism) on B(H) is a derivation (respectively an automorphism).

A similar description of 2-local derivations for the finite-dimensional case appeared later in [17].
In the paper [19] 2-local derivations have been described on matrix algebras over finite-dimensional
division rings. In [9] Sh. Ayupov and K. Kudaybergenov suggested a new technique and have

https://doi.org/10.15826/umj.2025.1.001
mailto:arzikulovfn@rambler.ru
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generalized the above-mentioned results of [20] and [17] for arbitrary Hilbert spaces. Namely, they
proved that every 2-local derivation on the algebra B(H) of all linear bounded operators on an
arbitrary Hilbert space H is a derivation. They obtained also a similar result for the automorphisms.
In [4, 10] the authors extended the above results for 2-local derivations and gave a proof of the
theorem for arbitrary von Neumann algebras.

Afterwards, 2-local derivations have been investigated by many authors on different algebras
and many results have been obtained. In [15] it was established that every 2-local ∗-homomorphism
from a von Neumann algebra into a C∗-algebra is a linear ∗-homomorphism. These authors also
proved that every 2-local Jordan ∗-homomorphism from a JBW∗-algebra into a JB∗-algebra is a
Jordan ∗-homomorphism. Later, in [14] the authors prove that any 2-local automorphism on an
arbitrary AW∗-algebra without finite type I direct summands is an automorphism.

In the paper [11] 2-local derivations of finite-dimensional Lie algebras are described. The
authors proved that every 2-local derivation on a finite-dimensional semi-simple Lie algebra over
an algebraically closed field of characteristic zero is a derivation. They also showed that each
finite-dimensional nilpotent Lie algebra L with dimL ≥ 2 admits a 2-local derivation which is not
a derivation. At the same time, in [18] X. Lai and Z.X. Chen describe 2-local Lie derivations for
the case of finite-dimensional simple Lie algebras.

In the paper [12] the authors proved that every 2-local automorphism on a finite-dimensional
semi-simple Lie algebra over an algebraically closed field of characteristic zero is an automorphism
and showed that each finite-dimensional nilpotent Lie algebra with dimension ≥ 2 admits a 2-local
automorphism which is not an automorphism. Later, in [13] similar results were obtained in the
case of finite-dimensional Leibniz algebras. Many papers were devoted to 2-local derivations and
automorphisms on Lie and Leibniz algebras. In particular, in the paper [6]it was proven that every
2-local inner derivation on the Lie ring of skew-symmetric matrices over a commutative ring is an
inner derivation. They also proved that every 2-local spatial derivation on various Lie algebras of
infinite-dimensional skew-adjoint matrix-valued maps on a set is a spatial derivation. In [8] the
previous results were extended of the Lie ring of skew-adjoint matrices over a commutative ∗-ring
and various Lie algebras of skew-adjoint operator-valued maps on a set, respectively.

In [5] 2-local inner derivations on the Jordan ring Hn(ℜ) of symmetric n × n matrices over
a commutative associative ring ℜ were investigated. It was proven that every such 2-local inner
derivation is a derivation. In the paper [7], the authors introduced and investigated the notion
of 2- local linear maps on vector spaces. A sufficient condition was obtained for the linearity
of a 2-local linear map on a finite-dimensional vector space. Based on this result, the authors
proved that every 2-local inner derivation on finite-dimensional semi-simple Jordan algebras over
an algebraically closed field of characteristics different from 2 and a field of characteristics 0 is
a derivation. Also, they showed that every 2-local 1-automorphism (i.e. implemented by single
symmetries) of the mentioned Jordan algebra is an automorphism.

The present paper is devoted to 2-local linear operators, 2-local derivations and automorphisms
on finite-dimensional vector spaces, Leibniz and Zinbiel algebras. This paper is organized as follows:

In Section 2, we investigate 2-local linear operators on vector spaces. Sufficient conditions are
obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do
this, families of matrices of a certain type are selected and it is proved that every 2-local linear
operator generated by these families is a linear operator.

In Section 3, we develop a method of construction of 2-local linear operators which are not
linear operators. For this purpose we select matrices of a certain type and using these matrices we
construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear operator
constructed using these matrices is not a linear operator.

In Section 4, basing on the results of Section 2 we describe 2-local derivations of finite-
dimensional null-filiform Zinbiel algebras. Namely, we prove that each 2-local derivation of a
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finite-dimensional null-filiform Zinbiel algebra is a derivation. Also, applying the method of Sec-
tion 3 we prove that n-dimensional filiform Zinbiel algebras, n ≥ 5, have 2-local derivations that
are not derivations.

In Section 5, applying the method of Section 3 we prove that finite-dimensional naturally graded
quasi-filiform Leibniz algebras of type I have 2-local automorphisms which are not automorphisms.

2. 2-Local liner operators of finite-dimensional vector spaces which are liner

operators

Definition 1. Let V be a vector space over a field F, ∆ : V → V be a map such that for
each pair v, w of elements in V there exists a linear operator Lv,w of V satisfying the following
conditions

∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Then ∆ is called a 2-local linear operator.

Definition 2. Let V be a vector space of dimension n over a field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let M be a set of n× n matrices. Then a mapping ∆ : V → V is
called a 2-local linear operator generated by matrices in M, if, for each pair v and w of elements
in V , there exists a linear operator Lv,w generated by a matrix in M with respect to ν such that

∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Let n and m be natural numbers such that m ≤ n. Let, for fixed k, p such that 1 ≤ k ≤ n,
1 ≤ p ≤ m,

fij(x1, x2, . . . , xp), i = 1, 2, . . . ,m, j 6= k, j = 1, 2, . . . , n,

be functions with values in a field F (including the function fij(x1, x2, . . . , xp) ≡ 0),

gi(x1, x2, . . . , xp), i = 1, 2, . . . m,

be functions with values in the field F such that, for any nonzero elements {a1, a2, . . . , ap} ⊂ F, the
following system of equations

gi(x1, x2, . . . , xp) = gi(a1, a2, . . . , ap), i = 1, 2, . . . m,

has a unique solution xj = aj , j = 1, 2, . . . , p, and let Mm,n(k, p) be a set of m × n matrices A
with components aij such that, there exist nonzero elements ai ∈ F, i = 1, 2, . . . , p, satisfying the
following equalities

aik = gi(a1, a2, . . . , ap), i = 1, 2, . . . m,

aij = fij(a1, a2, . . . , ap), i = 1, 2, . . . m, j 6= k.

Remark 1. Note that, in the definition of the set Mm,n(k, p) components of every matrix A in
Mm,n(k, p) are computed using some nonzero elements ai ∈ F, i = 1, 2, . . . , p.

Also, note that, by the definition of the set Mm,n(k, p), a matrix of this set may contain a row,
all components of which are zeros, since p ≤ m.
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Theorem 1. Let V be a vector space of dimension n over the field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let ∆ be a 2-local linear operator on V generated by matrices
in Mn,n(k, p) with respect to the basis ν. Then ∆ is a linear operator generated by a matrix in
Mn,n(k, p) with respect to the basis ν.

P r o o f. Without loss of the generality, we suppose that k = 1. Indeed, matrices in Mn,n(k, p)
depend on the basis ν = {e1, e2, . . . en}. If we swap the vectors e1 and ek, then we get the set of
matrices Mn,n(1, p), i.e., k = 1. By the definition, for every element x ∈ V ,

x =

n∑

i=1

xiei,

there exists a matrix Ax,e1 = (ax,e1ij )ni,j=1 in Mn,n(1, p) such that

∆(x) = Âx,e1x̄,

where x̄ = (x1, x2, . . . , xn)T is the vector corresponding to x, ̂̄x is an operation on x̄ such that
̂̄x = x, and

∆(e1) = Ax,e1e1 = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T .

Since ∆(e1) = Lx,e1(e1) = Ly,e1(e1), we have

∆(e1) = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T = (ay,e111 , ay,e121 , ay,e131 , . . . , ay,e1n1 )T

for each pair x, y of elements in V . Hence, ax,e1q1 = ay,e1q1 , q = 1, 2, . . . n. By the condition, there
exist nonzero elements ax,e1i , ay,e1i ∈ F, i = 1, 2, . . . , p such that

ax,e1q1 = gi(a
x,e1
1 , ax,e12 , . . . , ax,e1p ), i = 1, 2, . . . n,

ay,e1q1 = gi(a
y,e1
1 , ay,e12 , . . . , ay,e1p ), i = 1, 2, . . . n.

So, we have

gi(a
x,e1
1 , ax,e12 , . . . , ax,e1p ) = gi(a

y,e1
1 , ay,e12 , . . . , ay,e1p ), i = 1, 2, . . . n.

By the definition of gi, i = 1, 2, . . . n, we have

ax,e1i = ay,e1i , i = 1, 2, . . . p.

By the condition, for every component az,e1ij , j 6= 1, of Az,e1 we have

az,e1ij = fij(a
z,e1
1 , az,e12 , . . . , az,e1p ), i = 1, 2, . . . n, j 6= 1.

where z ∈ {x, y}. Therefore ax,e1ij = ay,e1ij , i, j = 1, 2, . . . n, i.e. Ax,e1 = Ay,e1 , and

∆(x) = Ây,e1 x̄

for any x ∈ V , and the matrix of ∆(x) does not depend on x. Hence ∆ is a linear operator, and
the matrix Ay,e1 is the matrix of ∆. The proof is complete. �



8 Farhodjon Arzikulov, Feruza Nabijonova and Furkat Urinboyev

Let n be a natural number, and let {i1, i2, . . . ip} and {j1, j2, . . . jq} be subsets of {1, 2, . . . , n}
such that

p + q = n, {i1, i2, . . . ip} ∪ {j1, j2, . . . jq} = {1, 2, . . . , n}.

Let, for fixed k, m, l and s such that 1 ≤ k,m, l, s ≤ n, k 6= m,

Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s)

be a set of n× n matrices A = (aij)
n
i,j=1 such that the p× n submatrix

A1 : aαβ, α ∈ {i1, i2, . . . ip}, β = 1, 2, . . . , n,

belongs to the set Mp,n(k, l) and the q × n submatrix

A2 : aαβ , α ∈ {j1, j2, . . . jq}, β = 1, 2, . . . , n,

belongs to the set Mq,n(m, s). Then the following theorem takes place.

Theorem 2. Let V be a vector space of dimension n over the field F, and let ν = {e1, e2, . . . en}
be a basis of the vector space V . Let ∆ be a 2-local linear operator on V generated by matrices
in Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s) with respect to the basis ν. Then ∆ is a linear operator
generated by a matrix in

Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s)

with respect to the basis ν.

P r o o f. Without loss of generality, we suppose that k = 1, m = n. Indeed, matri-
ces in Mn(k,m, i1, i2, . . . ip, j1, j2, . . . jq, l, s) depend on the basis ν = {e1, e2, . . . en}. If we
swap the vectors e1 and ek, em and en respectively then we get the set of matrices
Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s), i.e., k = 1, m = n. Then, by definition of ∆, for every el-
ement x ∈ V ,

x =

n∑

i=1

xiei,

there exists a matrix
Ax,e1 = (ax,e1ij )ni,j=1

in Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s) such that

∆(x) = Âx,e1x̄,

where x̄ = (x1, x2, . . . , xn)T is the vector corresponding to x, ̂̄x is an operation on x̄ such that
̂̄x = x, and

∆(e1) = Lx,e1(e1) = Ax,e1e1 = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T ,

where Lx,e1 is a linear operator, generated by Ax,e1 . Since ∆(e1) = Lx,e1(e1) = Ly1,e1(e1), we have

∆(e1) = (ax,e111 , ax,e121 , ax,e131 , . . . , ax,e1n1 )T = (ay1,e111 , ay1,e121 , ay1,e131 , . . . , ay1,e1n1 )T

for each pair, x, y1 of elements in V . Hence,

ax,e1α1 = ay1,e1α1 , α ∈ {i1, i2, . . . ip}. (2.1)
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By the definition of Mn(1, n, i1, i2, . . . ip, j1, j2, . . . jq, l, s) the submatrix

{ax,e1αj }α∈{i1,i2,...ip}, j=1,2,...,n

belongs to the set of matrices Mp,n(1, l). Hence, by definition of the set Mp,n(1, l) there exist
mappings

gi(x1, x2, . . . , xl), i = 1, 2, . . . p,

with values in the field F and nonzero elements {ax,e11 , ax,e12 , . . . , ax,e1l } ⊂ F depending on x and e1
such that

ax,e1iα1
= gα(ax,e11 , ax,e12 , . . . , ax,e1l ), α ∈ {1, 2, . . . p}.

Also, there exist nonzero elements {ax,e11 , ax,e12 , . . . , ax,e1l } ⊂ F depending on x and e1 such that

ay1,e1α1 = gα(ay1,e11 , ay1,e12 , . . . , ay1,e1l ), α ∈ {i1, i2, . . . ip}.

By the equalities (2.1), we have

gα(ax,e11 , ax,e12 , . . . , ax,e1l ) = gα(ay1,e11 , ay1,e12 , . . . , ay1,e1l ), α ∈ {1, 2, . . . p}.

By the definition of the functions gv , v = 1, 2, . . . p in the definition of the set Mp,n(1, l), we have

ax,e1i = ay1,e1i , i = 1, 2, . . . l. (2.2)

By the definition of the set Mp,n(1, l), there exist functions

fαj(x1, x2, . . . , xp), α ∈ {i1, i2, . . . ip}, j = 2, . . . , n,

with values in the field F such that, for every component az,e1αj , α ∈ {i1, i2, . . . ip}, j = 2, 3, . . . , n,
of Az,e1 we have

az,e1αj = fα,j(a
z,e1
1 , az,e12 , . . . , az,e1p ), α ∈ {i1, i2, . . . ip}, j = 2, 3, . . . , n.

where z ∈ {x, y1}. Therefore, by (2.2), ax,e1αj = ay1,e1αj , α ∈ {i1, i2, . . . ip}, j = 1, 2, . . . n. Hence, for
the elements v ∈ V1, where V1 is the vector subspace, generated by the vectors {ei1 , ei2 , . . . , eip},
i.e.,

V1 = 〈ei1 , ei2 , . . . , eip〉

and w ∈ V2, where V2 is the vector subspace, generated by the vectors {ej1 , ej2 , . . . , ejp}, i.e.,

V2 = 〈ej1 , ej2 , . . . , ejp〉

such that

Âx,e1x̄ = v + w,

the elements t ∈ V1 and r ∈ V2 such that

Ây1,e1x̄ = t + r

we have

v = t.
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Similarly, from Lx,en(en) = Ly2,en(en) it follows that

ax,enαn = ay2,enαn , α ∈ {j1, j2, . . . jq}

and

ax,enαj = ay2,enαj , α ∈ {j1, j2, . . . jq}, j = 1, 2, . . . n.

Hence, for the elements a ∈ V1 and b ∈ V2 such that

Âx,enx̄ = a + b,

the elements c ∈ V1 and d ∈ V2 such that

Ây2,enx̄ = c + d

we have

b = d.

Therefore, if we take y1 = en, y2 = e1, then, for the elements f ∈ V1 and g ∈ V2 such that

Âe1,enx̄ = f + g,

we have

Âx,e1x̄ = v + w = f + w = f + b = f + g = Âe1,enx̄

since v = f , Ax,e1x̄ = Ax,enx̄ and b = g. So,

Lx,e1(x) = Lx,en(x) = Le1,en(x).

for any x ∈ V , and the matrix of ∆(x) does not depend on x. Hence ∆ is a linear operator and
the matrix Ae1,en is the matrix of ∆. This ends the proof. �

Example 1. Let J56 be the Jordan algebra with a basis {e1, n1, n2, n3} such that

n2
1 = n2, e1n3 =

1

2
n3, e1ni = ni, i = 1, 2

(see Table 3 in [16]). Then the matrix of its arbitrary derivation has the following form



0 0 0 0
0 α 0 0
0 β 2α 0
0 0 0 γ


 .

If we take k = 2, m = 4, i1 = 2, i2 = 3, j1 = 4, l = 2, s = 1, then the set of such matrices we
can take as the set M4(k,m, i1, i2, j1, l, s).

Therefore, by Theorem 2, each 2-local automorphism of the Jordan algebra J56 is an automor-
phism. In this case, M4(k,m, i1, i2, j1, l, s) is a set of 4× 4 matrices such that the 3× 4 submatrix

A1 : aα,β , α ∈ {1, 2, 3}, β = 1, 2, 3, 4,

belongs to the set M3,4(2, 2), and, the 1 × 4 submatrix

A2 : aα,β, α = 4, β = 1, 2, 3, 4,

belongs to the set M1,4(4, 1).
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3. 2-Local liner operators on finite-dimensional vector spaces which are not

linear operators

Let n be a natural number, V be a vector space of dimension n over a field F with a basis
{e1, e2, . . . , en}. Let, for fixed k, m, α, β, γ, η such that

1 ≤ k,m,α, β ≤ n, 2 ≤ η ≤ n, k 6= m, α ≤ β, 0 ≤ γ ≤ (n− β)n + β(n − η)

and, for fixed subsets {i1, i2, . . . , iβ} and {j1, j2, . . . , jη} of natural numbers from {1, 2, . . . , n} such
that k,m ∈ {j1, j2, . . . , jη},

fij(x1, x2, . . . , xα), i ∈ {i1, i2, . . . , iβ}, j ∈ {j1, j2, . . . , jη}, j 6= k, j 6= m,

fij(x1, x2, . . . , xγ), i ∈ {1, 2, . . . , n} \ {i1, i2, . . . , iβ}, j ∈ {1, 2, . . . , n} if β 6= n,

fij(x1, x2, . . . , xγ), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη} if η 6= n

be functions with values in the field F (including the function fij ≡ 0) and, for fixed nonzero
elements a1, a2, . . . , aα, b1, b2, . . . , bβ , z1, z2, . . . , zγ in F,

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)

be a n× n matrix with components aij , i, j = 1, 2, . . . , n, such that

1) for i ∈ {i1, i2, . . . , iβ}, aik ∈ {a1, a2, . . . aα} or aik = 0 and for any a ∈ {a1, a2, . . . aα} there
exists l ∈ {i1, i2, . . . , iβ} such that alk = a;

2) for every component aij , i ∈ {i1, i2, . . . , iβ}, j ∈ {j1, j2, . . . , jη}, j 6= k, j 6= m, of

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ),

aij = fij(a1, a2, . . . , aα);

3) aism = bs, s = 1, 2, . . . , β;
4) every component aij of the submatrices

B : aij , i ∈ {1, 2, . . . , n} \ {i1, i2, . . . , iβ}, j ∈ {1, 2, . . . , n},

C : aij , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

is equal to fij(z1, z2, . . . , zγ);
5) if β = n and η = n, then γ = 0 and we use the designation

Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bn)

instead of Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ).

Let V1, V2 be vector subspaces generated by the sets of vectors
{
ej : j 6= m, j ∈ {j1, j2, . . . , jη}

}

and {em} respectively, i.e.,

V1 =
〈{

ej : j 6= m, j ∈ {j1, j2, . . . , jη}
}〉

, V2 = 〈em〉.

If η 6= n, then let V3 be a vector subspace generated by the set of vectors
{
ej : j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

}
,

i.e.,
V3 =

〈{
ej : j ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jη}

}〉
.
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Lemma 1. If η 6= n, then, for any v ∈ V3 and x1, x2, . . . xα, y1, y2, . . . , yβ ∈ F,

Mk,m,η
n (x1, x2, . . . xα, y1, y2, . . . , yβ, z1, z2, . . . , zγ)v̄

= Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)v̄.

P r o o f. We have

Mk,m,η
n (x1, x2, . . . xα, y1, y2, . . . , yβ , z1, z2, . . . , zγ)v̄ =

n∑

i=1

∑

j∈{1,2,...,n}\{j1,j2,...,jη}

aijvjei = Cv̄,

where
v =

∑

j∈{1,2,...,n}\{j1,j2,...,jη}

vjej ,

C is a matrix from item 4) of the definition of Mk,m,η
n (a1, a2, . . . , aα, b1, b2, . . . , bβ, z1, z2, . . . , zγ)

above. Since x1, x2, . . . xα, y1, y2, . . . , yβ in F are chosen arbitrarily we have the statement of the
lemma. �

Theorem 3. Let V be a vector space of dimension n over a field F with a basis {e1, e2, . . . , en}.
Then, for any nonzero elements c1, c2, . . . , cα from the field F, a mapping ∆ on V defined as follows

(I) in the case η 6= n,

1) if v = v1 + v3 or v = v3, v1 ∈ V1, v1 6= 0, v3 ∈ V3 then

∆(v) = Mk,m,η
n (a1, a2, . . . aα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄,

2) if v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3, then

∆(v) = Mk,m,η
n (c1, c2, . . . , cα, b1, b2, . . . bβ , z1, z2, . . . , zγ)v̄,

(II) in the case η = n,

1) if v = v1, v1 ∈ V1, v1 6= 0, then

∆(v) = Mk,m,η
n (a1, a2, . . . aα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄,

2) if v = v1 + v2, v1 ∈ V1, v2 ∈ V2, v2 6= 0, then

∆(v) = Mk,m,η
n (c1, c2, . . . , cα, b1, b2, . . . bβ, z1, z2, . . . , zγ)v̄

is a 2-local linear operator, and ∆ is a linear operator if and only if

ai = ci, i = 1, 2, . . . , α.

P r o o f. We will prove the theorem in the case (I). In the case (II), the theorem is proved
similarly. We prove that the mapping ∆, defined in the theorem, is a 2-local linear operator on V .
Take the subspace V1 ⊕ V3 and arbitrary two elements v, w from V1 ⊕ V3. Then, by the definition
of ∆, item 1) of the theorem and by Lemma 1, for the linear operator Lv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
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Take the subspace V2 ⊕ V3 and two elements v, w from V2 ⊕ V3 such that

v = v2 + v3, v2 ∈ V2, v2 6= 0, v3 ∈ V3, w = w2 + w3, w2 ∈ V2, w2 6= 0, w3 ∈ V3.

Then, by item 2) of the theorem, for the linear operator Lv,w with the matrix

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
Now, if we take elements v ∈ V1 ⊕ V3 such that

v = v1 + v3, v1 ∈ V1, v1 6= 0, v3 ∈ V3, w ∈ V2 ⊕ V3

such that
w = w2 + w3, w2 ∈ V2, w2 6= 0, w3 ∈ V3,

then, by items 1) and 2) of the theorem

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄,

and

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

respectively. In this case, by Lemma 1, for the linear operator Tv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ ),

we have
∆(v) = Tv,w(v), ∆(w) = Tv,w(w).

Now, if v ∈ V1 ⊕ V2 ⊕ V3 such that

v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3, w ∈ V1 ⊕ V3

such that
w = w1 + w3, w1 ∈ V1, w1 6= 0, w3 ∈ V3,

then, by items 2) and 1) of the theorem,

∆(v) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

and

∆(w) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

respectively. In this case, there exist elements λ1, λ2, ..., λβ in the field F such that for the linear
operator Lv,w with the matrix

Mk,m,η
n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ ),

we have
∆(v) = Lv,w(v), ∆(w) = Lv,w(w).

Indeed, the equality ∆(w) = Lv,w(w) is obviously true for any λ1, λ2, ... λβ in F by Lemma 1. As
for the equality ∆(v) = Lv,w(v), we rewrite it in the following form

∆(v) = Mk,m,η
n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ)v̄
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= Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

The last equality is a system of linear equations with respect to the variables λ1, λ2, ... λβ. By
Lemma 1, this system can be written in the following way

hi + vm2 λi = gi + vm2 bi, i ∈ {i1, i2, ..., iβ}, hj = hj , j ∈ {1, 2, ..., n} \ {i1, i2, ..., iβ},

for some elements hi, i = 1, 2, ..., n and gj , j ∈ {i1, i2, ..., iβ}, from F, where v2 = vm2 em. Since,
vm2 6= 0, this system of linear equations has the solution

λi =
1

vm2
(gi + vm2 bi − hi), i ∈ {i1, i2, ..., iβ}.

Hence,
Mk,m,η

n (a1, a2, ..., aα, λ1, λ2, ..., λβ , z1, z2, ..., zγ)

is a desired matrix.
The case

v = v1 + v2 + v3, v1 ∈ V1, v2 ∈ V2, v2 6= 0, v3 ∈ V3,

w = w1 + w2 + w3, w1 ∈ V1, w2 ∈ V2, w2 6= 0, w3 ∈ V3

is also trivial, i.e., by item 2) of the theorem, for the linear operator Lv,w with the matrix

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ),

we have ∆(v) = Lv,w(v), ∆(w) = Lv,w(w).
The case v ∈ V3 and w ∈ V1 ⊕ V2 ⊕ V3 such that

w = w1 + w2 + w3, w1 ∈ V1, w1 6= 0, w2 ∈ V2, w2 6= 0, w3 ∈ V3

follows by Lemma 1. Indeed, we have

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

by item 1 of the theorem, and,

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄

by item 2 of the theorem. At the same time,

∆(v) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄

by Lemma 1. Hence,

∆(v) = Lv,w(v), ∆(w) = Lv,w(w)

for the linear operator Lv,w, generated by the matrix Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ).

Thus, in all cases, for any pair v and w of elements from V , there exists a linear operator Lv,w

on V such that ∆(v) = Lv,w(v), ∆(w) = Lv,w(w), i.e., ∆ is a 2-local linear operator.
Now, if ai = ci, i = 1, 2, ..., α, then, by items 1) and 2) of the theorem, for any v ∈ V ,

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

So ∆ is linear.
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Suppose that (a1, a2, ..., aα) 6= (c1, c2, ..., cα). Then there exists a vector v ∈ V1, v 6= 0, such
that

Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄ 6= Mk,m,η

n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄.

Then, for any w ∈ V2, w 6= 0, we have

∆(v + w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)(v + w),

∆(v) = Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄,

∆(w) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ)w̄.

So,

∆(v + w) − (∆(v) + ∆(w)) = Mk,m,η
n (c1, c2, ..., cα, b1, b2, ..., bβ , z1, z2, ..., zγ )v̄

−Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)v̄ 6= 0,

i.e., ∆ is not additive. This ends the proof. �

4. 2-Local derivations of complex null-filiform and filiform Zinbiel algebras

An algebra A over a field F is called Zinbiel algebra if, for any x, y, z ∈ A, the identity

(xy)z = x(yz) + x(zy)

holds. For a given Zinbiel algebra A, we define the following sequence:

A1 = A, Ai+1 =

i∑

k=1

AkAi+1−k, i ≥ 1.

A Zinbiel algebra A is said to be nilpotent if Ai = 0 for some i ∈ N. The minimal number i
satisfying Ai = 0 is called index of nilpotency or nilindex of the algebra A.

It is clear that the index of nilpotency of an arbitrary n-dimensional nilpotent Zinbiel algebra
does not exceed the number n + 1.

Definition 3. An n-dimensional Zinbiel algebra A is said to be null-filiform if

dimAi = (n + 1) − i,

where dimAi is the dimension of Ai, 1 ≤ i ≤ n + 1.

It is evident that the last definition is equivalent to the fact that the Zinbiel algebra A has
maximal index of nilpotency.

Theorem 4 [2]. An arbitrary n-dimensional null-filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to the algebra

F 0
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n,

where omitted products ekel are equal to zero and {e1, e2, . . . , en} is a basis of the algebra, the
symbols Ct

s are binomial coefficients defined as

Ct
s =

s!

t!(s − t!)
.
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Definition 4. An n-dimensional Zinbiel algebra A is said to be filiform if

dimAi = n− i, 2 ≤ i ≤ n.

Theorem 5 [2]. An arbitrary n-dimensional, n ≥ 5, filiform Zinbiel algebra over the field C of
complex numbers is isomorphic to one of the following pairwise non-isomorphic algebras:

F 1
n : eiej = Cj

i+j−1ei+j, 2 ≤ i + j ≤ n− 1,

F 2
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n− 1, ene1 = en−1,

F 3
n : eiej = Cj

i+j−1ei+j , 2 ≤ i + j ≤ n− 1, enen = en−1,

where omitted products ekel are equal to zero and {e1, e2, . . . , en} is a basis of the appropriate
algebra.

Theorem 6 [21]. A linear map △ : F 0
n → F 0

n is a derivation if and only if △ is of the following
form:

△(ei) =

n∑

j=i

Ci−1
j αj−i+1ej , 1 ≤ i ≤ n,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 7 [21]. A linear map △ : F 1
n → F 1

n is a derivation if and only if △ is of the following
form:

△(e1) =

n∑

j=1

αjej , △(ei) =

n−1∑

j=i

Ci−1
j αj−i+1ej, 2 ≤ i ≤ n− 1, △(en) = bn−1en−1 + bnen,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 8 [21]. A linear map △ : F 2
n → F 2

n is a derivation if and only if △ is of the following
form:

△(e1) =
n∑

j=1

αjej , △(e2) =
n−1∑

j=2

C1
j αj−1ej + αnen−1,

△(ei) =
n−1∑

j=i

Ci−1
j αj−i+1ej , 3 ≤ i ≤ n− 1, △(en) = bn−1en−1 + (n− 2)α1en,

where αi ∈ C, 1 ≤ i ≤ n.

Theorem 9 [21]. A linear map △ : F 3
n → F 3

n is a derivation if and only if △ is of the following
form:

△(e1) =

n∑

j=1

αjej , △(ei) =

n−1∑

j=i

Ci−1
j αj−i+1ej , 2 ≤ i ≤ n− 1,

△(en) = −αnen−2 + bn−1en−1 +
n− 1

2
α1en,

where αi ∈ C, 1 ≤ i ≤ n.
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The following theorems are the main theorems of the present section.

Theorem 10. Each 2-local derivation on F 0
n is a derivation.

P r o o f. Let ∆ be an arbitrary 2-local derivation on F 0
n . By the definition, for any x, y ∈ F 0

n

there exists a derivation Dx,y on F 0
n such that

∆(x) = Dx,y(x), ,∆(x) = Dx,y(x).

By Theorem 6, the matrix of the derivation Dx,y has the following matrix form:

Dx,y =




αx,y
1 0 0 . . . 0 0

αx,y
2 C1

2α
x,y
1 0 . . . 0 0

αx,y
3 C1

3α
x,y
2 C2

3α
x,y
1 . . . 0 0

...
...

...
. . .

...
...

αx,y
n−1 C1

n−1α
x,y
n−2 C2

n−1α
x,y
n−3 . . . Cn−2

n−1α
x,y
1 0

αx,y
n C1

nα
x,y
n−1 C2

nα
x,y
n−2 . . . Cn−2

n αx,y
2 Cn−1

n αx,y
1




.

Clearly, the set of all n × n matrices of the form above we can set as a set Mm,n(k, p) defined
in Section 2, where m = n, k = 1, p = n, i.e., Mm,n(k, p) = Mn,n(1, n)

Each 2-local derivation on F 0
n is a 2-local linear operator on F 0

n generated by matrices in
Mn,n(1, n) with respect to the basis {e1, e2, ..., en}. Conversely, every 2-local linear operator on F 0

n

generated by matrices in Mn,n(1, n) is a 2-local derivation on F 0
n by Theorem 6.

Therefore, by Theorem 1, each 2-local derivation on F 0
n is a linear operator generated by a

matrix from Mn,n(1, n). Hence, each 2-local derivation on F 0
n is a derivation by Theorem 6. This

ends the proof. �

Theorem 11. The algebras F 1
n , F

2
n and F 3

n have 2-local derivations which are not derivations.

P r o o f. Let D be an arbitrary derivation on F 1
n . By Theorem 7, the matrix of the derivation

D has the following form:




α1 0 0 . . . 0 0
α2 C1

2α1 0 . . . 0 0
α3 C1

3α2 C2
3α1 . . . 0 0

...
...

...
. . .

...
...

αn−1 C1
n−1αn−2 C2

n−1αn−3 . . . Cn−2
n−1α1 βn−1

αn 0 0 . . . 0 βn




.

Let a1 = αn−1, a2 = αn, b1 = βn−1, b2 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2.

Then, if this matrix we denote by M1,n,n
n (a1, a2, b1, b2, z1, z2, ..., zn−2), then

M1,n,n
n (a1, a2, b1, b2, z1, z2, ..., zn−2) satisfies the all conditions of the definition in Section 3

of a matrix
Mk,m,η

n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n, η = n, α = 2, β = 2 and γ = n− 2.
Therefore, by Theorem 3, we can find a 2-local derivation on F 1

n which is not linear.
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Now we take the algebra F 2
n and a derivation D on F 2

n . By Theorem 8, the matrix of the
derivation D has the following form:




α1 0 0 . . . 0 0
α2 C1

2α1 0 . . . 0 0
α3 C1

3α2 C2
3α1 . . . 0 0

...
...

...
. . .

...
...

αn−1 C1
n−1αn−2 + αn C2

n−1αn−3 . . . Cn−2
n−1α1 βn−1

αn 0 0 . . . 0 (n− 2)α1




.

Similar to the previous case, we take a1 = αn−1, b1 = βn−1 and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = αn.

Then, if this matrix we denote by M1,n,n
n (a1, b1, z1, z2, ..., zn−1), then M1,n,n

n (a1, b1, z1, z2, ..., zn−1)
satisfies the all conditions of the definition in Section 3 of a matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n, η = n, α = 1, β = 1 and γ = n− 1.
Therefore, by Theorem 3, we can find a 2-local derivation on F 1

n which is not linear.
Similarly we prove that F 3

n has 2-local derivations which are not derivations. This ends the
proof. �

5. 2-Local automorphisms of naturally graded quasi-filiform Leibniz algebras

of type I

A vector space with a bilinear bracket (L, [·, ·]) is called a Leibniz algebra if, for any x, y, z ∈ L,
the so-called Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds. For a given Leibniz algebra (L, [·, ·]), the sequence of two-sided ideals is defined recursively
as follows:

L1 = L, Lk+1 = [Lk,L], k ≥ 1.

This sequence is said to be the lower central series of L.
A Leibniz algebra L is said to be nilpotent, if there exists n ∈ N such that Ln = {0}.
It is easy to see that the sum of two nilpotent ideals of a Leibniz algebra is also nilpotent.

Therefore, the maximal nilpotent ideal of a finite-dimensional Leibniz algebra always exists. The
maximal nilpotent ideal of a Leibniz algebra is said to be the nilradical of the algebra.

Now we give the definitions of automorphisms and 2-local automorphisms.
Let A be an algebra. A linear bijective map ϕ : A → A is called an automorphism if it satisfies

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ A.

Let A be an algebra. A (not necessarily linear) map ∆ : A → A is called a 2-local automorphism
if, for any elements x, y ∈ A, there exists an automorphism ϕx,y : A → A such that

∆(x) = ϕx,y(x), ∆(y) = ϕx,y(y).

Below we define the notion of a quasi-filiform Leibniz algebra.
An n-dimensional Leibniz algebra L is called quasi-filiform if Ln−2 6= {0} and Ln−1 = {0}.
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Given an n-dimensional nilpotent Leibniz algebra L such that Ls−1 6= {0} and Ls = {0}, put

Li = Li/Li+1, 1 ≤ i ≤ s− 1,

and

gr(L) = L1 ⊕ L2 ⊕ · · · ⊕ Ls−1.

Due to [Li,Lj ] ⊆ Li+j we obtain the graded algebra gr(L). If gr(L) and L are isomorphic, i.e., if
gr(L) ∼= L, then we say that L is naturally graded.

Let x be a nilpotent element of the set L\L2. For the nilpotent operator of right multiplica-
tion Rx we define a decreasing sequence C(x) = (n1, n2, . . . , nk), where n = n1 + n2 + · · · + nk,
which consists of the dimensions of Jordan blocks of the operator Rx. On the set of such sequences
we consider the lexicographic order, that is,

C(x) = (n1, n2, . . . , nk) ≤ C(y) = (m1,m2, . . . ,mt)

iff there exists i ∈ N such that nj = mj for any j < i and ni < mi.

The sequence

C(L) = max
x∈L\L2

C(x)

is called the characteristic sequence of the algebra L.

A quasi-filiform non Lie Leibniz algebra L is called an algebra of the type I (respectively, type II)
if there exists an element x ∈ L\L2 such that the operator Rx has the form

(
Jn−2 0

0 J2

)
, (respectively,

(
J2 0
0 Jn−2

)
).

The following theorem obtained in [1] gives the classification of naturally graded quasifiliform
Leibniz algebras of type I.

Theorem 12. An arbitrary n-dimensional naturally graded quasi-filiform Leibniz algebra of
type I is isomorphic to one of the pairwise non-isomorphic algebras of the following families:

L1,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en,
[e1, en−1] = λen, λ ∈ C,

L2,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en,
[e1, en−1] = λen, λ ∈ {0, 1},
[en−1, en−1] = en,

L3,λ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[e1, en−1] = λen, λ ∈ {−1, 0, 1},

L4,µ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[en−1, en−1] = µen, µ 6= 0,

L5,λ,µ
n :





[ei, e1] = ei+1, 1 ≤ i ≤ n− 3,
[en−1, e1] = en + e2,
[e1, en−1] = λen, (λ, µ) = (1, 1) or (2, 4),
[en−1, en−1] = µen,

where {e1, e2, . . . , en} is a basis of the algebra.

In this section we use the following theorem from [3] concerning automorphisms of naturally
graded quasi-filiform Leibniz algebras of type I.
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Theorem 13. A linear map ϕ : L → L is an automorphism if and only if ϕ has the following
form:

ϕ
(
L1,λ
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1

(∑n−2
i=2 αi−1ei + αn−1(1 + λ)en

)
,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n

i=n−3 biei,

ϕ (en) = α1 (bn−3en−2 + bn−1en) ,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0;

ϕ
(
L2,0
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1
∑n−2

i=2 αi−1ei + αn−1 (α1 + αn−1) en,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + bn−1en−1 + bnen,
ϕ (en) = (α1 + αn−1) bn−1en,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0, bn−1 = α1 + αn−1;

ϕ
(
L2,1
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1
∑n−2

i=2 αi−1ei + αn−1 (2α1 + αn−1) en,

ϕ (ej) = αj−1
1

∑n−2
i=j αi−j+1ei, 3 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + bn−1en−1 + bnen,

ϕ (en) = (α1 + αn−1) bn−1en,

where αi ∈ C, 1 ≤ i ≤ n, α1bn−1 6= 0, bn−1 = α1 + αn−1;

ϕ
(
L3,−1
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (ej) = αj−1
1 (α1 + αn−1) ej + αn−1

1

∑n−2
i=j+1 αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n−3

i=2 αiei + bn−2en−2 + (α1 + αn−1) en−1 + bnen,

ϕ (en) = α1 (α1 + αn−1) en,

where αi ∈ C, 1 ≤ i ≤ n, α1 (α1 + αn−1) 6= 0;

ϕ
(
L3,0
n

)
:





ϕ (e1) =
∑n

i=1 αiei,

ϕ (e2) = α1 (α1 + αn−1) e2 + α1
∑n−2

i=3 αi−1ei + α1αn−1en,

ϕ (ej) = αj−1
1 (α1 + αn−1) ej + αj−1

1

∑n−2
i=j+1 αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) =
∑n−4

i=2 αiei + bn−3en−3 + bn−2en−2 + (α1 + αn−1) en−1 + bnen,

ϕ (en) = (bn−3 − αn−3)α1en−2 + α2
1en,

where αi ∈ C, 1 ≤ i ≤ n, α1 (α1 + αn−1) 6= 0; for the algebras L3,1
n ,L4,µ

n ,L5,λ,µ
n





ϕ (e1) =
∑n−2

i=1 αiei + αnen,

ϕ (ej) = αi−1
1

∑n−2
i=j αi−j+1ei, 2 ≤ j ≤ n− 2,

ϕ (en−1) = bn−2en−2 + α1en−1 + bnen,

ϕ (en) = 2α2
1en,

where αi ∈ C, 1 ≤ i ≤ n− 2, αn ∈ C, α1 6= 0.
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The following theorem is one of the main results of the present paper concerning 2-local auto-
morphisms.

Theorem 14. The algebras L1,λ
n , L2,λ

n , where λ ∈ {0, 1}, L3,λ
n , where λ ∈ {−1, 0, 1}, L4,µ

n and

L5,λ,µ
n , where (λ, µ) = (1, 1) or (2, 4), have 2-local automorphisms which are not automorphisms.

P r o o f. Let ϕ be an arbitrary automorphism on L1,λ
n . By Theorem 13, the matrix of the

automorphism ϕ has the following form:




α1 0 0 0 0 0 . . . 0 0 0
α2 α2

1 0 0 0 0 . . . 0 0 0
α3 α1α2 α3

1 0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...

αn−4 α1αn−5 α2
1αn−6 . . . αn−6

1 α2 αn−4
1 0 0 0 0

αn−3 α1αn−4 α2
1αn−5 . . . an−6

1 a3 αn−5
1 α2 αn−3

1 0 βn−3 0

αn−2 α1αn−3 α2
1αn−4 α3

1αn−5 . . . αn−5
1 α3 αn−4

1 α2 αn−2
1 βn−2 α1βn−3

αn−1 0 0 0 0 . . . 0 0 βn−1 0
αn αn−1(1 + λ) 0 0 0 . . . 0 0 βn α1βn−1




.

Let a1 = αn, αn−1 = 0, b1 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = βn−1, zn = βn−2, zn+1 = βn−3.

Then, denoting this matrix by M1,n,n
n (a1, b1, z1, z2, ..., zn+1), we see that

M1,n,n
n (a1, b1, z1, z2, ..., zn+1) satisfies all conditions of the definition in Section 3 of a ma-

trix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n− 1, η = n− 1, α = 1, β = 1 and γ = n + 1.
Therefore, by Theorem 3, we can find a 2-local automorphism on L1,λ

n which is not linear.
Now we take the algebra L2,0

n and an automorphism ϕ on L2,0
n . By Theorem 13, the matrix of

the automorphism ϕ has the following form:
































α1 0 0 0 0 0 . . . 0 0 0
α2 α2

1
0 0 0 0 . . . 0 0 0

α3 α1α2 α3

1
0 0 0 . . . 0 0 0

...
...

...
. . .

...
...

...
...

...
...

αn−4 α1αn−5 α2

1
αn−6 . . . αn−6

1
α2 αn−4

1
0 0 0 0

αn−3 α1αn−4 α2

1
αn−5 . . . an−6

1
a3 αn−5

1
α2 αn−3

1
0 0 0

αn−2 α1αn−3 α2

1
αn−4 α3

1
αn−5 . . . αn−5

1
α3 αn−4

1
α2 αn−2

1
βn−2 0

αn−1 0 0 0 0 . . . 0 0 α1 + αn−1 0
αn αn−1(α1 + αn−1) 0 0 0 . . . 0 0 βn (α1 + αn−1)2

































.

Similar to the previous case, we take a1 = αn, αn−1 = 0, b1 = βn and

z1 = α1, z2 = α2, ..., zn−2 = αn−2, zn−1 = βn−2.

Then, if this matrix we denote by M1,n,n
n (a1, b1, z1, z2, ..., zn−1), then M1,n,n

n (a1, b1, z1, z2, ..., zn−1)
satisfies all conditions of definition in Section 3 of a matrix

Mk,m,η
n (a1, a2, ..., aα, b1, b2, ..., bβ , z1, z2, ..., zγ)

in the case of k = 1, m = n−1, η = n−1, α = 1, β = 1 and γ = n−1. Therefore, by Theorem 3,
we can find a 2-local automorphism on L2,λ

n which is not linear.
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Similarly we prove that L2,1
n has 2-local automorphisms which are not automorphisms.

Now, we take L3,−1
n , L3,0

n , L3,1
n , L4,µ

n and L5,λ,µ
n . By Theorem 13, the matrix of automorphisms

of L3,−1
n and L3,0

n has the following forms respectively:
































α1 0 0 0 0 0 . . . 0 0 0
α2 λ2 0 0 0 0 . . . 0 α2 0

α3 αn−1

1
α2 λ3 0 0 0 . . . 0 α3 0

...
...

...
. . .

...
...

...
...

...
...

αn−4 αn−1

1
αn−5 αn−1

1
αn−6 . . . αn−1

1
α2 λn−4 0 0 αn−4 0

αn−3 αn−1

1
αn−4 αn−1

1
αn−5 . . . αn−1

1
α3 αn−1

1
α2 λn−3 0 αn−3 0

αn−2 αn−1

1
αn−3 αn−1

1
αn−4 αn−1

1
αn−5 . . . αn−1

1
α3 αn−1

1
α2 λn−2 βn−2 α1βn−3

αn−1 0 0 0 0 . . . 0 0 α1 + αn−1 0
αn 0 0 0 0 . . . 0 0 βn α1(α1 + αn−1)

































and



α1 0 0 0 . . . 0 0 0
α2 λ2 0 0 . . . 0 α2 0
α3 α1α2 λ3 0 . . . 0 α3 0
α4 α1α3 α2

1α2 λ4 . . . 0 α4 0
α5 α1α4 α2

1α3 α3
1α2 . . . 0 α5 0

...
...

...
...

. . .
...

...
...

αn−4 α1αn−5 α2
1αn−6 α3

1αn−7 . . . 0 αn−4 0
αn−3 α1αn−4 α2

1αn−5 α3
1αn−6 . . . 0 βn−3 0

αn−2 α1αn−3 α2
1αn−4 α3

1αn−5 . . . λn−2 βn−2 (βn−3 − αn−3)α1

αn−1 0 0 0 . . . 0 α1 + αn−1 0
αn α1αn−1 0 0 . . . 0 βn α2

1




,

where λi = αi−1
1 (α1 + αn−1), i = 2, 3, . . . , n− 2.

For the algebras L3,1
n , L4,µ

n and L5,λ,µ
n the matrix of their automorphisms has the following

form



α1 0 0 0 . . . 0 0 0
α2 α2

1 0 0 . . . 0 0 0
α3 α2

1α2 α3
1 0 . . . 0 0 0

α4 α3
1α3 α3

1α2 α4
1 . . . 0 0 0

α5 α4
1α4 α4

1α3 α4
1α2 . . . 0 0 0

...
...

...
...

. . .
...

...
...

αn−2 αn−3
1 αn−3 αn−3

1 αn−4 αn−3
1 αn−5 . . . αn−2

1 βn−2 0
0 0 0 0 . . . 0 α1 0
αn 0 0 0 . . . 0 βn 2α2

1




By these forms and Theorem 3, similar to the cases of L1,λ
n and L2,0

n we can prove that the algebras
L3,−1
n , L3,0

n , L3,1
n , L4,µ

n and L5,λ,µ
n also have 2-local automorphisms which are not automorphisms.

This ends the proof. �

Conclusion

In conclusion, it can be said that the article generalizes the methods of studying 2-local deriva-
tions and automorphisms of algebras. The method proposed in the second section allows one to
make a direct conclusion about whether all 2-local derivations (respectively, automorphisms) are
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derivations (respectively, automorphisms) based on the general matrix form of the matrix of a
derivation (respectively, an automorphism) of an algebra. This method is useful since often the
derivation (automorphism) of an algebra has the matrix form in the method under consideration.
In the third section, a method is developed that allows one to obtain an entire subspace (an entire
subgroup) of 2-local derivations (respectively, 2-local automorphisms) that are not derivations (re-
spectively, automorphisms). As is known, the set of all 2-local derivations (2-local automorphisms)
of an algebra forms a vector space (respectively, a group) and the description of this vector space
(this group) is an open problem. We think that the method developed in the third section allows
to solve this problem.
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Abstract: In control theory, the problem of constructing and investigating attainability domains is very
important. However, under perturbations of constraints, this problem lacks stability. It is useful to single out
the case when the constraints are relaxed. In this case, greater opportunities arise in terms of attainability,
and often a useful effect can be observed even under slight relaxation of the constraints. This situation is
analogous to the duality gap in convex programming. Very often, it is not possible to specify in advance how
much relaxation of the constraints will occur. Therefore, attention is focused on the limit of the attainability
domains under unrestricted tightening of the relaxed conditions. As a result, a certain attainability problem
with asymptotic-type constraints arises. This problem formulation can be significantly generalized. Namely,
we do not consider any unperturbed conditions at all and instead pose asymptotic-type constraints directly by
means of a nonempty family of sets in the space of ordinary controls. Moreover, not only the case of control
problems can be considered. In this general formulation, an analogue of the limit of attainability domains
naturally appears as the relaxed conditions are infinitely tightened. For asymptotic constraints of this kind,
we introduce solutions which are, at the conceptual level, similar to the approximate solutions of J. Warga,
but we use filters or directedness, and not just sequences of ordinary solutions (controls). We investigate the
most general attainability problem, in which asymptotic-type constraints can be generated by any nonempty
family of sets in the ordinary solution space. It is shown, however, that the most practically interesting case is
realized by filters, and the role of ultrafilters is noted as well. The action of constraints is associated with sets
and elements of attraction. Furthermore, some properties of the family of all attraction sets are investigated.

Keywords: Attraction set, Constraints, Filter, Topology, Ultrafilter.

1. Introduction

We consider attainability problems in topological spaces with asymptotic-type constraints.
These asymptotic-type constraints may arise when standard constraints (such as inequalities in
mathematical programming, phase constraints, or boundary conditions in control theory) are re-
laxed, but they can also be posed from the outset. In all cases, we deal with a nonempty family
of sets in the space of ordinary (implementable) solutions. Thus, our concrete solutions must be
essentially asymptotic; here we focus on the approximate solutions in the sense of Warga (see
[17, Ch. III]), allowing, however, for nonsequential variants (i.e., directed sets or filters). In addi-
tion, for the family generating asymptotic-type constraints, we require that the solution direction
eventually takes values in each set of this family (a similar requirement is imposed when using
filters and, in particular, ultrafilters).

In addition, we have a certain target operator with values in a topological space. Using the
solution direction, we obtain a directed set of its values (when using a filter, the filter base is
realized). We consider those points in the topological space that are realized as generalized limits
of such directed sets of values. The set of these generalized limits is called the attraction set for
the given asymptotic-type constraints. Thus, for every nonempty family of sets in the space of

https://doi.org/10.15826/umj.2025.1.002
mailto:chentsov@imm.uran.ru
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ordinary solutions, the corresponding attraction set in the fixed topological space is defined. By
varying these families, we obtain a family of attraction sets. The latter family is the main subject
of our research. We strive to develop a kind of “calculus” of attraction sets. Filters and ultrafilters
will play an important role in this construction.

We note that, for the investigation of extremal problems with weakened constraints, extension
constructions are used very widely (see [17, Ch. III–V]). This approach motivated the development
of the theory of generalized solutions (controls); in this connection, we would like to especially
mention the monographs [9, 11, 17, 18]. In [11, 12], the fundamental alternative theorem was
established; this theorem defined the current state of differential game theory. In the construction
of the proof, the idea of observing phase constraints in the form of sections of the stable bridge of
N.N. Krasovskii was employed. We also note the wide application of generalized controls in solving
the performance problem; see [9].

For control problems involving impulses, N.N. Krasovskii suggested (see [13]) using the appara-
tus of generalized functions to represent (generalized) controls. This approach served as the basis
for the development of impulse control theory (see [7, 10, 13, 15, 16, 19] and others). In [2, 3, 6],
for abstract control problems with impulse-type and momentary-type constraints, and with discon-
tinuous dependencies among the conditions, extension constructions in the class of finitely additive
measures were proposed. Finally, we note the approach of [4, Ch. 8], which is connected with the use
of ultrafilters as generalized elements in attainability problems with asymptotic-type constraints.
The present article continues the investigations of [4, Ch. 8].

Now, we note essential differences between the present investigation and the constructions in
the author’s earlier works. Namely, here, not a single attraction set is considered, but rather the
space of such objects is explored. In particular, we study the transformations of attraction sets
when the asymptotic-type constraints are varied. Cases where attraction sets are generated by
filters forming asymptotic-type constraints are particularly highlighted. The role of ultrafilters in
the above-mentioned transformations is clarified. Namely, each ultrafilter on the set of ordinary
solutions is associated with an element of attraction. As a consequence, an attraction operator is
defined; by means of this operator, a new representation for attraction sets generated by filters is
established.

2. General notions and definitions

We use standard set-theoretical notation, including quantifiers (∀, ∃), logical connectives (&,

∨, =⇒, ⇐⇒, and others), and special symbols: def (by definition),
△
= (equality by definition), and

∃! (there exists a unique element). We assume that a family is a set whose elements are themselves
sets. We also adopt the axiom of choice.

If a and b are objects, then by {a; b} we denote the set such that a ∈ {a; b}, b ∈ {a; b}, and for
any z ∈ {a; b}, (z = a)∨ (z = b) holds; that is, {a; b} is the unordered pair of these objects. For any

object x, the set {x}
△
= {x;x} is the singleton corresponding to x. Sets are objects; therefore, for

any objects x and y, the expression (x, y)
△
= {{x}; {x; y}} defines the ordered pair with first element

x and second element y (see [14, Ch. II, Sect. 3]). If h is an ordered pair, then pr1(h) and pr2(h)
denote the first and second elements of h, respectively; by virtue of the equality h = (pr1(h),pr2(h)),
these elements are uniquely defined.

If H is a set, then P(H) denotes the family of all subsets of H, and P ′(H)
△
= P(H) \ {∅}.

Moreover, let Fin(H) denote the family of all finite sets in P ′(H), that is, the family of all nonempty
finite subsets of H (any family can be used as H).

Functions. If A and B are nonempty sets, then BA denotes the set of all functions from A
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to B; for g ∈ BA (that is, for g : A → B) and a ∈ A, the element g(a) ∈ B is the value of g at the
point a. If A and B are nonempty sets, f ∈ BA, and C ∈ P(A), then [14, Ch. II, Sect. 7]

f1(C)
△
= {f(x) : x ∈ C} ∈ P(B)

is the image of the set C under the action of f ; if D ∈ P(B), then, as usual, f−1(D) denotes the
preimage of the set D under f. For a nonempty family M, we introduce the family

(Cen)[M]
△
=

{

Z ∈ P ′(M)|
⋂

Z∈K

Z 6= ∅ ∀K ∈ Fin(Z)
}

∈ P(P ′(M))

of all nonempty centered subfamilies of M. As usual, R is the real line, N
△
= {1; 2; . . .} ∈ P ′(R), and

1, n
△
= {k ∈ N| k ≤ n} under n ∈ N. We suppose that the elements of N (the natural numbers) are

not sets. Taking this into account, for every nonempty set H and n ∈ N, we use the notation Hn

instead of H1,n for the set of all functions from 1, n to H (these functions are called tuples). Of
course, any nonempty family can be used as H. In denoting functions, we often use the index form
(families with indices, see [17, Sect. 1.1]).

For every family H and set T , we define

(

[H](T )
△
= {H ∈ H| T ⊂ H} ∈ P(H)

)

&
(

H|T
△
= {H ∩ T : H ∈ H} ∈ P(P(T ))

)

.

If M is a set and M ∈ P ′(P(M)), then

CM[M]
△
= {M \M : M ∈ M} ∈ P ′(P(M))

is the family of subsets of M dual to M.

Special families. Fix a set I throughout this section. We consider families from P ′(P(I)),
that is, nonempty families of subsets of I. In particular,

π[I]
△
=

{

I ∈ P ′(P(I))| (∅ ∈ I)&(I ∈ I)&(A ∩B ∈ I ∀A ∈ I ∀B ∈ I)
}

(2.1)

is the family of all π-systems of subsets of I containing the “zero” ∅ and the “unit” I. Define

(LAT)0[I]
△
=

{

I ∈ π[E]| A ∪B ∈ I ∀A ∈ I ∀B ∈ I
}

as the family of all lattices of subsets of I containing the “zero” and “unit”. Next,

π̃0[I]
△
=

{

I ∈ π[I]| ∀I ∈ I ∀x ∈ I \ I ∃J ∈ I : (x ∈ J)&(J ∩ I = ∅)
}

(2.2)

is the family of all separable π-systems of (2.1). We also use the family

(top)[I]
△
=

{

τ ∈ π[I]|
⋃

G∈G

G ∈ τ ∀G ∈ P(τ)
}

=
{

τ ∈ (LAT)0[I]|
⋃

G∈G

G ∈ τ ∀G ∈ P(τ)
}

of all topologies on the set I. If τ ∈ (top)[I], then (I, τ) is a topological space with unit I, and
CI[τ ] ∈ (LAT)0[I] is the family of all closed in (I, τ) subsets of I. Define

(c− top)[I]
△
=

{

τ ∈ (top)[I]|
⋂

F∈F

F 6= ∅ ∀F ∈ (Cen)[CI[τ ]]
}

(2.3)
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as the family of all compact topologies on I. If τ ∈ (c− top)[I], then (I, τ) is a compact topological

space. For τ ∈ (top)[I] and x ∈ I, let N0
τ (x)

△
= {G ∈ τ | x ∈ G} and

Nτ (x)
△
=

{

H ∈ P(I)| ∃G ∈ N0
τ (x) : G ⊂ H

}

(2.4)

be the family of all neighborhoods of the point x in the topological space (I, τ). Define

(top)0[I]
△
=

{

τ ∈ (top)[I]| ∀y ∈ I ∀z ∈ I \ {y} ∃G1 ∈ N0
τ (y) ∃G2 ∈ N0

τ (z) : G1 ∩G2 = ∅
}

=
{

τ ∈ (top)[I]| ∀y ∈ I ∀z ∈ I \ {y} ∃H1 ∈ Nτ (y) ∃H2 ∈ Nτ (z) : H1 ∩H2 = ∅
}

as the family of all topologies that make I a T2-space. Let

(c− top)0[I]
△
= (c− top)[I] ∩ (top)0[I];

if τ ∈ (c− top)0[I], then the topological space (I, τ) is called a compactum.
If τ ∈ (top)[I] and A ∈ P(I), then [CI[τ ]](A) ∈ P ′(CI[τ ]) and

cl(A, τ)
△
=

⋂

F∈[CI[τ ]](A)

F ∈ [CI[τ ]](A)

is the closure of A in the topological space (I, τ).

3. Some topological constructions

If (X, τ) is a topological space and Y ∈ P(X), then τ |Y ∈ (top)[Y ]; the resulting topological
space (Y, τ |Y ) is called a subspace of (X, τ). For every topological space (X, τ), define

(τ − comp)[X]
△
=

{

K ∈ P(X)| τ |K ∈ (c− top)[K]
}

as the family of all compact (in (X, τ)) subsets of X. Throughout this (brief) section, we fix topo-
logical spaces (U, τ1) and (V, τ2) with U 6= ∅ and V 6= ∅; that is, τ1 ∈ (top)[U ] and τ2 ∈ (top)[V ].
Define

C(U, τ1, V, τ2)
△
=

{

f ∈ V U | f−1(G) ∈ τ1 ∀G ∈ τ2
}

, (3.1)

Ccl(U, τ1, V, τ2)
△
=

{

f ∈ C(U, τ1, V, τ2)| f
1(F ) ∈ CV [τ2] ∀F ∈ CU [τ1]

}

=
{

f ∈ V U | f1(cl(A, τ1)) = cl(f1(A), τ2) ∀A ∈ P(U)
}

.
(3.2)

Note the following important special case:
(

(τ1 ∈ (c− top)[U ])&(τ2 ∈ (top)0[V ])
)

=⇒
(

C(U, τ1, V, τ2) = Ccl(U, τ1, V, τ2)
)

. (3.3)

In (3.1), the set of all continuous functions from (U, τ1) to (V, τ2) is defined; (3.2) is the set of
all closed (i.e., continuous and closed) functions between these spaces. By (3.3), every continuous
function from a compact topological space to a T2-space is closed. Of course, every constant function
is continuous.

If f ∈ V U and H ∈ P ′(P(U)), then the family

f1[H]
△
= {f1(H) : H ∈ H} ∈ P ′(P(V )) (3.4)

is called the “image” of the initial nonempty family H. If H ∈ P(U) and H = {H}, then

f1[H] = f1[{H}] = {f1(H)}.

The following important property holds:

f1(K) ∈ (τ2 − comp)[V ] ∀f ∈ C(U, τ1, V, τ2) ∀K ∈ (τ1 − comp)[U ];

see [8, 3.1.10]. That is, the continuous image of a compact set is compact.
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4. Directed families, filters, and filter bases

In this section, we fix a nonempty set J.
In what follows, this set may be realized in various ways. In essence, J serves as a parameter

with specific realizations to be considered as needed. We consider various subfamilies of P(J). In
particular,

β[J ]
△
=

{

J ∈ P ′(P(J))| ∀J1 ∈ J ∀J2 ∈ J ∃J3 ∈ J : J3 ⊂ J1 ∩ J2
}

(4.1)

is the family of all nonempty directed subfamilies of P(J). In addition,

{∩}♯(J̃ )
△
=

{

⋂

Σ∈K

Σ : K ∈ Fin(J̃ )
}

∈ β[J ] ∀J̃ ∈ P ′(P(J)). (4.2)

Now, we introduce filter bases; namely, we consider the family

β0[J ]
△
=

{

B ∈ β[J ]|∅ /∈ B
}

=
{

B ∈ P ′(P ′(J))| ∀B1 ∈ B ∀B2 ∈ B ∃B3 ∈ B : B3 ⊂ B1 ∩B2

}

(4.3)

of all filter bases on the set J. Moreover, note that (see [1, Ch. I])

F[J ]
△
=

{

F ∈ P ′(P ′(J))|
(

A ∩B ∈ F ∀A ∈ F ∀B ∈ F
)

&
(

[P(J)](F ) ⊂ F ∀F ∈ F
)}

(4.4)

is the nonempty family (indeed, {J} ∈ F[J ]) of all filters on J . In addition,

(J − fi)[B]
△
=

{

F ∈ P[J ]| ∃B ∈ B : B ⊂ F
}

∈ F[J ] ∀B ∈ β0[J ]. (4.5)

Thus (see (4.5)), filter bases from (4.3) generate filters of the family (4.4) via the simple rule (4.5).
In connection with (2.4), note that for all τ ∈ (top)[J ], for all x ∈ J ,

N0
τ (x) ∈ β0[J ] : Nτ [x] = (J − fi)[N0

τ (x)] ∈ F[J ]. (4.6)

Using (4.6), recall the well-known convergence notion [1, Ch. I]: for all τ ∈ (top)[J ], B ∈ β0[J ], and
x ∈ J ,

(B
τ

=⇒ x)
def
⇐⇒ (Nτ (x) ⊂ (J − fi)[B]). (4.7)

Using the inclusion F[J ] ⊂ β0[J ] and the evident property

(J − fi)[F ] = F ∀F ∈ F[J ],

from (4.7), we obtain the following natural corollary for filters: for all τ ∈ (top)[J ], F ∈ F[J ], and
x ∈ J ,

(F
τ

=⇒ x) ⇐⇒ (Nτ (x) ⊂ F). (4.8)

We use ultrafilters, i.e., maximal filters; then,

Fu[J ]
△
= {U ∈ F[J ]| ∀F ∈ F[J ] (U ⊂ F) =⇒ (U = F)} (4.9)

is the nonempty family of all ultrafilters on J. As the simplest example of an ultrafilter, for x ∈ J ,
we set

(J − ult)[x]
△
= {F ∈ P(J)| x ∈ F} ∈ Fu[J ] (4.10)

((4.10) is the trivial ultrafilter associated with x). Clearly, (4.10) realizes an embedding of the set
J into the family (4.9):

(J − ult)[·]
△
=

(

(J − ult)[x]
)

x∈J
∈ Fu[J ]

J . (4.11)
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Along with (4.11), define the mapping SJ ∈ P(Fu[J ])
P(J) as follows:

SJ(A)
△
= {U ∈ Fu[J ]| A ∈ U} ∀A ∈ P(J). (4.12)

By [4, Sect. 8.2], we define the Stone topology

τfi[J ]
△
=

{

G ∈ P(Fu[J ])| ∀U ∈ G ∃U ∈ U : SJ(U) ⊂ G
}

∈ (c− top)0[Fu[J ]]; (4.13)

thus, we obtain a zero-dimensional compactum

(Fu[J ], τfi[J ]). (4.14)

5. Attraction sets in topological spaces

In this section, we fix a nonempty set E, whose elements are called usual solutions. We keep
in mind that each element e ∈ E admits immediate realization. We also fix a nonempty set X and
a topology τ̃ ∈ (top)[X]; thus, (X, τ̃ ), X 6= ∅, is a topological space. Finally, we fix f ∈ XE as a
target operator. Recall that f1(Σ) = {f(x) : x ∈ Σ} for Σ ∈ P(E). Then,

(AS)[E;X; τ̃ ; f ; E ]
△
=

⋂

Σ∈E

cl(f1(Σ), τ̃ ) ∈ CX [τ̃ ] ∀E ∈ β[E]; (5.1)

where this definition is considered as a preliminary one. If E ∈ P ′(P(E)), then (see (4.2)) we
consider the following attraction set:

(as)[E;X; τ̃ ; f ; E ]
△
= (AS)[E;X; τ̃ ; f ; {∩}♯(E)] ∈ CX [τ̃ ]. (5.2)

In connection with (5.1) and (5.2), we note (see [4, (8.3.10), Propositions 8.3.1 and 8.4.1] that a
series of equivalent representations for attraction sets can be obtained. Now, recall that

(as)[E;X; τ̃ ; f ; E ] = (AS)[E;X; τ̃ ; f ; E ] ∀E ∈ β[E] (5.3)

(see [4, Proposition 8.4.1]).
Now, let us consider the simplest example of an attraction set (5.1), (5.3). Here, we present

the construction in a meaningful way, using a scalar controlled system:

ẋ(t) = u(t), t ∈ [0, 1[, (5.4)

with zero initial state: x(0) = 0. In (5.4), we allow nonnegative controls u of the following type:
u is any piecewise constant, right-continuous, real-valued function on [0, 1[ satisfying

∫ 1

0
u(t) dt 6 1. (5.5)

Let U denote the set of all such functions (see (5.5)). Then,

xu(t)
△
=

∫ t

0
u(τ) dτ ∈ [0,∞[ ∀u ∈ U ∀t ∈ [0, 1].

In this example, we identify E with U. For u ∈ U, consider the following phase constraints:

xu(t) = 0 ∀t ∈ [0, 1[. (5.6)
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Define the set

G
△
=

{

xu(1) : u ∈ U, xu(t) = 0 ∀t ∈ [0, 1[
}

as the reachability domain under these phase constraints. It is clear that G = {0}. Now, let

Bθ
△
=

{

u ∈ U | xu(t) = 0 ∀t ∈ [0, θ [
}

∀θ ∈ [0, 1[

and define

B
△
=

{

Bτ : τ ∈ [0, 1 [
}

.

Clearly, the intersection of all sets in B is the set of all u ∈ U satisfying (5.6), which coincides
with {O}, where O ∈ U and O(t) = 0 for all t ∈ [0, 1 [. Moreover, we have B ∈ β0[U], so we may
use (5.1) with E = B. Define h̃ ∈ RU by

h̃(u)
△
=

∫ 1

0
u(t) dt ∀u ∈ U.

That is, in (5.1), we set f = h̃. Then,

h̃1(Bθ) = {h̃(u) : u ∈ Bθ} = [0, 1]

for each θ ∈ [0, 1[. Indeed, for θ ∈ [0, 1 [ we can construct a function ũθ ∈ Bθ, defined by

(

ũθ(ξ)
△
= 0 ∀ ξ ∈ [0, θ [

)

&
(

ũθ(ξ)
△
=

1

1− θ
∀ ξ ∈ [θ, 1 [

)

,

so that xũθ
(1) = 1. Moreover, h̃1(Bθ) is a convex set. Therefore, in this example, the attraction

set (5.1) coincides with [0, 1], while [0, 1] 6= Ḡ, where the overline denotes the closure in R with
respect to the usual | · |-topology. Thus, there is a jump when (5.6) is weakened. Therefore, in this
example, (5.1) is more interesting from a practical point of view.

Of course, we can use filter bases and filters as E in (5.1)–(5.3); in addition, F[E] ⊂ β0[E].
In this connection, we note the following easily verifiable property:

(AS)[E;X; τ̃ ; f ;B] = (AS)
[

E;X; τ̃ ; f ; (E − fi)[B]
]

∀B ∈ β0[E]. (5.7)

Recall that for any B ∈ β0[E], the property f1[B] ∈ β0[X] holds and

(

(E − fi)[B] ∈ Fu[E]
)

=⇒
(

(X − fi)[f1[B]] ∈ Fu[X]
)

(5.8)

(see [4, Proposition 8.2.1; 1, Ch. I]). Using (5.8), we obtain the following representation of the
attraction set (see [4, Propositions 8.3.1, 8.4.1, and 8.4.2]): for any E ∈ P ′(P(E))

(as)[E;X; τ̃ ; f ; E ] =
{

x ∈ X| ∃ U ∈ [Fu[E]](E) : f1[U ]
τ̃

=⇒ x
}

; (5.9)

so, by (5.9), ultrafilters can be used as analogs of Warga’s approximate solutions (see [17, Ch. III]).
Moreover, for any Σ ∈ P(E), we have the inclusion {Σ} ∈ β[E], and by (5.1),

(AS)[E;X; τ̃ ; f ; {Σ}] = cl(f1(Σ), τ̃). (5.10)

In connection with (5.9) and (5.10), we note the equivalent representation [4, (8.3.10)] realized in
the directed class. Now, we introduce two families of attraction sets. Set

(τ̃ −AS)[f ]
△
=

{

(as)[E;X; τ̃ ; f ; E ] : E ∈ P ′(P(E))
}

∈ P ′(CX [τ̃ ]) (5.11)
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as the family of all attraction sets under fixed X, τ̃ , and f (recall that X is uniquely specified by τ̃).
Moreover,

Fu[E] ⊂ F[E] ⊂ β0[E] ⊂ β[E]. (5.12)

Then, by (5.1), (5.3), and (5.12), for any F ∈ F[E],

(as)[E;X; τ̃ ; f ;F ] = (AS)[E;X; τ̃ ; f ;F ] =
⋂

F∈F

cl(f1(F ), τ̃ ) ∈ CX [τ̃ ]; (5.13)

where, of course, ultrafilters can be used as F . Using (5.13), we set

((τ̃ ,F)−AS)[f ]
△
=

{

(as)[E;X; τ̃ ; f ;F ] : F ∈ F[E]
}

=
{

(AS)[E;X; τ̃ ; f ;F ] : F ∈ F[E]
}

∈ P ′(CX [τ̃ ]).
(5.14)

Clearly,
((τ̃ ,F)−AS)[f ] ⊂ (τ̃ −AS)[f ].

Proposition 1. The following equality holds:

(τ̃ −AS)[f ] = ((τ̃ ,F)−AS)[f ] ∪ {∅}. (5.15)

P r o o f. Let M ∈ (τ̃ −AS)[f ]. Using (5.11), we choose M ∈ P ′P(E)) such that

M = (as)[E;X; τ̃ ; f ;M].

Then, by (4.2), for

µ
△
= {∩}♯(M) ∈ β[E]

we obtain (see (5.2))
M = (AS)[E;X; τ̃ ; f ;µ]. (5.16)

In addition, by (4.1) and (4.3), either µ ∈ β0[E] or ∅ ∈ µ. We consider both cases separately.

Let µ ∈ β0[E]. Then, by (4.5), define M
△
= (E − fi)[µ] ∈ F[E]. Therefore, by (5.1), (5.7), and

(5.14),
M = (AS)[E;X; τ̃ ; f ;M] ∈ ((τ̃ ,F)−AS)[f ].

Hence,
(µ ∈ β0[E]) =⇒ (M ∈ ((τ̃ ,F)−AS)[f ]).

If ∅ ∈ µ, then by (5.1), (AS)[E;X; τ̃ ; f ;µ] = ∅, and by (5.16), M = ∅. Thus, (∅ ∈ µ) =⇒
(M = ∅). Consequently,

M ∈ ((τ̃ ,F)−AS)[f ] ∪ {∅}.

Therefore,
(τ̃ −AS)[f ] ⊂ ((τ̃ ,F)−AS)[f ] ∪ {∅}. (5.17)

Note that ∅ ∈ P(E) and {∅} ∈ β[E]. Then, by (5.1) and (5.3),

(as)[E;X; τ̃ ; f ; {∅}] = (AS)[E;X; τ̃ ; f ; {∅}] = ∅ ∈ (τ̃ −AS)[f ].

Therefore, {∅} ⊂ (τ̃ −AS)[f ], and hence,

((τ̃ ,F)−AS)[f ] ∪ {∅} ⊂ (τ̃ −AS)[f ].

Using (5.17), we obtain the required equality (5.15).
Let us recall the example of [4, Sect. 8.9]. In this example, attainability problems are presented

in which the attraction set coincides with ∅. The asymptotic-type constraints are specified by
filter bases. By using (5.7), we can interpret this example as an attainability problem where the
asymptotic-type constraints are generated by a filter. Thus, in general, the families appearing
in (5.15)–specifically, those on the right-hand side–need not be disjoint. In the following sections,
we will introduce a natural condition that excludes this possibility.
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6. Attainability problem with precompact target operator

and some representations for attraction sets

In what follows, we fix a nonempty topological space (Y, τ), Y 6= ∅, as the main object. Thus,
τ ∈ (top)[Y ]. Let

F0
c[E;Y ; τ ]

△
=

{

f ∈ Y E| f1(E) ∈ (τ − comp)0[Y ]
}

, (6.1)

where (τ − comp)0[Y ]
△
= {H ∈ P(Y ) | ∃K ∈ (τ − comp)[Y ] : H ⊂ K}. We call functions from (6.1)

precompact functions. It is easy to check that if τ ∈ (top)0[Y ], h ∈ F0
c[E;Y ; τ ], and B ∈ β0[E],

then
(AS)[E;Y ; τ ;h;B] ∈ (τ − comp)[Y ] \ {∅}. (6.2)

In this connection, recall that β0[E] ⊂ (Cen)[P(E)] (see (4.3) and [3, (3.3.16)]). From (6.2), it
follows that if τ ∈ (top)0[Y ], h ∈ F0

c[E;Y ; τ ], and F ∈ F[E], then

(AS)[E;Y ; τ ;h;F ] ∈ (τ − comp)[Y ] \ {∅}. (6.3)

Recall that for any topological space (K, t), K 6= ∅, with t ∈ (c − top)[K] (i.e., any nonempty
compact topological space (K, t)), m ∈ KE , τ ∈ (top)0[Y ], and g ∈ C(K, t, Y, τ),

g ◦m ∈ F0
c[E;Y ; τ ]

(where, ◦ denotes composition). Furthermore; we have the following useful property (see [3, Propo-
sition 5.2.1]):

(AS)[E;Y ; τ ; g ◦m; E ] = g1
(

(AS)[E;K; t;m; E ]
)

∀E ∈ β[E]. (6.4)

We note that (6.4) allows a number of generalizations (for example, see [6, Propositins 3.4.10
and 3.4.11], [5]). Of course, in (6.4), the compactum (4.14) can be taken as (K, t). Moreover, recall
that by [4, Proposition 8.3.1],

(as)[E;Y ; τ ; f ; E ] =
{

y ∈ Y | ∃ U ∈ [Fu[E]](E) : f1[U ]
τ

=⇒ y
}

∀f ∈ Y E ∀E ∈ P ′(P(E));

see also [4, (8.3.10)], where a representation of the attraction set in the directedness class is given.

7. Filters and attainability sets, 1

Recall some properties noted in [4, Ch. 9] and [1, Ch. I]. To this end, we assume that

E1{∩}E2
△
=

{

pr1(z) ∩ pr2(z) : z ∈ E1 × E2
}

∀E1 ∈ P ′(P(E)) ∀E2 ∈ P ′(P(E)); (7.1)

see [4, (9.3.6)]. We can use (7.1) for filters; furthermore, by [4, Proposition 9.3.1], for all F1 ∈ F[E],
F2 ∈ F[E], and F3 ∈ F[E],

(

(F1 ⊂ F3)&(F2 ⊂ F3)&(∀F ∈ F[E] ((F1 ⊂ F)&(F2 ⊂ F)) =⇒ (F3 ⊂ F))
)

=⇒ (F3 = F1{∩}F2).
(7.2)

In connection with (7.2), we also recall the constructions of [1, Ch. I, § 6]. The following obvious
corollary holds: in (7.2), the specified representation of the supremum for {F1;F2} applies if
this supremum exists. We also have the following consequence (see [4, Corollary 9.3.1]): for any
F1 ∈ F[E] and F2 ∈ F[E],

(

∃F ∈ F[E] : (F1 ⊂ F)&(F2 ⊂ F)
)

⇐⇒ (F1{∩}F2 ∈ F[E]). (7.3)
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From (7.3), we obtain the following equivalence:

(

A ∩B 6= ∅ ∀A ∈ F1 ∀B ∈ F2

)

⇐⇒
(

F1{∩}F2 ∈ F[E]
)

. (7.4)

(In connection with (7.4), we only note that F1{∩}F2 ∈ β0[E] under the property A ∩ B 6= ∅ for
all A ∈ F1 and B ∈ F2. Here, (4.5) and (7.3) should be used.) Note that in the general case, for
F1 ∈ F[E] and F2 ∈ F[E],

F1{∩}F2 ∈ β[E] : (F1 ⊂ F1{∩}F2)&(F2 ⊂ F1{∩}F2); (7.5)

moreover, in this case, we obtain the following equality:

[Fu[E]](F1 ∪ F2) = [Fu[E]](F1{∩}F2), (7.6)

where the following natural representation holds for F1{∩}F2:

F1{∩}F2 = {∩}♯(F1 ∪ F2). (7.7)

From (7.7), by induction, we obtain: for any n ∈ N and (Fi)i∈1,n ∈ F[E]n, for the families

(

n
⋃

i=1

Fi ∈ P ′(P ′(E))
)

&
(

{∩}ni=1(Fi)
△
=

{

n
⋂

i=1

Fi : (Fi)i∈1,n ∈

n
∏

i=1

Fi

}

∈ β[E]
)

, (7.8)

the following equality holds:

{∩}ni=1(Fi) = {∩}♯

(

n
⋃

i=1

Fi

)

. (7.9)

(The verification of (7.9) follows straightforwardly from the definitions). As a consequence, if
τ ∈ (top)[Y ], h ∈ Y E , n ∈ N, and (Fi)i∈1,n ∈ F[E]n, we have

(as)
[

E;X; τ ;h;
n
⋃

i=1

Fi

]

= (AS)
[

E;Y ; τ ;h; {∩}ni=1(Fi)
]

. (7.10)

Now, consider the case of an arbitrary family of filters. That is, fix a nonempty set T and
(Ft)t∈T ∈ F[E]T ; consider the family

⋃

t∈T

Ft ∈ P ′(P ′(E)). (7.11)

To study the attraction set corresponding to asymptotic-type constraints generated by (7.11), we
introduce the family

{∩}
(♯)
t∈T (Ft)

△
=

⋃

K∈Fin(T )

{

⋂

t∈K

Ft : (Ft)t∈K ∈
∏

t∈K

Ft

}

∈ P ′(P(E)). (7.12)

Proposition 2. If A ∈ {∩}
(♯)
t∈T (Ft) and B ∈ {∩}

(♯)
t∈T (Ft), then

A ∩B ∈ {∩}
(♯)
t∈T (Ft).

The proof follows directly from (4.4) and (7.12); in this argument, standard properties of finite
sets are used. From (4.1), (7.12), and Proposition 2, we obtain

{∩}
(♯)
t∈T (Ft) ∈ β[E]. (7.13)
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Proposition 3. The following equivalence is valid :

(

⋂

t∈K

Ft 6= ∅ ∀K ∈ Fin(T ) ∀(Ft)t∈K ∈
∏

t∈K

Ft

)

⇐⇒
(

{∩}
(♯)
t∈T (Ft) ∈ F[E]

)

. (7.14)

P r o o f. Let
⋂

t∈K

Ft 6= ∅ ∀K ∈ Fin(T ) ∀(Ft)t∈K ∈
∏

t∈K

Ft. (7.15)

Then, by (7.12) and (7.15),

∅ /∈ {∩}
(♯)
t∈T (Ft).

Therefore,

{∩}
(♯)
t∈T (Ft) ∈ P ′(P ′(E)) : A ∩B ∈ {∩}

(♯)
t∈T (Ft) ∀A ∈ {∩}

(♯)
t∈T (Ft) ∀B ∈ {∩}

(♯)
t∈T (Ft). (7.16)

Let Φ ∈ {∩}
(♯)
t∈T (Ft). Using (7.12), we choose K ∈ Fin(T ) and

(Φt)t∈K ∈
∏

t∈K

Ft

such that
Φ =

⋂

t∈K

Φt. (7.17)

Let H ∈ [P(E)](Φ). Then H ∈ P(E) and Φ ⊂ H. By (4.4), we obtain

Φ̃t
△
= Φt ∪H ∈ Ft (7.18)

for all t ∈ K (indeed, Φt ∈ Ft and Φ̃t ∈ [P(E)](Φt)). From (7.18), we have

(Φ̃t)t∈K ∈
∏

t∈K

Ft : Φ̃
△
=

⋂

t∈K

Φ̃t ∈ {∩}
(♯)
t∈T (Ft). (7.19)

By (7.18) and (7.19), H ⊂ Φ̃. Let x∗ ∈ Φ̃. Then, by (7.19), we have

x∗ ∈ Φ̃t ∀t ∈ K. (7.20)

In addition, (x∗ /∈ H) ∨ (x∗ ∈ H). Suppose x∗ /∈ H. Then, by (7.20), x∗ ∈ Φ̃t \ H for all t ∈ K, so
by (7.18),

x∗ ∈ Φt ∀t ∈ K.

Therefore, x∗ ∈ Φ (see (7.17)), and consequently x∗ ∈ H, which contradicts the assumption.
Therefore, the property x∗ /∈ H is impossible, and so x∗ ∈ H. Since the choice of x∗ was arbitrary,
the inclusion Φ̃ ⊂ H is established. As a consequence (see (7.19)),

H = Φ̃ ∈ {∩}
(♯)
t∈T (Ft).

Thus, we obtain the following important property:

[P(E)](Φ) ⊂ {∩}
(♯)
t∈T (Ft).

Since Φ was arbitrary, by (4.4) and (7.16), the inclusion

{∩}
(♯)
t∈T (Ft) ∈ F[E]
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holds (under condition (7.15)). Thus, the implication

(

⋂

t∈K

Ft 6= ∅ ∀K ∈ Fin(T ) ∀(Ft)t∈K ∈
∏

t∈K

Ft

)

=⇒
(

{∩}
(♯)
t∈T (Ft) ∈ F[E]

)

is valid. From (4.4) and (7.12), the coverse implication follows directly. Accordingly, (7.14) is
established.

Proposition 4. The following equality holds:

{∩}
(♯)
t∈T (Ft) = {∩}♯

(

⋃

t∈T

Ft

)

. (7.21)

P r o o f. Thus, we have two nonempty families. Let P ∈ {∩}
(♯)
t∈T (Ft). Then, by (7.12), for

some K ∈ Fin(T ) and (Pt)t∈K ∈
∏

t∈K

Ft, the equality

P =
⋂

t∈K

Pt (7.22)

holds. Set

P
△
= {Pt : t ∈ K} ∈ Fin

(

⋃

t∈T

Ft

)

.

Then, P is the intersection of all sets of P, and by (4.2) and (7.22),

P ∈ {∩}♯

(

⋃

t∈T

Ft

)

.

Therefore, we obtain the inclusion

{∩}
(♯)
t∈T (Ft) ⊂ {∩}♯

(

⋃

t∈T

Ft

)

. (7.23)

Now, choose any set

Q ∈ {∩}♯

(

⋃

t∈T

Ft

)

.

Then, for some r ∈ N and tuple

(Ql)l∈1,r ∈
(

⋃

t∈T

Ft

)r

, (7.24)

we have

Q =
r
⋂

l=1

Ql. (7.25)

From (7.24), we have the following obvious property:

Tl
△
= {t ∈ T | Ql ∈ Ft} ∈ P ′(T ) ∀l ∈ 1, r. (7.26)

Hence,

(Tl)l∈1,r ∈ P ′(T )r :

r
∏

l=1

Tl =
{

(tl)l∈1,r ∈ T r| ts ∈ Ts ∀s ∈ 1, r
}

∈ P ′(T r); (7.27)
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Using (7.27), fix any tuple

(θl)l∈1,r ∈

r
∏

l=1

Tl. (7.28)

Then, by (7.27) and (7.28), (θl)l∈1,r ∈ T r and, as a result,

Θ
△
= {θl : l ∈ 1, r} ∈ Fin(T ). (7.29)

From (7.26) and (7.28), for each l ∈ 1, r, we have Ql ∈ Fθl . For t ∈ Θ, set

Lt
△
= {l ∈ 1, r| θl = t} ∈ P ′(1, r). (7.30)

We note that, by (4.4) and reasoning by induction, the following property is established:

m
⋂

i=1

Fi ∈ F ∀F ∈ F[E] ∀m ∈ N ∀(Fi)i∈1,m ∈ Fm. (7.31)

Using (7.30) and (7.31), for each t ∈ Θ, set

Qt
△
=

⋂

l∈Lt

Ql ∈ Ft. (7.32)

Thus,

(Qt)t∈Θ ∈
∏

t∈Θ

Ft.

From (7.12) and (7.29),

Q
△
=

⋂

t∈Θ

Qt ∈ {∩}
(♯)
t∈T (Ft). (7.33)

Consider two sets: Q and Q. Let y∗ ∈ Q. Then y∗ ∈ Ql for all l ∈ 1, r. By (7.30) and (7.32),

y∗ ∈ Qt ∀t ∈ Θ,

so, by (7.33), y∗ ∈ Q. Thus,
Q ⊂ Q. (7.34)

Let y∗ ∈ Q. Then, for y∗ ∈ E, we have

y∗ ∈ Qt ∀t ∈ Θ. (7.35)

Now, let ν ∈ 1, r. Then Tν = {t ∈ T | Qν ∈ Ft} (see (7.26)). By (7.28), θν ∈ Tν , so

Qν ∈ Fθν ,

where θν ∈ Θ by (7.29). From (7.35), y∗ ∈ Qθν . Therefore, by (7.32),

y∗ ∈ Ql ∀l ∈ Lθν . (7.36)

By (7.30), ν ∈ Lθν , so by (7.36), y∗ ∈ Qν . Since ν was arbitrary, it follows that

y∗ ∈ Ql ∀l ∈ 1, r.

By (7.25), y∗ ∈ Q. Thus, Q ⊂ Q. Using (7.34), we obtain the equality Q = Q and, by (7.33),

Q ∈ {∩}
(♯)
t∈T (Ft). Therefore, the inclusion

{∩}♯

(

⋃

t∈T

Ft

)

⊂ {∩}
(♯)
t∈T (Ft)

holds. Using (7.23), we obtain the required equality (7.21).
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Corollary 1. If h ∈ Y E , then

(as)
[

E;Y ; τ ;h;
⋃

t∈T

Ft

]

= (AS)
[

E;Y ; τ ;h; {∩}
(♯)
t∈T (Ft)

]

.

The corresponding proof uses (5.1), (7.13), and Proposition 4. In Corollary 1, an essential
generalization is obtained in comparison with (7.10). By Proposition 3 and (5.14), we have

(

⋂

t∈K

Ft 6= ∅ ∀K ∈ Fin(T ) ∀(Ft)t∈K ∈
∏

t∈K

Ft

)

=⇒
(

(as)
[

E;Y ; τ ;h;
⋃

t∈T

Ft

]

∈ ((τ,F) −AS)[h] ∀h ∈ Y E
)

.

8. Filters and attainability sets, 2

In what follows, we suppose that τ ∈ (top)0[Y ]. Thus, we consider the T2-space (Y, τ), Y 6= ∅.
Moreover, we fix a precompact function h ∈ F0

c[E;Y ; τ ]. By (6.2), we have the following important
property:

(AS)[E;Y ; τ ;h;F ] ∈ (τ − comp)[Y ] \ {∅} ∀F ∈ F[E]. (8.1)

Returning to Proposition 1, we note that, by (5.14) and (8.1),

((τ,F)−AS)[h] ⊂ (τ −AS)[h] \ {∅}

and, as, a consequence (see Proposition 1),

((τ,F) −AS)[h] = (τ −AS)[h] \ {∅}. (8.2)

Thus, in our case, the attraction set is nonempty if and only if it can be generated by a filter.
Therefore, in this case, we avoid pathologies such as those in the example of [4, Sect. 8.9]. It is
useful to note that both the precompactness condition for h and the T2-separability of (Y, τ) are
typical in control problems. Thus, (8.2) holds for an important class of practical problems.

Now, we note that in (8.1) we can take ultrafilters as F ; that is:

(AS)[E;Y ; τ ;h;U ] ∈ (τ − comp)[Y ] \ {∅} ∀U ∈ Fu[E]. (8.3)

We will now consider certain constructions related to (8.3). For this, we first introduce some
auxiliary statements regarding filter convergence. If F ∈ F[Y ], we define the sets

(

(τ − LIM)[F ]
△
= {y ∈ Y | F

τ
=⇒ y} ∈ P(Y )

)

&
(

(τ − CL)[F ]
△
=

⋂

F∈F

cl(F, τ) ∈ P(Y )
)

(8.4)

which satisfy
(τ − LIM)[F ] ⊂ (τ − CL)[F ]

(see [4, (8.3.37)]), and

(

(τ − LIM)[F ] = ∅
)

∨
(

∃y ∈ (τ − LIM)[F ] : (τ − CL)[F ] = {y}
)

(8.5)

(see [4, Proposition 8.3.3]). Moreover, by [4, Proposition 8.3.2], we always have

(τ − LIM)[U ] = (τ − CL)[U ] ∀U ∈ Fu[E]. (8.6)

We will use statements (8.4)–(8.6) in the investigation of the properties of the attraction set (8.3).
In more general form, these statements are presented in [4, Sect. 8.3].
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Proposition 5. If U ∈ Fu[E], then ∃!y ∈ Y : (AS)[E;Y ; τ ;h;U ] = {y}.

P r o o f. Fix U ∈ Fu[E]. Then, in particular, U ∈ β0[E] and h1[U ] ∈ β0[Y ]. By [4, Proposi-
tion 8.2.1],

(Y − fi)[h1[U ]] ∈ Fu]Y ]. (8.7)

By (5.1), (5.7), and (8.4), we have

(AS)[E;Y ; τ ;h;U ] = (τ − CL)
[

(Y − fi)[h1[U ]]
]

. (8.8)

Using (8.6) and (8.7), we obtain the following equality:

(AS)[E;Y ; τ ;h;U ] = (τ − LIM)
[

(Y − fi)[h1[U ]]
]

.

From (8.3), we have
(AS)[E;Y ; τ ;h;U ] 6= ∅.

Therefore, by (8.5), (8.7), and (8.8),

(AS)[E;Y ; τ ;h;U ] = {y}, (8.9)

where
y ∈ (τ − LIM)

[

(Y − fi)[h1[U ]]
]

.

From (8.4), it follows that y ∈ Y . The element y ∈ Y satisfying (8.9) is, of course, unique.
In connection with Proposition 5, we recall (5.9). Using this proposition, we introduce the

operator
Ψ[E;Y ; τ ;h] ∈ Y Fu[E] (8.10)

by the following natural rule: for any U ∈ Fu[E], the value Ψ[E;Y ; τ ;h](U) ∈ Y is defined by the
equality

(AS)[E;Y ; τ ;h;U ] =
{

Ψ[E;Y ; τ ;h](U)
}

; (8.11)

we call Ψ[E;Y ; τ ;h](U) the attraction element corresponding to the ultrafilter U .

Proposition 6. If F ∈ F[E], then

(AS)[E;Y ; τ ;h;F ] = Ψ[E;Y ; τ ;h]1
(

[Fu[E]](F)
)

. (8.12)

P r o o f. Fix F ∈ F[E]. Let y0 ∈ Ψ[E;Y ; τ ;h]1
(

[Fu[E]](F)
)

. Then y0 ∈ Y , and for some
ultrafilter U0 ∈ [Fu[E]](F), the equality y0 = Ψ[E;Y ; τ ;h](U0) holds. Using (8.11), we have

(AS)[E;Y ; τ ;h;U0] = {y0}. (8.13)

By (5.1), we have the inclusion

(AS)[E;Y ; τ ;h;U0] ⊂ (AS)[E;Y ; τ ;h;F ]

(since, by the choice of U0, we have F ⊂ U0). Then, by (8.13), y0 ∈ (AS)[E;Y ; τ ;h;F ]. Since y0
was arbitrary, the inclusion

Ψ[E;Y ; τ ;h]1
(

[Fu[E]](F)
)

⊂ (AS)[E;Y ; τ ;h;F ] (8.14)

is established. Let y∗ ∈ (AS)[E;Y ; τ ;h;F ]. Now, we use (5.9) and [4, (8.2.6) and Proposition 8.3.1].
Then, for some U∗ ∈ [Fu[E]](F),

h1[U∗]
τ

=⇒ y∗.
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As a consequence, by (4.7) and (4.8) we obtain

(Y − fi)[h1[U∗]]
τ

=⇒ y∗.

Therefore,

y∗ ∈ (τ − LIM)
[

(Y − fi)[h1[U∗]]
]

,

where

(Y − fi)[h1[U∗]] ∈ Fu[Y ]

(see (5.8)). By (8.6),

y∗ ∈ (τ − CL)
[

(Y − fi)[h1[U∗]]
]

.

Using (3.4), (4.5), and (8.4), we obtain the following chain of equalities:

(τ − CL)[(Y − fi)[h1[U∗]]] =
⋂

Σ∈(Y−fi)[h1[U∗]]

cl(Σ, τ)

=
⋂

Σ∈h1[U∗]

cl(Σ, τ) =
⋂

U∈U∗

cl(h1(U), τ) = (AS)[E;Y ; τ ;h;U∗].

Thus,

y∗ ∈ (AS)[E;Y ; τ ;h;U∗].

By (8.11),

y∗ = Ψ[E;Y ; τ ;h](U∗).

Since U∗ ∈ [Fu[E]](F), we conclude (by the definition of the image) that

y∗ ∈ Ψ[E;Y ; τ ;h]1
(

[Fu[E]](F)
)

.

Therefore, the inclusion

(AS)[E;Y ; τ ;h;F ] ⊂ Ψ[E;Y ; τ ;h]1([Fu[E]](F))

is established. Using (8.14), we obtain the required equality (8.12).

So, the attraction set for asymptotic-type constraints generated by a filter is exhausted by the
attraction elements corresponding to ultrafilters that majorize this filter. We note the following
obvious property of the attraction element for trivial ultrafilters:

Ψ[E;Y ; τ ;h]
(

(E − ult)[x]
)

= h(x) ∀x ∈ E. (8.15)

Next, we state two simple facts regarding the nonemptiness of the attraction set. For E ∈ β[E],

(

(AS)[E;Y ; τ ;h; E ] 6= ∅)
)

⇐⇒ (E ∈ β0[E]).

Moreover, for E ∈ P ′(P(E)), the following equivalence holds:

(

(as)[E;Y ; τ ;h; E ] 6= ∅
)

⇐⇒ (E ∈ (Cen)[E]).

Proposition 7. The following equality is valid :

((τ,F) −AS)[h] = (τ −AS)[h] \ {∅}. (8.16)
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P r o o f. By Proposition 1, we obtain

(τ −AS)[h] \ {∅} ⊂ ((τ,F)−AS)[h]. (8.17)

On the other hand, from (5.14) and (6.3), we have (in our case)

((τ,F) −AS)[h] ⊂ (τ −AS)[h] \ {∅}.

Using (8.17), we obtain (8.16).
Recall Proposition 6. Now, we will use some properties of ultrafilters. We have that for all

F1 ∈ F[E], F2 ∈ F[E], and U ∈ Fu[E],

(F1 ∩ F2 ⊂ U) =⇒
(

(F1 ⊂ U) ∨ (F2 ⊂ U)
)

; (8.18)

here we use [4, Proposition 9.4.3 and (1.5.1)]; in addition, F1 ∩ F2 ∈ F[E]. Given E1 ∈ P ′(P(E))
and E2 ∈ P ′(P(E)), we define

E1{∪}E2
△
=

{

pr1(z) ∪ pr2(z) : z ∈ E1 × E2
}

∈ P ′(P(E)).

If F1 ∈ F[E] and F2 ∈ F[E], the following obvious equality holds:

F1 ∩ F2 = F1{∪}F2 ∈ F[E]. (8.19)

From (8.18) and (8.19), we obtain the following chain of equalities:

[Fu[E]](F1 ∩ F2) = [Fu[E]](F1{∪}F2) = [Fu[E]](F1) ∪ [Fu[E]](F2.) (8.20)

Now, recall Proposition 6. Then, by (8.19) and (8.20),

(AS)[E;Y ; τ ;h;F1 ∩ F2] = Ψ[E;Y ; τ ;h]1
(

[Fu[E]](F1 ∩ F2)
)

= Ψ[E;Y ; τ ;h]1([Fu[E]](F1)) ∪Ψ[E;Y ; τ ;h]1([Fu[E]](F2))

= (AS)[E;Y ; τ ;h;F1] ∪ (AS)[E;Y ; τ ;h;F2] ∀F1 ∈ F[E] ∀F2 ∈ F[E].

(8.21)

From (4.4), it follows that for m ∈ N and (Fi)i∈1,m ∈ F[E]m,

m
⋂

i=1

Fi ∈ F[E]. (8.22)

In connection with (8.22), we introduce

{∪}mi=1(Ei)
△
=

{

m
⋃

i=1

Σi : (Σi)i∈1,m ∈
m
∏

i=1

Ei

}

∀m ∈ N ∀(Ei)i∈1,m ∈ P ′(P(E))m.

It is easy to see that for m ∈ N and (Fi)i∈1,m ∈ F[E]m,

m
⋂

i=1

Fi = {∪}mi=1(Fi). (8.23)

Remark 1. In fact, (8.22) and (8.23) can be generalized as follows: if T is a nonempty set and
(Ft)t∈T ∈ F[E]T , then

⋂

t∈T

Ft =
{

⋃

t∈T

Ft : (Ft)t∈T ∈
∏

t∈T

Ft

}

∈ F[E].

By (8.21) and reasoning by induction, the following general statement is established.
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Proposition 8. If n ∈ N and (Fi)i∈1,n ∈ F[E]n, then

n
⋃

i=1

(AS)[E;Y ; τ ;h;Fi] = (AS)
[

E;Y ; τ ;h;

n
⋂

i=1

Fi

]

.

Corollary 2. If n ∈ N and (Bi)i∈1,n ∈ β0[E]n, then

n
⋃

i=1

(AS)[E;Y ; τ ;h;Bi] = (AS)
[

E;Y ; τ ;h;

n
⋂

i=1

(E − fi)[Bi]
]

.

The corresponding proof follows immediately from (5.7) and Proposition 8. As a consequence,
from (5.14), we obtain

n
⋃

i=1

(AS)[E;Y ; τ ;h;Bi] ∈
(

(τ,F)−AS
)

[h] ∀n ∈ N ∀(Bi)i∈1,n ∈ β0[E]n.

9. Some topological properties

Now, we consider the question of the continuity property of the operator Ψ[E;Y ; τ ;h] and some
its consequences. Since P(E) ∈ π̃0[E], by [4, (1.5.8), (2.4.4)] we use

Flim[E;Y ;P(E); τ ]
△
=

{

g ∈ Y E| ∀ U ∈ Fu[E] ∃y ∈ Y : g1[U ]
τ

=⇒ y
}

∈ P ′(Y E) (9.1)

for which
F0
c[E;Y ; τ ] ⊂ Flim[E;Y ;P(E); τ ]

(the corresponding proof is obvious). Thus, h ∈ Flim[E;Y ;P(E); τ ], and (see [4, p. 58]) we define

ϕlim[E;Y ;P(E); τ ;h] ∈ Y Fu[E];

moreover, in our case, the following equality holds:

ϕlim[E;Y ;P(E); τ ;h] = Ψ[E;Y ; τ ;h]. (9.2)

Remark 2. In connection with (9.2), we note (8.6). Indeed, let U ∈ Fu[E]. Then, U ∈ β[E], and
by (3.4), (5.1), and (8.6),

(AS)[E;Y ; τ ;h;U ] =
⋂

U∈U

cl(h1(U), τ) =
⋂

Σ∈h1[U ]

cl(Σ, τ)

⋂

Σ∈(Y−fi)[h1[U ]]

cl(Σ, τ) = (τ − CL)
[

(Y − fi)[h1[U ]]
]

= (τ − LIM)
[

(Y − fi)[h1[U ]]
]

,
(9.3)

where
(Y − fi)[h1[U ]] ∈ Fu[Y ]

(see (5.8)). As a consequence, by (8.4), (8.11), and (9.3),

(Y − fi)[h1[U ]]
τ

=⇒ Ψ[E;Y ; τ ;h](U). (9.4)

From (4.7), (4.8), and (9.4), we obtain the following convergence:

h1[U ]
τ

=⇒ Ψ[E;Y ; τ ;h](U).



Attraction Sets in Attainability Problems 43

Now, by (9.1) and [4, (1.5.8),(2.4.5),(2.4.6)], the obvious equality holds:

ϕlim[E;Y ;P(E); τ ;h](U) = Ψ[E;Y ; τ ;h](U).

Since the choice of U was arbitrary, equality (9.2) is established.

Until the end of this section, we suppose that (Y, τ) is a regular topological space; that is, (Y, τ)
is both a T1-space and a T3-space. Furthermore, the separability property holds in our case, that
is, τ ∈ (top)0[Y ]. From (9.2) and [4, Proposition 2.4.2], we obtain the following statement.

Proposition 9. The mapping Ψ[E;Y ; τ ;h] has the continuity property :

Ψ[E;Y ; τ ;h] ∈ C(Fu[E], τfi[E], Y, τ).

Using (3.3) and (4.13), we obtain

Ψ[E;Y ; τ ;h] ∈ Ccl(Fu[E], τfi[E], Y, τ);

therefore, by (3.2),

Ψ[E;Y ; τ ;h]1(cl(A, τfi[E])) = cl(Ψ[E;Y ; τ ;h]1(A), τ) ∀A ∈ P(Fu[E]). (9.5)

Now, we use (9.5) and the natural variant of [4, (9.7.18)]:

Fu[E] = cl
({

(E − ult)[x] : x ∈ E
}

, τfi[E]
)

; (9.6)

in connection with (9.6), we also recall [4, (1.5.8), (1.5.9), (8.2.4)]. Using (8.15), (9.5), and (9.6),
we obtain

Ψ[E;Y ; τ ;h]1(Fu[E]) = cl
({

Ψ[E;Y ; τ ;h]((E − ult)[x]) : x ∈ E
}

, τ
)

= cl({h(x) : x ∈ E}, τ) = cl(h1(E), τ).
(9.7)

Proposition 10. Nonempty finite subsets of cl(h1(E), τ) are attraction sets generated by fil-

ters:
Fin(cl(h1(E), τ)) ⊂ ((τ,F)−AS)[h]. (9.8)

P r o o f. We use (9.7) to verify (9.8). Let

V ∈ Fin(cl(h1(E), τ)). (9.9)

Then for some n ∈ N and some tuple (vi)i∈1,n ∈ V n, we have

V = {vi : i ∈ 1, n}.

In particular, (vi)i∈1,n ∈ Y n. Moreover, by (9.9),

vj ∈ cl(h1(E), τ) ∀j ∈ 1, n. (9.10)

By (9.7) and (9.10), we obtain

Vj
△
=

{

U ∈ Fu[E]| vj = Ψ[E;Y ; τ ;h](U)
}

∈ P ′(Fu[E]) ∀j ∈ 1, n.

It follows that

n
∏

i=1

Vi =
{

(Ui)i∈1,n ∈ Fu[E]n| Uj ∈ Vj ∀j ∈ 1, n
}

∈ P ′(Fu[E]n). (9.11)
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Since the set (9.11) is nonempty, we can choose

(Vi)i∈1,n ∈
n
∏

i=1

Vi. (9.12)

From (9.11) and (9.12), for each j ∈ 1, n, the ultrafilter Vj ∈ Fu[E] satisfies the equality

vj = Ψ[E;Y ; τ ;h](Vj).

Of course, Vj ∈ F[E] for all j ∈ 1, n. Therefore, by (8.22),

n
⋂

i=1

Vi ∈ F[E].

Then, by (5.14),

(AS)
[

E;Y ; τ ;h;

n
⋂

i=1

Vi

]

∈ ((τ,F)−AS)[h].

Using Proposition 8, we obtain

n
⋃

i=1

(AS)
[

E;Y ; τ ;h;Vi

]

∈ ((τ,F) −AS)[h]. (9.13)

By (8.11) and (9.12),
(AS)

[

E;Y ; τ ;h;Vj

]

= {vj}

for all j ∈ 1, n. Thus, by (9.13),

n
⋃

i=1

{vi} ∈ ((τ,F)−AS)[h],

where the union {vi}, i ∈ 1, n, coincides with V. As a consequence,

V ∈ ((τ,F)−AS)[h].

Since the choice of V in (9.9) was arbitrary, (9.8) holds.
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Abstract: In this paper, we consider the Lotka–Volterra equation with displacements and diffusion, that is
transport-diffusion system describing the evolution of prey and predator populations with their displacements
and their diffusion, in a periodic domain in R. It is shown that the solution to this equation and its logarithm are
globally bounded, and that, when the solution converges to the stationary solution in mean value, it converges
uniformly with respect to the time variable as well as the space variable. These results are obtained by using
L2-estimate of the well-known Lyapunov functional, and, in particular, an estimate of the point-wise growth of
the solution by means of the application of the fundamental solution of the heat equation.

Keywords: Lotka–Volterra equation, Asymptotic behavior, Diffusion, Transport/Displacement, Numerical
example.

1. Introduction

As is well-known, the system of equations called Lotka–Volterra equation,










d

dt
u1 = αu1 − βu1u2,

d

dt
u2 = −γu2 + δu1u2,

(α, β, γ, δ > 0) was proposed to model the evolution of prey and predator populations (represented
by u1 and u2, respevtively). This system of equations has the particularity that all its (positive)
solutions are periodic, as illustrated in [16]. In [16], we also find a detailed analysis of the behavior
of the solution and various versions of the equation.

As for the Lotka–Volterra equation with diffusion, Rothe [15] considered the Lotka–Volterra
equation with diffusion (with the same diffusion coefficient for both species) in one-dimensional
domain 0 < x < 1 with periodic boundary conditions in x (or homogeneous Neumann conditions)
and proved the uniform convergence to the time-periodic solution of the Lotka–Volterra equation
(independent of x) (see also [14], which had made similar reasoning). On the other hand, Gabbuti
and Negro [8] proved the convergence of the solution of the Lotka–Volterra equation with diffusion
in a bounded domain of R2 with the homogeneous Neumann condition to the time-periodic solution
of the Lotka–Volterra equation (independent of x); in the article [8], the diffusion coefficients are
not the same for both species and the convergence is in an integral sense, but sufficiently strong.
Successively, the asymptotic behavior of the solution of the Lotka–Volterra equation with diffusion
with the Dirichlet condition was studied in [18], while the aspects of spatial propagation of the
solution to the Lotka–Volterra equation continue to attract the interest of researchers (see for
example [4, 5]).

https://doi.org/10.15826/umj.2025.1.003
mailto:a.chettouh@centre-univ-mila.dz
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As far as concerns the Lotka–Volterra equation with diffusion in one spatial dimension, the
question concerning the travelling waves has attracted the interest of many researchers. However,
the results of [14] and [15] exclude the existence of a travelling wave for the classical Lotka–Volterra
equation with simple diffusion. For this reason, several researchers have sought some aspects of
travelling wave for slightly modified equations (see for example [2, 3, 6, 10, 17]).

In the context of stochastic equations, the Lotka–Volterra equation with logistic effect and
diffusion has been studied in [7] and [9]. In [7] the existence and uniqueness theorem of the solution
has been proved, and in [9] the existence of an invariant measure has been shown.

In [13] the author has considered the Lotka–Volterra equation with diffusion and population
displacements. The results of this article are essentially numerical. However, the question of
population displacement/immigration has attracted the attention of many researchers, as evidenced
by several recent publications (see for example [1, 11, 12]).

In this article, we consider the Lotka–Volterra equation for the population density u1(t, x)
and u2(t, x) with diffusion and population displacements on the periodic domain of R and prove
the uniform boundedness of u1(t, x), u2(t, x), log u1(t, x), log u2(t, x). We also prove that in the
case where the solution (u1, u2) tends to the stationary solution in mean value, (u1, u2) converges
uniformly to the stationary solution. In order to obtain this result, we use the function

U = −α log(u2)− γ log(u1) + βu2 + δu1,

but due to the population displacements we cannot directly deduce a conclusion from the equation
for U , as the authors of [14] and [15] did. In order to overcome this difficulty, we estimate not
only U in L2(0, 2π) but also point-wise growth of u1(t, x) and u2(t, x).

Our study is motivated not only by the general interest of the effect of displacement/immigration
for population dynamics but also by the specific behavior that arises from the numerical calculation
of the solution of the Lotka–Volterra equation with population displacement in opposite directions
for prey and predator populations. This will be illustrated in the following section.

2. Motivation and some numerical examples

As we mentioned in Introduction, the evolution of prey and predator populations is described,
in its basic form, by Lotka–Volterra equation

d

dt
u1(t) = αu1(t)− βu1(t)u2(t), (2.1)

d

dt
u2(t) = −γu2(t) + δu1(t)u2(t), (2.2)

where u1(t) and u2(t) denote the prey and predator populations, respectively, while the coefficients
α, β, γ and δ are assumed to be constants and strictly positive. We consider the system of
equations (2.1)–(2.2) with the initial conditions

u1(0) = u1,0 > 0, u2(0) = u2,0 > 0. (2.3)

We first recall the well-known fundamental properties of the solution of the system of equa-
tions (2.1)–(2.2). For this, we define the function U0(·, ·) as

U0(u1, u2) = −α log u2 − γ log u1 + βu2 + δu1, u1 > 0, u2 > 0.

Remark 1. For any initial data u1,0 > 0, u2,0 > 0, the solution (u1(t), u2(t)) of the Cauchy prob-
lem (2.1)–(2.3) exists for all t > 0 and it is periodic in t. Furthermore, the function U0(u1(t), u2(t))
remains constant, i.e.

U0(u1(t), u2(t)) = U0(u1(0), u2(0)) = −α log(u2(0)) − γ log(u1(0)) + βu2(0) + δu1(0)
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for all t ≥ 0 and the solution (u1(t), u2(t)) moves along the closed curve

γ = { (u1, u2) |u1 > 0, u2 > 0, U0(u1, u2) = U0(u1(0), u2(0)) }
with a constant period.

The proof of this fact can be found in [16] (and in many other manuals on population dynamics).
The model (2.1)–(2.2) is constructed for the prey and predators populations homogeneously

distributed in a territory. But, if the populations are not homogeneously distributed and if there
are population displacements, the relations mentioned in Remark 1 will not be guaranteed. Let us
see an example of changing the behavior of the solution.

Consider the equation system
{

∂tu1(t, x) = −v1(t)∂xu1(t, x) + αu1(t, x)− βu1(t, x)u2(t, x),

∂tu2(t, x) = −v2(t)∂xu2(t, x) − γu2(t, x) + δu1(t, x)u2(t, x),
t > 0, x ∈ R, (2.4)

with the initial condition
u1(0, x) = u1(x), u2(0, x) = u2(x).

Let us choose a particular initial data (u1(x), u2(x)) defined as follows: consider the equation
system (2.1)–(2.2) and write x instead of t in the solution (u1(·), u2(·)) to these equations. It is
clear that the thus defined functions u1(x) and u2(x) can be defined on R and are periodic in x.
Let us further assume that

v1(t) = −v2(t) ∀t ≥ 0

and that they are periodic in t with the same period as the solution of the equation system (2.1)–
(2.2). Then, for a certain choice of functions (v1(t), v2(t)) we find the amplification of the oscillation
of the solution in certain points x and the contraction in certain points x, as illustrated in the graphs
obtained by numerical calculation (see Fig. 1–2).
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Figure 1. Solution of the equation system (2.4) at a point where amplification occurs and at a point where
contraction occurs.

However, even with displacements, the equation system (2.4) in a periodic domain x ∈ R/modL
has a globally similar behavior to what we have seen in Remark 1.

Remark 2. Let L be a strictly positive number. Let u1,0(x) and u2,0(x) be two functions with
strictly positive values and periodic in x ∈ R with period L. If the solution (u1(t, x), u2(t, x)) to
the equation system (2.4) with the initial condition

u1(0, x) = u1,0(x), u2(0, x) = u2,0(x),
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Figure 2. Trajectories of the solution of the equation system (2.4) on the phase plane at a point where
amplification occurs and at a point where contraction occurs in the space (u1, u2).

exists and is periodic in x ∈ R with period L, then we have

∫ L

0
U0(u1(t, x), u2(t, x))dx = Const =

∫ L

0
U0(u1,0(x), u2,0(x))dx. (2.5)

Indeed, it follows immediately from (2.4) that

∂t log u1 = −v1∂x log u1 + α− βu2, (2.6)

∂t log u2 = −v2∂x log u2 − γ + δu1, (2.7)

from (2.4), (2.6) and (2.7), by direct calculations, we obtain

∂tU0(u1(t, x), u2(t, x)) = −v1∂x(−γ log u1 + δu1)− v2∂x(−α log u2 + βu2). (2.8)

Given the assumption that u1(t, x) and u2(t, x) are periodic in x with period L, we have

∫ L

0
∂x(−γ log u1 + δu1)dx =

∫ L

0
∂x(−α log u2 + βu2)dx = 0.

Thus
d

dt

∫ L

0
U0(u1(t, x), u2(t, x))dx = 0,

which implies (2.5). But, we cannot deduce that sup0≤x≤2π U0(u1(t, x), u2(t, x)) is bounded at t.

Given these circumstances, we are interested in the asymptotic behavior of the solution
(u1(t, x), u2(t, x)) of the Lotka–Volterra equation with displacements and diffusion (see (3.1)–(3.2)
in the next section).

3. Position of problem and preliminary result

We consider in this article the following equation system

∂tu1(t, x) = −v1(t)∂xu1(t, x) + κ∂2
xu1(t, x) + αu1(t, x) − βu1(t, x)u2(t, x), (3.1)

∂tu2(t, x) = −v2(t)∂xu2(t, x) + κ∂2
xu2(t, x)− γu2(t, x) + δu1(t, x)u2(t, x), (3.2)
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for t ≥ 0 and x ∈ R, where α, β, γ, δ and κ are strictly positive constants and v1(t) and v2(t) are
functions of t. The system (3.1)–(3.2) will be considered with the initial condition

ui(t, x) = ui,0(x), i = 1, 2. (3.3)

For the functions u1,0(x) and u2,0(x), it is assumed that

ui,0(x) > 0, ui,0(x) = ui,0(x+ 2π) ∀x ∈ R, ui,0(·) ∈ L∞(R), i = 1, 2. (3.4)

Since the equations (3.1)–(3.2) are parabolic equations subject to the conditions (3.3)–(3.4), the
existence and uniqueness of the local solution follow from the classical theory of parabolic equations.
Furthermore, considering the equations (3.1)–(3.2) on R+ × T with the torus T = R/mod2π, the
periodicity in x of the solution (u1(t, x), u2(t, x)) follows automatically. As far as concerns the
global solution, we will first prove the inequality (4.3) on the interval of the existence of the solution
(u1(t, x), u2(t, x)) and then deduce from the inequality (4.3) and the theorem of the existence and
the uniqueness of the local solution the existence and the uniqueness of the global solution.

We now define the functions U1(u1), U2(u2) and U(u1, u2):

U1(u1) = −γ
(

log u1 − log
γ

δ

)

+ δ
(

u1 −
γ

δ

)

, (3.5)

U2(u2) = −α
(

log u2 − log
α

β

)

+ β
(

u2 −
α

β

)

, (3.6)

U(u1, u2) = U1(u1) + U2(u2). (3.7)

Since

min
u1>0

(−γ log u1 + δu1) = −γ log
(γ

δ

)

+ γ, (3.8)

min
u2>0

(−α log u2 + βu2) = −α log
(α

β

)

+ α, (3.9)

it follows that U1(u1) ≥ 0, U2(u2) ≥ 0 and U(u1, u2) ≥ 0 for any u1 > 0 and u2 > 0. Thus

min
u1>0

U1(u1) = min
u2>0

U2(u2) = min
u1>0, u2>0

U(u1, u2) = 0, (3.10)

U(u1, u2) = 0 ⇐⇒ u1 =
γ

δ
and u2 =

α

β
. (3.11)

Let us set

Ũ(t) =
1

2π

∫ 2π

0
U(u1(t, x), u2(t, x))dx. (3.12)

Let us first note the following fact, which can be proved in a manner similar to the raisoning
presented in [14] and [15].

Proposition 1. Assume that

sup
0≤x≤2π

U(u1,0(x), u2,0(x)) < ∞

and that the problem (3.1)–(3.3) with (3.4) admits the unique solution (u1(t, x), u2(t, x)) in the time

interval [0, τ [ (0 < τ ≤ ∞). Then, the function Ũ(t) is decreasing on the interval [0, τ [.

P r o o f. In a manner similar to deriving (2.8), but adding the terms that result from the
diffusion termes, we obtain

∂tU = κ∂2
xU − κσ − v1∂xU1 − v2∂xU2, (3.13)
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where

σ = σ(t, x) = γ

(

∂xu1(t, x)

u1(t, x)

)2

+ α

(

∂xu2(t, x)

u2(t, x)

)2

.

By integrating both sides of the equality (3.13) with respect to x from 0 to 2π, we obtain

∫ 2π

0
∂tUdx =

∫ 2π

0

(

κ∂2
xU − κσ − v1∂xU1 − v2∂xU2

)

dx.

Since the functions U(u1(t, x), u2(t, x)), U1(u1(t, x)) and U2(u2(t, x)) are 2π-periodic in x, we have

d

dt

∫ 2π

0
U(u1(t, x), u2(t, x))dx = −κ

∫ 2π

0
σ(t, x)dx.

This, together with the relation σ ≥ 0, implies that the function Ũ(t) is decreasing. �

Corollary 1. If the solution (u1(t, x), u2(t, x)) of the problem (3.1)–(3.3) (with (3.4)) exists

for all t > 0, then the function Ũ(t) converges to a value Ũ∞ for t → ∞.

P r o o f. It immediately follows from Proposition 1 and the relation (3.10). �

4. Main result

Our main result is the following.

Theorem 1. Assume that

sup
t≥0

|v1(t)− v2(t)| ≡ Cv < ∞, (4.1)

sup
0≤x≤2π

U(u1,0(x), u2,0(x)) < ∞. (4.2)

Then, the problem (3.1)–(3.3) with (3.4) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0
and we have

sup
t≥0, 0≤x≤2π

U(u1(t, x), u2(t, x)) < ∞. (4.3)

More precisely,

i) there exists a continuous and increasing function Λ1 : R+ → R+ such that

lim sup
t→∞

sup
0≤x≤2π

U(u1(t, x), u2(t, x)) ≤ Λ1(Ũ∞),

ii) if Ũ∞ = 0, then we have

lim
t→∞

sup
0≤x≤2π

U(u1(t, x), u2(t, x)) = 0,

where Ũ∞ = limt→∞ Ũ(t) with Ũ(t) defined in (3.12).

For the proof of Theorem 1 we use the proposition.
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Proposition 2. Assume that the conditions (4.1)–(4.2) and (3.4) are satisfied and that the

problem (3.1)–(3.3) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0. Then, there exists an

increasing and continuous function Λ2 : R+ → R+ such that

lim sup
t→∞

‖U(u1(t, ·), u2(t, ·))‖2L2(0,2π) ≤ Λ2(Ũ∞), (4.4)

Λ2(0) = 0.

The function Λ2(·) can be given for example by the formula (5.13).
In the following section, we will prove Proposition 2. Theorem 1 will be proved in the successive

section.

5. Proof of Proposition 2

In order to prove Proposition 2, we begin with the following lemma.

Lemma 1. Let U = U(x) be a positive and 2π-periodic function such that

∥

∥

∥

d

dx
U
∥

∥

∥

L2(0,2π)
< ∞.

If

‖U‖L2(0,2π) >
√
8π U, (5.1)

then we have
∥

∥

∥

d

dx
U
∥

∥

∥

2

L2(0,2π)
≥ 1

256π3U
2

(

1− 4
√
2π U

3‖U‖L2(0,2π)

)

‖U‖4L2(0,2π), (5.2)

where

U =
1

2π

∫ 2π

0
U(x)dx.

P r o o f. Set

µ =
‖U‖L2(0,2π)

2
√
2π

, Dµ =
{

x ∈ [0, 2π]|U(x) > µ
}

, (5.3)

and denote by |Dµ| the measure of the set Dµ. Since U(x) > µ on Dµ, it follows from the definition
of U and µ that

µ|Dµ| ≤ 2πU. (5.4)

Since
U(x)2 = (U(x)− µ)2 + 2µ(U(x) − µ) + µ2,

it follows that
∫

Dµ

|U(x)|2dx =

∫

Dµ

(U(x) − µ)2dx+ 2

∫

Dµ

µ(U(x)− µ)dx+

∫

Dµ

µ2dx.

Hence
∫

Dµ

(U(x)− µ)2dx =

∫

Dµ

|U(x)|2dx− 2

∫

Dµ

µ(U(x)− µ)dx− |Dµ|µ2

≥
∫

Dµ

|U(x)|2dx− 3|Dµ|µ2 − 1

2

∫

Dµ

(U(x)− µ)2dx.
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Thus, taking into account (5.3), we have

∫

Dµ

(U(x)− µ)2dx ≥ 2

3

∫

Dµ

|U(x)|2dx− 2|Dµ|µ2 =
2

3

∫

Dµ

|U(x)|2dx−
|Dµ|‖U‖2L2(0,2π)

4π
. (5.5)

On the other hand, we have
∫

Dc
µ

|U(x)|2dx ≤ (2π − |Dµ|)µ2.

Hence, taking into account (5.3), we have

∫

Dµ

|U(x)|2dx ≥ ‖U‖2L2(0,2π) − (2π − |Dµ|)µ2 =
(3

4
+

|Dµ|
8π

)

‖U‖2L2(0,2π). (5.6)

From (5.5) and (5.6) we obtain

∫

Dµ

(U(x)− µ)2dx ≥
(

1

2
− |Dµ|

6π

)

‖U‖2L2(0,2π). (5.7)

Recall that under the condition (5.1) the relation (5.4) implies that |Dµ| < 2π, and thus there
exists at least one x̄ ∈ R such that U(x̄) ≤ µ. Since U(x) is 2π-periodic, it is not restrictive to
assume that x̄ = 0 (and thus U(x̄+ 2π) ≤ µ).

We first consider the case
Dµ = ]x0, x0 + |Dµ|[ .

In this case, since we have

∫

Dµ

(U(x)− µ)2dx =

∫

Dµ

2

∫ x

x0

(U(x′)− µ)
d

dx′
U(x′)dx′dx,

and thus

∫

Dµ

(U(x)− µ)2dx ≤ 2|Dµ|
(
∫

Dµ

(U(x)− µ)2dx

)1/2(∫

Dµ

(

d

dx
U(x)

)2

dx

)1/2

,

we obtain
∫

Dµ

(U(x)− µ)2dx ≤ 4|Dµ|2
∫

Dµ

(

d

dx
U(x)

)2

dx. (5.8)

Even in the general case with

Dµ =

N
⋃

k=0

]xk, x
′
k[, |Dµ| =

N
∑

k=1

(x′k − xk), N ∈ N, N ≥ 2 or N = +∞,

on every interval ]xk, x
′
k[ we have

∫ x′

k

xk

(U(x)− µ)2dx ≤ 4|Dµ|2
∫ x′

k

xk

(

d

dx
U(x)

)2

dx.

By summing these inequalities, we obtain (5.8).
From (5.7) and (5.8) we have

∫

Dµ

(

d

dx
U(x)

)2

dx ≥ 1

4|Dµ|2
(

1

2
− |Dµ|

6π

)

‖U‖2L2(0,2π). (5.9)
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Since, according to (5.4), we have

|Dµ| ≤
4π

√
2π U

‖U‖L2(0,2π)
,

from (5.9) we obtain

∫

Dµ

(

d

dx
U(x)

)2

dx ≥ 1

256π3U
2

(

1− 4
√
2π U

3‖U‖L2(0,2π)

)

‖U‖4L2(0,2π).

Since
∫ 2π

0

(

d

dx
U(x)

)2

dx ≥
∫

Dµ

(

d

dx
U(x)

)2

dx,

we deduce the inequality (5.2). This completes the proof of the lemma. �

Lemma 1 leads to the following property.

Lemma 2. Assume that the conditions (4.1)–(4.2) and (3.4) are satisfied and that the prob-

lem (3.1)–(3.3) admits a unique solution (u1(t, x), u2(t, x)) for all t > 0. Let U(·, ·) and Ũ(t) be the

functions defined in (3.7) and (3.12), respectively. If

‖U(u1(t, ·), u2(t, ·))‖L2(0,2π) >
√
8πŨ(t),

then we have
d

dt
‖U‖2L2 ≤

(

C2
v

κ
− κ

256π3Ũ2

(

1− 4
√
2π

3‖U‖L2

Ũ

)

‖U‖2L2

)

‖U‖2L2 , (5.10)

where Ũ = Ũ(t) and

‖U‖L2 = ‖U(u1(t, ·), u2(t, ·))‖L2(0,2π).

P r o o f. By writing v1(t)− v2(t) + v2(t) instead of v1(t) in (3.13), we have

∂tU = κ∂2
xU − κσ(t, x)− v2(t)∂xU − (v1(t)− v2(t))∂xU1. (5.11)

If we multiply both sides of (5.11) by U and integrate them on [0, 2π], then, using integration by
parts, we have

1

2

d

dt

∫ 2π

0
|U |2dx = −κ

∫ 2π

0
|∂xU |2dx− κ

∫ 2π

0
σUdx+ (v1(t)− v2(t))

∫ 2π

0
U1∂xUdx.

Note that due to relations U = U1 + U2, U1 ≥ 0, U2 ≥ 0 (see (3.5)–(3.9)), we have

∫ 2π

0
U1∂xUdx ≤ 1

2κ

∫ 2π

0
|U1|2dx+

κ

2

∫ 2π

0
|∂xU |2dx ≤ 1

2κ

∫ 2π

0
|U |2dx+

κ

2

∫ 2π

0
|∂xU |2dx.

Thus, taking into account the relation σU ≥ 0, we obtain

1

2

d

dt

∫ 2π

0
|U |2dx ≤ −κ

2

∫ 2π

0
|∂xU |2dx+

|v1(t)− v2(t)|2
2κ

∫ 2π

0
|U |2dx. (5.12)

Applying the inequality (5.2) to the first term on the right-hand side of the inequality (5.12) and
taking into account the condition (4.1), we obtain (5.10). This completes the proof of the lemma. �
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P r o o f (of Proposition 2). Note that if ‖U‖L2 >
√
8πŨ , then we have

1− 4
√
2π

3‖U‖L2

Ũ ≥ 1

3
.

Thus, in this case, the right-hand side of the inequality (5.10) is bounded from above by
(

C2
v

κ
− κ

256π3Ũ2

‖U‖2L2

3

)

‖U‖2L2 .

Therefore, from Lemma 2 it follows that

lim sup
t→∞

∫ 2π

0
|U(u1(t, x), u2(t, x))|2dx ≤ Λ2(Ũ∞),

where Λ2(·) is defined by

Λ2(a) = max
(

8π,
768π3C2

v

κ2

)

a2, (5.13)

which completes the proof of Proposition 2. �

6. Proof of Theorem 1

In order to prove Theorem 1, we begin with an estimate of the ‖∂xU(u1(t, ·), u2(t, ·))‖L2(0,2π).
We have the following lemma (in Lemmas 3–9, we assume that the hypothesis of Proposition 2 is
satisfied).

Lemma 3. For all t2 > t1 ≥ 0, we have
∫ t2

t1

‖∂xU(u1(t, ·), u2(t, ·))‖2L2(0,2π)dt

≤ Cv

κ2

∫ t2

t1

‖U(u1(t, ·), u2(t, ·))‖2L2
(0,2π)

dt+
1

κ
‖U(u1(t1, ·), u2(t1, ·))‖2L2(0,2π).

(6.1)

P r o o f. From (5.12) we deduce that
∫ 2π

0
|∂xU(t, x)|2dx ≤ |v1(t)− v2(t)|2

κ2

∫ 2π

0
|U(t, x)|2dx− 1

κ

d

dt

∫ 2π

0
|U(t, x)|2dx,

where U(t, x) = U(u1(t, x), u2(t, x)). Integrating both sides of this inequality with respect to t from
t1 to t2, we obtain
∫ t2

t1

‖∂xU(t, ·)‖2L2(0,2π)dt≤
Cv

κ2

∫ t2

t1

‖U(t, ·)‖2L2(0,2π)dt−
1

κ

(

‖U(t2, ·)‖2L2(0,2π)−‖U(t1, ·)‖2L2(0,2π)

)

. (6.2)

Eliminating the negative terme of the right-hand side of the inequality (6.2), we obtain (6.1). �

We deduce from Lemma 3 the following relation.

Lemma 4. We have
∫ t+1

t
sup

0≤x≤2π
U(u1(t

′, x), u2(t
′, x))dt′

≤Ũ(t) +
√
2π

(Cv

κ2

∫ t+1

t
‖U(u1(t

′, ·), u2(t′, ·))‖2L(0,2π)2dt
′+

1

κ
‖U(u1(t, ·), u2(t, ·))‖2L2(0,2π)

)1/2
,

(6.3)

where Ũ(t) is the notation introduced in (3.12).
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P r o o f. We use the notation U(t, x) = U(u1(t, x), u2(t, x)) as in the proof of Lemma 3. Since

‖ϕ‖L1(0,2π) ≤
√
2π‖ϕ‖L2(0,2π)

for all ϕ ∈ L2(0, 2π), from the relation

sup
0≤x≤2π

U(t, x) ≤ Ũ(t) + ‖∂xU(t, ·)‖L1(0,2π),

we obtain
sup

0≤x≤2π
U(t, x) ≤ Ũ(t) +

√
2π‖∂xU(t, ·)‖L2(0,2π). (6.4)

Taking into account the decreasing of Ũ(t), the inequality (6.3) follows immediatly from (6.1)
and (6.4). �

We will now estimate the growth of

sup
0≤x≤2π

u1(t, x), sup
0≤x≤2π

u2(t, x), sup
0≤x≤2π

(− log u1(t, x)), sup
0≤x≤2π

(− log u2(t, x)).

To this end, we return to the equations (3.1) and (3.2). Note that, if we introduce the function

ξ1(t, x) = x+

∫ t

0
v1(t

′)dt′,

and if we consider the variables (t, ξ1) instead of (t, x), then the equation (3.1) is rewritten as

∂tu1(t, ξ1) = κ∂2
ξ1u1(t, ξ1) + αu1(t, ξ1)− βu1(t, ξ1)u2(t, ξ1). (6.5)

Analogously, if we introduce the function

ξ2(t, x) = x+

∫ t

0
v2(t

′)dt′,

and if we consider the variables (t, ξ2) instead of (t, x), then the equation (3.2) is rewritten as

∂tu2(t, ξ2) = κ∂2
ξ2u2(t, ξ2)− γu2(t, ξ2) + δu1(t, ξ2)u2(t, ξ2). (6.6)

Using (6.5) and (6.6), we will prove the four following lemmas.

Lemma 5. Set

u+1 (t) = sup
0≤x≤2π

u1(t, x) = sup
ξ1∈R

u1(t, ξ1). (6.7)

Then, for 0 ≤ t0 ≤ t, we have

u+1 (t) ≤ u+1 (t0)e
α(t−t0) ≡ Φ1(u

+
1 (t0), t− t0). (6.8)

P r o o f. By formally applying the fundamental solution of the heat equation to (6.5), we have

u1(t, ξ1) =

∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ1)u1(t0, ξ

′)dξ′

+

∫ t

t0

∫ +∞

−∞

Θ(t− t′, ξ′ − ξ1)
(

αu1(t
′, ξ′)− βu1(t

′, ξ′)u2(t
′, ξ′)

)

dξ′dt′,
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where

Θ(τ, η) =
1

√

(4πτκ)
exp(− |η|2

4τκ
).

Since
∫ +∞

−∞

Θ(τ, η)dη = 1

for all τ > 0, we have

u+1 (t) ≤ u+1 (t0) + α

∫ t

t0

u+1 (t
′)dt′,

so that we obtain (6.8). �

Lemma 6. Set

w+
2 (t) = sup

0≤x≤2π
(− log u2(t, x)) = sup

ξ2∈R
(− log u2(t, ξ2)).

Then, for 0 ≤ t0 ≤ t, we have

w+
2 (t) ≤ w+

2 (t0) + γ(t− t0) ≡ Ψ2(w
+
2 (t0), t− t0). (6.9)

P r o o f. If we divide both sides of (6.6) by −u2(t, ξ2), we have

∂t(− log(u2(t, ξ2))) = κ∂2
ξ2(− log(u2(t, ξ2)))− (∂ξ2 log(u2(t, ξ2)))

2 + γ − δu1(t, ξ2). (6.10)

By formally applying the fundamental solution of the heat equation to (6.10), we have

− log(u2(t, ξ2)) ≤
∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ2)(− log(u2(t0, ξ

′)))dξ′ + γ(t− t0),

and this inequality implies (6.9). �

Lemma 7. Set

u+2 (t) = sup
0≤x≤2π

u2(t, x) = sup
ξ2∈R

u2(t, ξ2).

Then, for 0 ≤ t0 ≤ t, we have

u+2 (t) ≤ u+2 (t0)

(

1 + δu+1 (t0)

∫ t

t0

eα(t
′−t0)eδ/α·u

+
1 (t0)(eα(t−t0)−eα(t′−t0))dt′

)

≡ Φ2(u
+
1 (t0), u

+
2 (t0), t− t0).

(6.11)

P r o o f. We formally apply the fundamental solution of the heat equation to (6.6), so that
we have

u2(t, ξ2) ≤
∫ +∞

−∞

Θ(t− t0, ξ
′ − ξ2)u2(t0, ξ

′)dξ′ + δ

∫ t

t0

∫ +∞

−∞

Θ(t− t′, ξ′ − ξ2)u1(t
′, ξ′)u2(t

′, ξ′)dξ′dt′.

Hence, using the inequality (6.8), we have

u+2 (t) ≤ u+2 (t0) + δu+1 (t0)

∫ t

t0

eα(t
′−t0)u+2 (t

′)dt′,
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or

Y ′(t) ≤ eα(t−t0)u+2 (t0) + δu+1 (t0)e
α(t−t0)Y (t), Y (t) =

∫ t

t0

eα(t
′−t0)u+2 (t

′)dt′.

From this inequality follows (6.11). �

Lemma 8. Set

w+
1 (t) = sup

0≤x≤2π
(− log u1(t, x)) = sup

ξ1∈R
(− log u1(t, ξ1)).

Then, for 0 ≤ t0 ≤ t, we have

w+
1 (t) ≤ w+

1 (t0) + β

∫ t

t0

Φ2(t0, u
+
2 (t0), t

′)dt′ ≡ Ψ1(u
+
1 (t0), u

+
2 (t0), w

+
1 (t0), t− t0). (6.12)

P r o o f. From the equation

∂t(− log(u1(t, ξ1))) = κ∂2
ξ1(− log(u1(t, ξ1)))− κ(∂ξ1 log(u1(t, ξ1)))

2 − α+ βu2(t, ξ1),

we deduce (in a similar way to the previous case)

− log(u1(t, ξ1)) ≤ w+
1 (t0) + β

∫ t

t0

u+2 (t
′)dt′.

Hence, using (6.11) we obtain (6.12). �

Let us define w+
1 (U), u+1 (U), w+

2 (U) and u+2 (U), for all U ≥ 0, as follows:

w+
1 (U) = − log(ū1), U1(ū1) = U, 0 < ū1 ≤

γ

δ
,

u+1 (U) = ¯̄u1, U1(¯̄u1) = U, ¯̄u1 ≥
γ

δ
,

w+
2 (U) = − log(ū2), U2(ū2) = U, 0 < ū2 ≤

α

β
,

u+2 (U) = ¯̄u2, U2(¯̄u2) = U, ¯̄u2 ≥
α

β
.

It is clear that

U = U1(e
−w+

1 (U)) = U1(u
+
1 (U)) = U2(e

−w+
2 (U)) = U2(u

+
2 (U)).

These definitions are justified due to the definition (3.5)–(3.6) of U1(u1) and U2(u2).

Lemma 9. If we set

U+(t) = sup
0≤x≤2π

U(u1(t, x), u2(t, x)),

we have

U+(t) ≤ M̃(U+(t0), t− t0), t ≥ t0,

where

M̃(U+(t0), t− t0) = Umax
1 (U+(t0), t− t0) + Umax

2 (U+(t0), t− t0), (6.13)

Umax
1 (U+(t0), t− t0)

= max(U1(Φ1(u
+
1 (U

+(t0)), t− t0)), U1(e
−Ψ1(u

+
1 (U+(t0)),u

+
2 (U+(t0)),w

+
1 (U+(t0)),t−t0))),

Umax
2 (U+(t0), t− t0) = max(U2(Φ2(u

+
1 (U

+(t0)), u
+
2 (U

+(t0)), t− t0)), U2(e
−Ψ2(w

+
2 (U+(t0)),t−t0))).
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P r o o f. The lemma follows immediatly from the definition of M̃(U+(t0), t−t0) and Lemmas 5–
8. �

Remark 3. The function M̃ (a, b) can be defined for any values a ≥ 0 and b ≥ 0 (independently
of the solution (u1(t, x), u2(t, x)) of the problem (3.1)–(3.3)). Furthermore, the function M̃(a, b) is
continuous and increasing with respect to either a ≥ 0 or b ≥ 0.

Indeed, this remark follows immediately from the definition (6.13).

We are now able to prove the main result.

P r o o f (of Theorem 1). In this proof we use the notations Ũ(t) introduced in (3.12) and
U(t, x) = U(u1(t, x), u1(t, x)). Lemma 2 (see also (5.13)) implies that, if

‖U(t, ·)‖2L2(0,2π) > Λ2(Ũ (t)),

then ‖U(t, ·)‖2L2(0,2π) decreases. Taking into account that Ũ(t) is decreasing, we have

‖U(t, ·)‖2L2(0,2π) ≤ max
(

‖U(0, ·)‖2L2(0,2π) , Λ2(Ũ(0))
)

≡ BU , ∀t ≥ 0.

This inequality, together with (6.3) and Proposition 1, allows us to conclude the existence of τ in
each interval [t, t+ 1] such that

sup
0≤x≤2π

U(τ, x) ≤ Ũ(0) +
√
2π

(Cv

κ2
+

1

κ

)1/2√

BU ≡ AU .

On the other hand, it follows from Lemma 9 (see also Remark 3) that

sup
0≤x≤2π

U(t, x) ≤ M̃(AU , t− τ),

for t ≥ τ . Thus, from these relations it follows that, for all t ≥ 0, we have

sup
0≤x≤2π

U(t′, x) ≤ M̃ (AU , 1), ∀t′ ∈ [t, t+ 1],

in other words, we have
sup

0≤x≤2π
U(t, x) ≤ M̃(AU , 1), ∀t ≥ 0,

with M̃(AU , 1) < ∞ (see (6.13)), which completes the proof of (4.3).
We now set

Λ1(Ũ∞) = M̃(A∗
U (Ũ∞), 1),

where

A∗
U (Ũ∞) = Ũ∞ +

√
2π

(Cv

κ2
+

1

κ

)1/2
√

Λ2(Ũ∞). (6.14)

We note that the right-hand side of (6.14) does not depend on t and we can deduce from the
definition of M̃ that the function Λ1(Ũ∞) is continuous and increasing. From the reasoning of the
proof of (4.3), taking into account (4.4), we deduce that

lim sup
t→∞

sup
0≤x≤2π

U(t, x) ≤ Λ1(Ũ∞),

which completes the proof of the statement i) of Theorem 1.
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We now assume that Ũ∞ = 0. Then, according to Lemma 4, we have

∫ t

t−1
sup

0≤x≤2π
U(τ, x)dτ ≤ Ũ(t− 1) +

√
2π

(Cv

κ2

∫ t

t−1
‖U(τ, ·)‖2

L(0,2π)2
dτ +

1

κ
‖U(t− 1, ·)‖2L2(0,2π)

)1/2
.

According to Proposition 2 the upper limit of the right-hand side of this inequality is A∗
U (Ũ∞), as

given in (6.14). Thus, we have

lim
t→∞

∫ t

t−1
sup

0≤x≤2π
U(τ, x)dτ = 0. (6.15)

In order to prove the statement ii) of Theorem 1, we argue by contradiction by assuming that

lim
t→∞

sup
0≤x≤2π

U(t, x) 6= 0,

in other words, suppose that there exists ε > 0 such that, for each t > 0, there exists t′ ≥ t such
that

sup
0≤x≤2π

U(t′, x) ≥ ε. (6.16)

Let us define the function U (ε)(s), for each s > 0, as

M̃(U (ε)(s), s) = ε. (6.17)

Then, from the definition of M̃ it follows that, for t′ satisfaying (6.16), we have for τ < t′

U (ε)(t′ − τ) ≤ sup
0≤x≤2π

U(τ, x).

Thus
∫ t′

t′−1
U (ε)(t′ − τ)dτ ≤

∫ t′

t′−1
sup

0≤x≤2π
U(τ, x)dτ. (6.18)

Recall that the definition of M̃ (and also of Umax
1 and Umax

2 ; see (6.13)) implies that for any
t0 > 0, we have

lim
t→t+0

Umax
1 (U+(t0), t− t0) = max(U1(u

+
1 (U

+(t0))), U1(e
−w+

1 (U+(t0)))) = U+(t0),

lim
t→t+0

Umax
2 (U+(t0), t− t0) = max(U2(u

+
2 (U

+(t0))), U2(e
−w+

2 (U+(t0)))) = U+(t0),

and thus

lim
t→t+0

M̃(U+(t0), t− t0) = 2U+(t0).

This relation also implies that

lim
τ→t′−

U (ε)(t′ − τ) =
1

2
ε > 0. (6.19)

From the continuity of M̃(a, b) we can deduce that U (ε)(s) is continuous (see (6.17)). Thus,
from (6.19) it follows that there exists some sε > 0 such that U (ε)(s) > 0 for 0 < s < sε, and
we have

∫ t′

t′−sε

U (ε)(t′ − τ)dτ =

∫ sε

0
U (ε)(s)ds ≡ cε > 0.
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Thus, it follows from (6.18) that

∫ t′

t′−1
sup

0≤x≤2π
U(τ, x)dτ ≥ cε > 0,

where cε is independant of t′. This result contradicts (6.15). Therefore we have

lim
t→∞

sup
0≤x≤2π

U(t, x) = 0.

This completes the proof of the theorem. �

7. Conclusion

In this article, we have analyzed the asymptotic behavior of the solution to the Lotka–Volterra
equation with diffusion and population displacements in a periodic domain of R. From this analysis
we have obtained the global boundedness of the solution and its logarithm and also its uniform
convergence to the stationary solution in the case in which the solution converges in mean-value to
the stationary solution. This result guarantees that, even if there can be the growth of oscillation
of the solution in certain points as we have seen in the example of numerical calculation in the
Section 2, these phenomena cannot develop infinitely, and the growth of oscillation is limited.

Moreover we have developed some particular techniques of estimate of the solution. Even if the
conditions we have set for the equation are relatively simple, the techniques we have developed here
can, with possible adaptation, be used also for analogous problem with more complex conditions.
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Abstract: Let ⌊x⌋ and ⌈x⌉ denote the lower integer part and the upper integer part of a real number x,
respectively. Our main goal is to construct four partitions of a finite set A with n ≥ 7 elements such that each
of the four partitions has exactly ⌈n/2⌉ blocks and any other partition of A can be obtained from the given
four by forming joins and meets in a finite number of steps. We do the same with ⌈n/2⌉ − 1 instead of ⌈n/2⌉,
too. To situate the paper within lattice theory, recall that the partition lattice Eq(A) of a set A consists of all
partitions (equivalently, of all equivalence relations) of A. For a natural number n, [n] and Eq(n) will stand
for {1, 2, . . . , n} and Eq([n]), respectively. In 1975, Heinrich Strietz proved that, for any natural number n ≥ 3,
Eq(n) has a four-element generating set; half a dozen papers have been devoted to four-element generating sets
of partition lattices since then. We give a simple proof of his just-mentioned result. We call a generating set X
of Eq(n) horizontal if each member of X has the same height, denoted by h(X), in Eq(n); no such generating
sets have been known previously. We prove that for each natural number n ≥ 4, Eq(n) has two four-element
horizontal generating sets X and Y such that h(Y ) = h(X) + 1; for n ≥ 7, h(X) = ⌊n/2⌋.

Keywords: Partition lattice, Equivalence lattice, Minimum-sized generating set, Horizontal generating set,
Four-element generating set.
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is isomorphic to the partition lattice of A, which consists of all partitions of A. By the just-
mentioned correspondence, we make no sharp distinction between equivalences and partitions in
our terminology and notations. To explain that we use the notation Eq(A) rather than something
like Part(A), note that equivalences are more appropriate for performing the lattice operations and
forming restrictions. For a natural number n, we let [n] := {1, 2, . . . , n}, and we usually abbreviate
Eq([n]) to Eq(n).

Partition lattices play an important role in lattice theory since congruence lattices, which play a
central role in universal algebra, are naturally embedded in partition lattices. In fact, every lattice
is embeddable into a partition lattice by Whitman [12] and each finite lattice into a finite partition
lattice by Pudlák and Tůma [9]; note that these facts can be exploited in some proofs, for example,
in [1]. Furthermore, every partition lattice Eq(A) is known to be a geometric lattice, that is, an
atomistic semimodular lattice; see, e.g., Grätzer [7, Section IV.4] or [8, Section V.3]. Being atomistic
means that each element x of Eq(A) is the join of all atoms below x. Semimodularity is understood
as upper semimodularity, that is, for any x, y, z ∈ Eq(A), x � y implies that x ∨ z � y ∨ z, where
� is the “is covered by or equal to” relation.

A subset X of Eq(A) is a generating set of Eq(A) if X extends to no proper subset S of Eq(A)
such that S is closed with respect to joins and meets. In the seventies, Strietz [10] and [11] proved
that, for any natural number n ≥ 3, Eq(n) has a four-element generating set. His result is optimal,
since Eq(n) does not have a three-element generating set provided that n ≥ 4. Since Strietz’s
pioneering work was published in [10] and [11], five additional papers have already been devoted to
the four-element generating sets of equivalence lattices; see [6], the 2nd-, the 3rd-, and the 4th-item
in the “References” section of [6], and Zádori [13].

For n ≥ 3, which is always assumed, each permutation of [n] extends to an automorphism
of Eq(n), and such an automorphism sends generating sets to generating sets. We say that two
generating sets of Eq(n) are essentially different if no such automorphism sends one of them to
the other one. We know even from Strietz [10] and [11] that, for n large enough, Eq(n) has several
essentially different four-element generating sets. Many more (essentially different) four-element
generating sets have been given in [6]. However, it is very likely by the computer-assisted section
of [6] that only an infinitesimally small percentage of the four-element generating sets of Eq(n) are
known for n large. Exploring more such generating sets seems to be a reasonable target in its own
right, and there is an additional motivation: Namely, the more small generating sets of Eq(n) are
available, the more the cryptographic ideas of [2] can benefit from equivalence lattices. (If there
are and we know many four-element generating sets, then we can extend them to small generating
sets in very many ways.)

Before explaining what sort of new four-element generating sets of Eq(n) we are going to present,
note that even at the very beginning of this type of research in the seventies, Strietz himself paid
attention to some lattice theoretical properties of his four-element generating sets. For n ≥ 4,
he showed that a four-element generating set is either an antichain (that is, a subset with no
comparable elements) or it is of order type 1+1+2, that is, exactly two out of the four generators
are comparable. He managed to prove that Eq(n) has a four-element generating set of order type
1 + 1 + 2 for every integer n ≥ 10. Briefly saying, Eq(n) is (1 + 1 + 2)-generated for n ≥ 10. With
ingenious constructions, Zádori [13] improved “n ≥ 10” to n ≥ 7, and he gave a visual proof of
Strietz’s result that Eq(n) has a four-element generating set; his proofs are simpler than Strietz’s
ones. Zádori [13] left open the problem whether Eq(5) and Eq(6) are (1 + 1 + 2)-generated. This
problem was solved as recently as 2020 in [6], where an affirmative answer for Eq(6) was given but
a computer-assisted negative answer for Eq(5) was provided.

As Eq(n) is a geometric lattice, there is a natural property of a subset, which is more restrictive
than being an antichain. To introduce it, recall that the length of an n-element chain is n− 1. The
least element and the largest element of Eq(n) or Eq(A) will be denoted by ∆ and ∇, respectively.
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If confusion threatens, we write ∆n, ∇A, etc. The height of an element µ ∈ Eq(n) is the length
of a maximal chain in the interval [∆, µ]; we know from the Jordan-Hölder Chain Condition for
semimodular lattices, see, e.g., Grätzer [7, Theorem IV.2.1, p. 226] or [8, Theorem 377], that no
matter which maximal chain is taken. We denote the height of µ by h(µ). A subset X of Eq(n) is
horizontal if its elements are of the same height; in this case, the common height of the elements
of X is denoted by h(X). A horizontal subset of Eq(n) is necessarily an antichain. Clearly, Eq(n)
for n ≥ 3 has a horizontal generating set, since the set of atoms is such. To get a better insight into
the four-element generating sets of partition lattices, it is reasonable to determine those natural
numbers n for which Eq(n) has a four-element horizontal generating set. In fact, we are going to
do more by showing that whenever Eq(n) has a four-element antichain at all, that is, whenever
n ≥ 4, then it has two four-element horizontal generating sets of neighboring heights. To smooth
our terminology, let us introduce the notation

HFHGS(n) := {h(X) : X is a four-element horizontal generating set of Eq(n)};

the acronym above comes from the heights of four-element horizontal generating sets. For a real
number r, we denote by ⌊r⌋ and ⌈r⌉ the lower integer part and the upper integer part of r; for
example, ⌊

√
2⌋ = 1 and ⌈

√
2 ⌉ = 2. Let N+ denote the set of positive integers.

Theorem 1. For every natural number n ≥ 4, the partition lattice Eq(n) has two four-element
horizontal generating sets X and Y such that h(Y ) = h(X)+1 holds for their heights. Furthermore,

HFHGS(n) ⊇ {⌊n/2⌋, ⌊n/2⌋ + 1} for all integers n ≥ 7 and also for n = 5, and (2.1)

HFHGS(n) ⊆ {k ∈ N
+ : ⌊(n − 1)/4⌋ + 1 ≤ k ≤ n− ⌈ 4

√
n ⌉} for all integers n ≥ 4. (2.2)

Based on the following statement, we conjecture that “⊇” in (2.1) is never an equality for
n ≥ 7. We do not know whether limn→∞ |HFHGS(n)| = ∞ and HFHGS(n) is always a convex
subset of N+. We know HFHGS(n) only for n ∈ {4, 5, 6, 7, 8}. In the proposition below, each

occurrence of the relation symbol
comp
= denotes an equality that we could prove only with the

assistance of the brute force of a computer.

Proposition 1. We have the following equalities and inclusions:

HFHGS(4) = {1, 2}, (2.3)

HFHGS(5) = {2, 3}, (2.4)

{2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}, in fact, HFHGS(6)
comp
= {2, 3}, (2.5)

{2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}, in fact, HFHGS(7)
comp
= {2, 3, 4}, and (2.6)

{3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, in fact, HFHGS(8)
comp
= {3, 4, 5}. (2.7)

Remark 1. (2.3) and (2.5) witness that (2.1) fails for n ∈ {4, 6}. Note also that concrete
four-element horizontal generating sets witnessing (2.1) and (2.3)–(2.7) are defined by Lemma 5
combined with Assertion 1, by Lemmas 6, 7 and 8 combined with both (the Key) Lemma 4 and
Assertion 1, and in the rest of the lemmas presented in Section 5. For n large, the just-mentioned
four-element horizontal generating sets are given only inductively; the inductive feature could be
eliminated but we do not strive for non-inductive definitions of these generating sets.

The rest of the paper is devoted to proving Theorem 1 and Proposition 1. Unless explicitly
stated otherwise, we assume that 4 ≤ n ∈ N

+ for the remainder of the paper.
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3. Some lemmas, the Key Lemma, and a new proof of one of Strietz’s results

For a finite nonempty set A, if {a1,1, . . . , a1,t1}, . . . , {ak,1, . . . , ak,tk} is a repetition-free list of
the blocks of a partition µ ∈ Eq(A), then we denote both µ and the corresponding equivalence by

eq(a1,1, . . . , a1,t1 ; . . . ; ak,1, . . . , ak,tk) or eq(a1,1 . . . a1,t1 ; . . . ; ak,1 . . . ak,tk).

That is, we omit the commas when no confusion threatens but not the block-separating semicolons.
Usually, the elements in a block and the blocks are listed in lexicographic order. For example,

∆4 = eq(1; 2; 3; 4), ∇4 = eq(1234), and ∇11 = eq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);

for more involved examples, see Lemmas 5–15. For u, v ∈ A, the least equivalence of A collapsing
u and v will be denoted by at(u, v) or, if confusion threatens, by atA(u, v). For example, in Eq(6),
at(2, 5) = eq(1; 25; 3; 4; 6). Note that at(u, v) is an atom of Eq(A) (that is, a cover of ∆), and every
atom of Eq(A) is of this form.

We define the graph G(S) of a sublattice S of Eq(A) by letting A be the vertex set of G(S)
and letting {(a, b) : a 6= b and at(a, b) ∈ S} be the edge set of G(S). (No matter if we consider
(a, b) and (b, a) equal or different.) A Hamiltonian circle of G(S) is a permutation a1, a2, . . . , an of
the elements of A such that at(ai−1, ai) ∈ S for i ∈ [n] − {1} and at(an, a1) ∈ S. Of course, G(S)
need not have a Hamiltonian circle. The following lemma occurs, explicitly or implicitly, in several
papers dealing with generating sets of equivalence lattices; see, for example, Czédli and Oluoch
[6, Lemma 2.5]. For the reader’s convenience, we are going to outline its trivial proof.

Lemma 1 (Hamiltonian Cycle Lemma). For a finite set A with at least three elements and a
sublattice S of Eq(A), we have that S = Eq(A) if and only if G(S) has a Hamiltonian circle.

P r o o f. The “only if” part is trivial. To prove the “if” part, let a1, . . . , an be a Hamiltonian
circle of G(S). As each element of the atomistic lattice Eq(A) is the join of some atoms, it suffices
to show that for all i 6= j, i, j ∈ [n], we have that at(ai, aj) ∈ S. This membership follows from

at(ai, aj) =
(

at(ai, ai+1) ∨ at(ai+1, ai+2) ∨ · · · ∨ at(aj−1, aj)
)

∧
(

at(ai, ai−1) ∨ at(ai−1, ai−2) ∨ · · · ∨ at(a2, a1)

∨ at(a1, an) ∨ at(an, an−1) ∨ at(an−1, an−2) ∨ · · · ∨ at(aj+1, aj)
)

and the “commutativity” at(x, y) = at(y, x). �

Let Z4 := ({0, 1, 2, 3},+) denote the cyclic group of order 4; the addition in it is performed
modulo 4. To give the lion’s share of the proof of (2.3) and also to present an easy consequence of
Lemma 1, we present the following lemma, in which the addition is understood in Z4.

Lemma 2. Both
X := {at(i, i + 1) : i ∈ Z4}

and
Y := {at(i, i + 1) ∨ at(i+ 1, i + 2) : i ∈ Z4}

are four-element horizontal generating sets of Eq(Z4) ∼= Eq(4).

P r o o f. By Lemma 1, X generates Eq(Z4). Since

at(i, i+ 1) =
(

at(i, i+ 1) ∨ at(i+ 1, i+ 2)
)

∧
(

at(i− 1, i) ∨ at(i, i + 1)
)

for i ∈ Z4,
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it follows that X is contained in the sublattice of Eq(Z4) generated by Y , whence Y also generates
Eq(Z4). �

Next, we introduce a concept that is crucial in the proof of Theorem 1. By an n-element eligible
structure we mean a 7-tuple

A = (A,α, β, γ, δ, u, v) (3.1)

such that A is an n-element finite set, u and v are distinct elements of A, {α, β, γ, δ} is a four-element
generating set of Eq(A), and

α ∨ δ = ∇, α ∧ δ = ∆, (3.2)

β ∧
(

γ ∨ at(u, v)
)

= ∆, γ ∧
(

β ∨ at(u, v)
)

= ∆, (3.3)

and β ∨ γ ∨ at(u, v) = ∇. (3.4)

To present an example and also for a later reference, we formulate the following statement.

Lemma 3. With α = eq(123; 4), β = eq(14; 2; 3), γ = eq(1; 2; 34), and δ = eq(1; 24; 3),

A := ([4], α, β, γ, δ, 1, 2) (3.5)

is an eligible structure.

P r o o f. Let S be the sublattice of Eq(4) generated by {α, β, γ, δ}. Since

at(1, 2) = eq(12; 3; 4) = α ∧ (β ∨ δ) ∈ S, at(2, 3) = α ∧ (γ ∨ δ) ∈ S, at(3, 4) = γ ∈ S,

and at(4, 1) = β ∈ S, the sequence 1, 2, 3, 4 is a Hamiltonian cycle in G(S). Thus, Lemma 1
implies that {α, β, γ, δ} generates Eq(4). Since (3.2), (3.3), and (3.4) are trivially satisfied, the
proof of Lemma 3 is complete. �

For A ⊆ B and µ ∈ Eq(A), the smallest equivalence of B that includes µ will be denoted
by µext

B . The superscript in the notation comes from “extension”. As a partition, µext
B consists of

the blocks of µ and the singleton blocks {b} for b ∈ B −A.

Lemma 4 (Key Lemma). Assume that (A,α, β, γ, δ, u, v) is an eligible structure, |A| ≥ 4,
w /∈ A, and B = A ∪ {w}. Let

α′ := βext
B ∨ atB(u,w), β′ := αext

B , γ′ := δextB , δ′ := γextB ∨ atB(v,w),

u′ := u, v′ := w.
(3.6)

Then the extended structure

ES(A) := B =
(

B, α′, β′, γ′, δ′, u′, v′
)

(3.7)

is also an eligible structure. The heights of the partitions occurring in (3.6)–(3.7) satisfy that

h(α′) = h(β) + 1, h(β′) = h(α), h(γ′) = h(δ), h(δ′) = h(γ) + 1. (3.8)

P r o o f. Assume that A is an eligible structure and B = ES(A) is as in (3.7). We will
frequently but mostly implicitly use the obvious fact that the function f : Eq(A) → Eq(B) defined
by µ 7→ µext

B is a lattice embedding and, for any µ ∈ Eq(A), h(f(µ)) = h(µ). Denote by S the
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sublattice generated by {α′, β′, γ′, δ′} in Eq(B). For µ ∈ Eq(B), let µ↾A denote the restriction of µ
to A. That is, as an equivalence, µ↾A = µ ∩ (A×A). E.g.,

(

(∆A)
ext
B

)

↾A = ∆A.

Note the obvious rule:

(ρextB )↾A = ρ and (µ↾A)
ext
B = µ ∧ (∇A)

ext
B for every ρ ∈ Eq(A) and µ ∈ Eq(B). (3.9)

Let us agree that, for x, y ∈ B, at(x, y) is understood as atB(x, y) even when x, y ∈ A. We claim
that for any µ ∈ Eq(A) and for any d ∈ A,

(

µext
B ∨ atB(d,w)

)

↾A = µ; (3.10)

and, in particular,

α′↾A = β and δ′↾A = γ. (3.11)

The inequality
(

µext
B ∨ atB(d,w)

)

↾A ≥ µ

is clear. To show the converse inequality, assume that a 6= b and (a, b) belongs to
(

µext
B ∨ atB(d,w)

)

↾A. Then a, b ∈ A and, by the description of the join in equivalence lattices,
there exists a shortest sequence x0 = a, x1, . . . , xt−1, xt = b of elements of B such that, for each
i ∈ [t],

either (xi−1, xi) ∈ µext
B or (xi−1, xi) ∈ {(d,w), (w, d)}. (3.12)

Since this sequence is repetition-free, the first alternative in (3.12) means that (xi−1, xi) ∈ µ. By
way of contradiction, suppose that not all elements of the sequence are in A. Let j be the smallest
subscript such that xj /∈ A. As x0 = a ∈ A and xt = b ∈ A, we have that 0 < j < t. By the choice
of j, xj−1 ∈ A. This rules out that (xj−1, xj) = (w, d). Since xj /∈ A, (xj−1, xj) ∈ µ cannot occur
either. Hence, (xj−1, xj) = (d,w). However, then the only possibility to continue the sequence is
that (xj , xj+1) = (w, d). So d occurs in the sequence at least twice, which contradicts the fact that
our sequence is repetition-free. Therefore, all elements of the sequence are in A, whereby the first
alternative of (3.12) holds for all i. Thus, (xi−1, xi) ∈ µ for i ∈ [t], and we obtain the required
membership (a, b) = (x0, xt) ∈ µ by transitivity. We have shown (3.10). Letting (µ, d) := (β, u)
and (µ, d) := (γ, v), (3.10) implies (3.11).

Next, using the first half of (3.2) (and the fact that f is an embedding), we obtain that

(∇A)
ext
B = (α ∨ δ)extB = αext

B ∨ δextB = β′ ∨ γ′

belongs to S. Hence, so does α′ ∧ (∇A)
ext
B . By the second half of (3.9) applied to µ := α′, this

equivalence is (α′↾A)
ext
B , whence (α′↾A)

ext
B ∈ S. Therefore, applying (3.11), βext

B ∈ S. As β and
γ play a symmetric role, γextB is also in S. By (3.6), S contains αext

B = β′ and δextB = γ′. So
f(µ) = µext

B ∈ S for every µ ∈ {α, β, γ, δ}. Since f is an embedding and {α, β, γ, δ} generates
Eq(A), we conclude that f(Eq(A)) ⊆ S. In particular, atB(u, v) = f(atA(u, v)) ∈ S. Based on this
containment, we claim that

atB(u,w) = α′ ∧
(

atB(u, v) ∨ δ′
)

∈ S. (3.13)

As atB(u, v), α
′, δ′ ∈ S, it suffices to show the equality in (3.13). The inequality “≤” in place of

the equality is clear by the definition of α′ given in (3.6). To show the converse inequality, assume
that a 6= b and (a, b) belongs to the right-hand side of the equality in (3.13). Let

ν := atA(u, v) ∨ γ.
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Observe that
(a, b) ∈ α′ ∧

(

νextB ∨ atB(v,w)
)

, (3.14)

since

α′ ∧
(

νextB ∨ atB(v,w)
)

= α′ ∧
(

(atA(u, v) ∨ γ)extB ∨ atB(v,w)
)

= α′ ∧
(

(atA(u, v))
ext
B ∨ γextB ∨ atB(v,w)

) (3.15)

= α′ ∧
(

atB(u, v) ∨ γextB ∨ atB(v,w)
) (3.6)

= α′ ∧
(

atB(u, v) ∨ δ′
)

. (3.16)

As a 6= b and |B − A| = |{w}| = 1, at least one of a and b is in A. By symmetry, we can assume
that a ∈ A. Depending on the position of b, there are two cases.

First, assume that b is also in A. Then (a, b) ∈ α′ and (3.11) give that (a, b) ∈ β. As (a, b) is in
the second meetand in (3.14) and a, b ∈ A, we have that

(a, b) ∈
(

νextB ∨ atB(v,w)
)

↾A.

Hence, (3.10) applied to (µ, d) := (ν, v) yields that (a, b) ∈ ν. Thus, (a, b) belongs to

β ∧ ν = β ∧
(

atA(u, v) ∨ γ
)

,

which is ∆A by (3.3). Since (a, b) ∈ ∆A contradicts the assumption a 6= b, the first case cannot
occur.

Second, assume that b /∈ A. Then

(a,w) = (a, b) ∈ α′ ∧
(

atB(u, v) ∨ δ′
)

and a ∈ A. By (3.6), (w, u) ∈ α′. As both (w, v) and (v, u) belong to the second meetand of (3.15),
(w, u) belongs to this meetand, too. These facts, (3.15), and (3.16) give that α′ ∧

(

atB(u, v) ∨
δ′
)

contains (w, u). By transitivity, it contains (a, u), too. If we had that a 6= u, then (a, u)
(with u playing the role of b) would be a contradiction by the first case. Thus, a = u, that is,
(a, b) = (u,w) ∈ atB(u,w), as required. We have shown the validity of (3.13).

We obtain the following fact analogously; we can derive it also from (3.13) by symmetry, since
(A, δ, γ, β, α, v, u) is also an eligible structure:

atB(v,w) = δ′ ∧
(

atB(u, v) ∨ α′
)

∈ S. (3.17)

With n := |A|, list the elements of B as follows:

c1 := u, c2, . . . , cn−1, cn := v, cn+1 := w.

Since f(Eq(A)) ⊆ S and c1, . . . , cn ∈ A, we have that

atB(ci, ci+1) = f
(

atA(ci, ci+1)
)

∈ S,

that is, (ci, ci+1) is an edge of G(S) for i ∈ [n−1]. So are (cn, cn+1) = (v,w) and (cn+1, c1) = (w, u)
by (3.17) and by (3.13), respectively. Therefore, our list is a Hamiltonian cycle, and Lemma 1
implies that {α′, β′, γ′, δ′} is a generating set of Eq(B). This set is four-element since |B| ≥ 4 and
so we know from Strietz [10] or [11] that Eq(B) cannot be generated by less than four elements.

Clearly, u′ = u ∈ A is distinct from v′ = w ∈ B −A. Since

α′ ∨ δ′
(3.6)
= βext

B ∨ atB(u,w) ∨ γextB ∨ atB(v,w) = βext
B ∨ γextB ∨ atB(u, v) ∨ atB(v,w)

=
(

β ∨ γ ∨ atA(u, v)
)ext

B
∨ atB(v,w)

(3.4)
= (∇A)

ext
B ∨ atB(v,w) = ∇B,
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B satisfies the first half of (3.2). To show by way of contradiction that B fulfills the second half,
suppose that a 6= b and (a, b) ∈ α′ ∧ δ′. If a, b ∈ A, then (3.11) leads to (a, b) ∈ β ∧ γ = ∆A,
contradicting that a 6= b. So one of a and b is w, and we can assume that a ∈ A and b = w. As
(a,w) = (a, b) ∈ α′ and (w, u) ∈ α′, we have that (a, u) ∈ α′. Hence, (a, u) ∈ β by (3.11). Similarly,
(a,w), (w, v) ∈ δ′ and (3.11) imply that (a, v) ∈ γ. The just-obtained memberships and relations
give that

(a, u) ∈ β ∧
(

γ ∨ atA(u, v)
)

and (a, v) ∈ γ ∧
(

β ∨ atA(u, v)
)

.

Combining this with (3.3), we obtain that a = u and a = v, contradicting u 6= v. So we have
proved that B fulfills (3.2).

By symmetry, to show that B satisfies (3.3), it suffices to deal with its first half. For the sake
of contradiction, suppose that

β′ ∧
(

γ′ ∨ atB(u
′, v′)

)

6= ∆B.

Then we can pick a, b ∈ B such that a 6= b and

(a, b) ∈ β′ ∧
(

γ′ ∨ atB(u
′, v′)

) (3.6)
= αext

B ∧
(

δextB ∨ atB(u,w)
)

. (3.18)

The containment (a, b) ∈ αext
B gives that a, b ∈ A. The meet in Eq(B) is the set-theoretic inter-

section, so it commutes with the restriction map. Hence, applying the first equality of (3.9) with

ρ := α and (3.10) with (µ, d) := (δ, u) at
∗
=, (3.18) leads to

(a, b) ∈
(

αext
B ∧ (δextB ∨ atB(u,w))

)

↾A = αext
B ↾A ∧

(

δextB ∨ atB(u,w)
)

↾A
∗
= α ∧ δ

(3.2)
= ∆A ⊆ ∆B ,

which contradicts the assumption a 6= b and proves that B satisfies (3.3). Since

β′ ∨ γ′ ∨ atB(u
′, v′)

(3.6)
= αext

B ∨ δextB ∨ atB(u,w) = (α ∨ δ)extB ∨ atB(u,w)

(3.2)
= (∇A)

ext
B ∨ atB(u,w) = ∇B,

B satisfies (3.4), too. We have proved that B is an eligible structure, as required.
For a finite nonempty set H and µ in Eq(H), let NumB(µ) denote the number of blocks of µ.

For example, if µ = eq(14; 25; 3) ∈ Eq(5), then NumB(µ) = 3. The following folkloric fact is trivial:

For any µ ∈ Eq(H), h(µ) + NumB(µ) = |H|. (3.19)

Clearly, (3.6) leads to

NumB(α′) = NumB(β), NumB(β′) = NumB(α) + 1,

NumB(γ′) = NumB(δ) + 1, NumB(δ′) = NumB(γ).

These equalities and (3.19) imply (3.8), completing the proof of the Key Lemma. �

Now we are in the position to give a new proof of Strietz’s result stating that Eq(n) is four-
generated. For those who prefer theoretical arguments rather than long and tedious computations
with concrete partitions, the proof below is presumably simpler than the earlier ones.

Corollary 1 (Strietz [10] and [11]). For any natural number n ≥ 3, Eq(n) has a four-element
generating set.

P r o o f. As the case n = 3 is trivial, we assume that n ≥ 4. Let A4 be the eligible structure
given in (3.5); see (3.1). For n > 4, define An as ES(An−1). Then, for each n ≥ 4, An is an
n-element eligible structure by Lemmas 3 and (the Key) Lemma 4. Thus, by the definition of
eligible structures, Eq(n) is four-generated, completing the proof of Corollary 1. �
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4. A tediously provable lemma

The n-th Bell number B(n) is defined to be the number of elements of Eq(n), that is,
B(n) := |Eq(n)|. As n grows, B(n) grows very fast; see https://oeis.org/A000110 of N. J.A. Sloan’s
Online Encyclopedia of Integer Sequences. For example,

|Eq(6)| = B(6) = 203, |Eq(8)| = 4140, |Eq(9)| = 21147, and

|Eq(20)| = 51724 158 235 372 ≈ 5.17 · 1013.

These large numbers explain our experience that even when it is feasible to prove that a four-element
subset X of Eq(n) generates Eq(n), this task requires straightforward but tedious computations
in general. Each of Lemmas 5–15 belongs to this category by stating that a subset X of Eq(n)
generates Eq(n); some of these lemmas state slightly more, but these surpluses are trivial to verify.
We offer two ways to verify these lemmas.

First, one can read their proofs based on Lemma 1. One of these proofs is given in this
section. As the rest of these proofs are long without containing a single new idea, the proofs of
Lemmas 6–15 are given only in Appendix 1 of the extended version of the paper. At the time of
writing, this extended version is at https://tinyurl.com/czg-h4ge (and also at the author’s website3

http://tinyurl.com/g-czedli/), and it will be available at www.arxiv.org soon.
Second, the author has developed three closely related computer programs in Dev-Pascal 1.9.2

under Windows 10. These programs, available at https://tinyurl.com/czg-equ2024p or at the au-
thor’s website given in the previous paragraph, form a mini-package. The main program and its
auxiliary program are also given in Appendices 2 and 3 of the extended version of the paper. The
third program performs the same tasks as the first one and also uses the auxiliary program. Despite
being slower, it is more cross-platform because it requires less computer memory. For n ≤ 9, the
auxiliary program lists the elements of Eq(n); the other two programs rely on this list. In what
follows, by a program, we mean the main program. The program can “prove” Lemmas 5–15, and
it can also “prove” the

comp
= parts of (2.5)–(2.7). In fact, the program has been designed to perform

the following two tasks.
First, the program can take an n ∈ {4, 5, . . . , 9} and a four-element subset X of Eq(n) as

inputs. After enlarging X by adding the join and the meet of any two of its elements as long as the
enlargement is proper, the program computes the sublattice S generated by X. Then the program
displays the size |S| of S on the screen and tells whether X generates Eq(n). The program can
prove Lemma 8, where n = 9, in about fifteen minutes. For Lemma 14, where n = 8, 25 seconds
suffice. Note that for just one four-element subset X of Eq(n), it is not worthwhile to create and
the program does not create the operation tables of Eq(n). For this (the first) task, there is no
difference between the main program and its slower variant.

Second, for a given n ∈ {4, 5, . . . , 9} and a k ∈ [n − 1] as inputs, the program decides whether
Eq(n) has a four-element horizontal generating set of height k. For (n, k) = (8, 2), this takes about
three and a half minutes, provided the program runs on a desktop computer with AMD Ryzen 7
2700X Eight-Core Processor and 3.70 GHz with 16 GB memory. For (n, k) = (9, 3), if Eq(9) has
no four-element horizontal generating set of height 3, which we do not know, the program would
need about a month; partially because there is not enough computer memory to store the operation
tables of Eq(9) and also because there are significantly more cases.

The quotation marks around “proved” in a paragraph above indicate that the author believes
but cannot prove that the program itself is error-free. The source code of the program and that
of its auxiliary program are 24 and 8 kilobytes, respectively, totaling 32 kilobytes. Proving exactly
that the program is perfect would probably be harder than verifying all proofs in Appendix 1.

3This standard “tiny” short link redirects us to the real URL https://www.math.u-szeged.hu/˜czedli/ .

https://oeis.org/A000110
https://tinyurl.com/czg-h4ge
http://tinyurl.com/g-czedli/
https://www.arxiv.org/
https://tinyurl.com/czg-equ2024p
https://www.math.u-szeged.hu/~czedli/
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Lemma 5. With

α := eq(123; 4; 5), (4.1)

β := eq(1; 23; 45), (4.2)

γ := eq(13; 25; 4), and (4.3)

δ := eq(15; 2; 34), (4.4)

([5], α, β, γ, δ, 1, 4) is an eligible structure and h(α) = h(β) = h(γ) = h(δ) = 2.

P r o o f. Let S denote the sublattice of Eq(5) generated by {α, β, γ, δ}. We will list some
members of S; each of them belongs to S by earlier containments as indicated.

eq(1; 23; 4; 5) = eq(123; 4; 5) ∧ eq(1; 23; 45) ∈ S by (4.1) and (4.2), (4.5)

eq(13; 2; 4; 5) = eq(123; 4; 5) ∧ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.6)

eq(1235; 4) = eq(123; 4; 5) ∨ eq(13; 25; 4) ∈ S by (4.1) and (4.3), (4.7)

eq(15; 234) = eq(15; 2; 34) ∨ eq(1; 23; 4; 5) ∈ S by (4.4) and (4.5), (4.8)

eq(1345; 2) = eq(15; 2; 34) ∨ eq(13; 2; 4; 5) ∈ S by (4.4) and (4.6), (4.9)

eq(15; 2; 3; 4) = eq(15; 2; 34) ∧ eq(1235; 4) ∈ S by (4.4) and (4.7), (4.10)

eq(1; 2; 3; 45) = eq(1; 23; 45) ∧ eq(1345; 2) ∈ S by (4.2) and (4.9), (4.11)

eq(13; 245) = eq(13; 25; 4) ∨ eq(1; 2; 3; 45) ∈ S by (4.3) and (4.11), (4.12)

eq(1; 24; 3; 5) = eq(15; 234) ∧ eq(13; 245) ∈ S by (4.8) and (4.12). (4.13)

Let E(S) denote the edge set of the graph G(S); it is defined in the paragraph preceding Lemma 1.
Since (1, 3) ∈ E(S) by (4.6), (3, 2) ∈ E(S) by (4.5), (2, 4) ∈ E(S) by (4.13), (4, 5) ∈ E(S) by
(4.11), and (5, 1) ∈ E(S) by (4.10), the sequence 1, 3, 2, 4, 5 is a Hamiltonian cycle of G(S). Hence,
{α, β, γ, δ} is a generating set of Eq(5) by Lemma 1. Armed with this fact, now it is a trivial task
to verify that ([5], α, β, γ, δ, 1, 4) satisfies (3.2), (3.3), and (3.4), whereby it is an eligible structure.
Thus, (3.19) completes the proof Lemma 5. �

5. The rest of tediously provable lemmas

We need the following ten lemmas, too. As indicated in the second paragraph of Section 4,
their proofs are given only in Appendix 1 of the extended version of the paper.

Lemma 6. With

α := eq(134; 256; 7), β := eq(146; 27; 3; 5), γ := eq(135; 2; 4; 67), and δ := eq(12; 357; 46),

([7], α, β, γ, δ, 2, 3) is an eligible structure, h(α) = h(δ) = 4, and h(β) = h(γ) = 3.

Lemma 7. With

α := eq(134; 258; 67), β := eq(14; 2; 36; 578),

γ := eq(17; 25; 348; 6), and δ := eq(12; 378; 456),

([8], α, β, γ, δ, 2, 6) is an eligible structure, h(α) = h(δ) = 5, and h(β) = h(γ) = 4.
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Lemma 8. With

α := eq(178; 249; 356), β := eq(19; 26; 378; 45),

γ := eq(1; 28; 359; 467), and δ := eq(169; 258; 347),

([9], α, β, γ, δ, 1, 2) is an eligible structure, h(α) = h(δ) = 6, and h(β) = h(γ) = 5.

Lemma 9. With

α := eq(134; 25), β := eq(13; 245), γ := eq(12; 345), and δ := eq(124; 35),

{α, β, γ, δ} generates Eq(5) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 10. With

α := eq(12; 34; 5; 6), β := eq(1; 2; 35; 46), γ := eq(1; 25; 36; 4), and δ := eq(15; 24; 3; 6),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 11. With

α := eq(13; 256; 4), β := eq(156; 2; 34), γ := eq(12; 35; 46), and δ := eq(13; 246; 5),

{α, β, γ, δ} generates Eq(6) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 12. With

α := eq(1; 24; 35; 6; 7), β := eq(14; 26; 3; 5; 7),

γ := eq(1; 2; 34; 5; 67), and δ := eq(17; 2; 3; 4; 56),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 2.

Lemma 13. With

α := eq(13; 24; 567), β := eq(125; 3; 467) γ := eq(1357; 26; 4), and δ := eq(126; 35; 47),

{α, β, γ, δ} generates Eq(7) and h(α) = h(β) = h(γ) = h(δ) = 4.

Lemma 14. With

α := eq(18; 2; 35; 4; 67), β := eq(1; 24; 37; 5; 68),

γ := eq(16; 2; 34; 57; 8), and δ := eq(12; 3; 45; 6; 78),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 3.

Lemma 15. With

α := eq(137; 246; 58), β := eq(146; 257; 38), γ := eq(136; 2; 4578), and δ := eq(1245; 37; 68),

{α, β, γ, δ} generates Eq(8) and h(α) = h(β) = h(γ) = h(δ) = 5.
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6. Proving Theorem 1 and Proposition 1 with our lemmas

Since the proof of Theorem 1 relies on parts of Proposition 1 and the proof of Proposition 1
uses (2.2) from Theorem 1, we present a combined proof of both the theorem and the proposition.

P r o o f (Proving Theorem 1 and Proposition 1). First, we deal with (2.2). Assume that
{α1, . . . , α4} is a four-element horizontal generating set of Eq(n) with height k. That is, k = h(αi)
for i ∈ [4]. We need to prove that

⌊(n − 1)/4⌋ + 1 ≤ k ≤ n− ⌈ 4
√
n ⌉. (6.1)

By semimodularity, see Grätzer [7, Theorem IV.2.2, p. 226], the height of α1 ∨ · · · ∨ α4 is at most
h(α1)+· · ·+h(α4) = 4k. The just-mentioned join is the largest element of the sublattice S generated
by {α1, . . . , α4}. But this sublattice is Eq(n), so this join is ∇n, whereby h(∇n) ≤ 4k. We know
from, say, (3.19) that h(∇n) = n − 1. Thus, the previous inequality turns into (n− 1)/4 ≤ k.
If (n− 1)/4 < k, then ⌊(n − 1)/4⌋ < k and we obtain the first inequality of (6.1) since k is an
integer. Hence, it suffices to exclude that (n − 1)/4 = k. To obtain a contradiction, suppose that
(n− 1)/4 = k, that is, n−1 = h(∇n) = 4k. Let i ∈ [4]. As h(αi) = k, we can find k atoms βk(i−1)+1,
βk(i−1)+2, . . . , βki in Eq(n) such that αi is the join of these atoms; the existence of such atoms is
clear in Eq(n) and it is true even in any geometric lattice by Grätzer [7, Theorems IV.2.4–IV.2.5,
p. 228–229] or [8, Theorems 380–381]. As {α1, . . . , α4} generates Eq(n), α1∨ · · · ∨α4 = ∇n. Hence,

h
(

4k
∨

j=1

βj
)

= h(α1 ∨ · · · ∨ α4) = h(∇n) = n− 1 = 4k.

Therefore, Grätzer [7, Theorem IV.2.4, p. 228] or [8, Theorem 380] yields that {β1, . . . , β4k} is an
independent set of atoms; this means that {β1, . . . , β4k} generates a Boolean sublattice T of Eq(n).
In particular, T is a distributive. As α1, . . . , α4 are in T , they generate a sublattice of T , which
is distributive, too. This means that Eq(n) is distributive, which contradicts the assumption that
n ≥ 4. Therefore, (n− 1)/4 = k cannot occur and we have proved the first inequality in (6.1).

Clearly, α1 ∧ · · · ∧α4, which is the smallest element of S, is ∆n. Let b := NumB(αi); by (3.19),
b = n− k does not depend on i ∈ [4]. The largest block C1 of α1 has at least n/b elements. When
we form the meet α1 ∧ α2, then C1 splits into at most b blocks of α1 ∧ α2 and the largest one of
these blocks has at least (n/b)/b elements. So α1 ∧ α2 has a block C2 with at least n/b2 elements.
And so on; finally, ∆n = α1 ∧ · · · ∧ α4 has a block with at least n/b4 elements. But ∆n has only
one-element blocks, whereby n/b4 ≤ 1, that is, b ≥ 4

√
n. Thus b ≥ ⌈ 4

√
n ⌉, since b ∈ N

+. Therefore,
as we know from (3.19) that b = n − k, we obtain that k ≤ n − ⌈ 4

√
n ⌉. This completes the proof

of (6.1) and that of (2.2).
Next, assume that A = (A,α, β, γ, δ, u, v). With the “extended structure operator” introduced

in (3.7), we use the notation (C,α′′, β′′, γ′′, δ′′, u′′, v′′) for ES2(A) := ES(ES(A)). Clearly, (the Key)
Lemma 4 implies the following assertion.

Assertion 1. If A = (A,α, β, γ, δ, u, v) is an eligible structure and C = (C,α′′, β′′, γ′′, δ′′, u′′, v′′)
is ES2(A), then C is also an eligible structure,

h(α′′) = h(α) + 1, h(β′′) = h(β) + 1, h(γ′′) = h(γ) + 1, and h(δ′′) = h(δ) + 1.

Resuming the proof, let us agree that, for any meaningful x, ALx denotes the eligible structure
defined in Lemma x. For example, AL5 is defined in Lemma 5. We call an eligible structure
horizontal if its four partitions have the same height; this common height is the height of the
structure.
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By Lemma 5, AL5 is a 5-element horizontal eligible structure of height 2. Applying Assertion 1
repeatedly, we obtain a 7-element horizontal eligible structure, a 9-element horizontal eligible struc-
ture, etc. of heights 3, 4, . . . , respectively. Thus,

for n ≥ 5 odd, Eq(n) has a four-element horizontal generating set of height ⌊n/2⌋. (6.2)

By Lemma 7 and (the Key) Lemma 4, ES(AL7) is a 9-element horizontal eligible structure of
height 5. Applying Assertion 1 repeatedly, we obtain an 11-element horizontal eligible structure, a
13-element horizontal eligible structure, etc. of heights 6, 7, . . . , respectively. Hence,

for n ≥ 9 odd, Eq(n) has a four-element horizontal generating set of height ⌊n/2⌋+ 1. (6.3)

By Lemma 6 and (the Key) Lemma 4, ES(AL6) is an 8-element horizontal eligible structure of
height 4. Hence, the repeated use of Assertion 1 yields that

for n ≥ 8 even, Eq(n) has a four-element horizontal generating set of height ⌊n/2⌋. (6.4)

By Lemma 8 and (the Key) Lemma 4, ES(AL8) is a 10-element horizontal eligible structure of
height 6. Hence, the repeated use of Assertion 1 yields that

for n ≥ 10 even, Eq(n) has a four-element horizontal generating set of height ⌊n/2⌋ + 1. (6.5)

We know from Lemma 9 that Eq(5) is generated by a four-element horizontal generating set of height
⌈5/2⌉ + 1. By Lemma 13, Eq(7) has four-element horizontal generating set of height (⌊7/2⌋ + 1).
For Eq(8), a four-element horizontal generating set of height (⌊8/2⌋+1) is provided by Lemma 15.
These three facts, (6.2), (6.3), (6.4), and (6.5) imply (2.1).

In what follows, we will implicitly use that Eq(n) has no four-element horizontal subset of height
0 or n− 1. Since there is no four-element subset of height 0 or 3 in Eq(4), Lemma 2 implies (2.3).

Since {2, 3} ⊆ HFHGS(5) by (2.2), (2.1) implies (2.4).
We obtain from (2.2) and Lemmas 10–11 that {2, 3} ⊆ HFHGS(6) ⊆ {2, 3, 4}. As the already

mentioned computer program yields that 4 /∈ HFHGS(6) in less than a second4, (2.5) holds.
Lemma 12, (2.1), and (2.2) imply that {2, 3, 4} ⊆ HFHGS(7) ⊆ {2, 3, 4, 5}. In 2 seconds, the

program excludes that 5 ∈ HFHGS(7). Thus, we have shown (2.6).
Lemma 14, (2.1) and (2.2) yield that {3, 4, 5} ⊆ HFHGS(8) ⊆ {2, 3, 4, 5, 6}, as required. The

program excludes 2 and 6 from HFHGS(8) in three and a half minutes and in one minute, respec-
tively. Thus, we proved the validity of (2.7) and that of Proposition 1.

Finally, the first sentence of Theorem 1 follows from (2.3), (2.4) or (2.1), the first inclusion
in (2.5), and from (2.1). The combined proof of Theorem 1 and Proposition 1 is complete. �

7. Conclusion

Motivated by earlier results on four-element generating sets of finite equivalence lattices and
their link to cryptography, we have proved the existence of two four-element horizontal generating
sets of consecutive heights in these lattices. After the first submission of the paper, this result—
and the method behind it—motivated two subsequent papers on four-element generating sets of
equivalence lattices with other special properties (see [3] and [4]). We anticipate similar results in
the future.

4The auxiliary program creates the auxiliary files containing the lists of partitions of [n] for n ≤ 9 in 4
seconds, but this has to be done only once. Thus, here and later, even though the program needs these files,
the just-mentioned 4 seconds are not counted. The time for entering n and k are not counted either.
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Abstract: Let Y X denote the set of all functions from X to Y . When Y is a topological space, various
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1. Introduction

For any topological space Z and topological group H [6, 26], let C(Z,H) denote the group of
all continuous functions from Z to H, equipped with the “pointwise group operations”. That is,
the product of f ∈ C(Z,H) and g ∈ C(Z,H) is the function fg ∈ C(Z,H) defined by

fg(z) = f(z)g(z)

for all z ∈ Z, and the inverse of f is the function h ∈ C(Z,H) defined by

h(z) = (f(z))−1

for all z ∈ Z. The space C(Z,H) with the point-open topology was studied by Shakhmatov and
Spěvák [25]. A set of the form

[z, V ]+ =
{

f ∈ C(Z,H)| f(z) ∈ V
}

,

where z ∈ Z and V is an open subset of H, is a subbase of the point-open topology on C(Z,H).
The space C(Z,H) with the open-point topology has a subbase consisting of sets of the form

[U, r]− =
{

f ∈ C(Z,H)| f−1(r) ∩ U 6= ∅
}

,

where r ∈ H and U is an open subset of Z.

The space C(Z,H) with the bi-point-open topology has a subbase consisting of sets of both
kinds: [z, V ]+ and [U, r]−, where z ∈ Z and V is an open subset of H, U is an open subset of Z,
and r ∈ H.

The following three propositions serve as necessary tools for the development of this paper.

https://doi.org/10.15826/umj.2025.1.005
mailto:kulchhumkhatun123@gmail.com
mailto:spmodak2000@yahoo.co.in
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Proposition 1 [5]. Let β be a basis of a topological group H. The collection

{

[z1, B1]
+ ∩ · · · ∩ [zn, Bn]

+| n ∈ N, zi ∈ Z, Bi ∈ β
}

is a basis for the space C(Z,H) equipped with the point-open topology.

Proposition 2 [26]. Let β be a basis of a topological space X. The collection

{

[B1, r1]
− ∩ · · · ∩ [Bn, rn]

−| n ∈ N, ri ∈ H, Bi ∈ β
}

is a basis for the space C(Z,H) equipped with the open-point topology.

Proposition 3 [26]. Let βZ and βH be bases of a topological space Z and a topological group H,
respectively. The collection

{

[z1, B1]
+ ∩ · · · ∩ [zn, Bn]

+ ∩ [V1, r1]
− ∩ · · · ∩ [Vm, rm]

−|

zi ∈ Z, rj ∈ H, ri ∈ H, Bi ∈ βH , and Vj ∈ βZ , 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

is a basis for the space C(Z,H) equipped with the bi-point-open topology.

General definition of the point-open topology on Y X :

Definition 1 [21]. Given a point x ∈ X and an open set U in a topological space Y , define

S(x,U) =
{

f ∈ Y X | f(x) ∈ U
}

.

The collection of all such sets S(x,U) forms a subbasis for a topology on Y X . This topology is

called the point-open topology on Y X .

To obtain a topology on Y X , it is not necessary that Y be a topological space. That is, for any
set Y , the following construction defines a topology on Y X .

Let x be a point of the set X and A be any subset of Y . Consider

S(x,A) =
{

f ∈ Y X | f(x) ∈ A
}

.

The sets S(x,A) form a subbasis for a topology on Y X . Suppose F ⊆ Y X .
The question is: Is F open in the topology on Y X generated by the subbasis elements above?
Let g ∈ F. For any x ∈ X, we have g(x) ∈ Y . If X is finite, then g ∈ S(x, {g(x)}) ⊆ F. Thus,

the subbasis
{S(x,A)| x ∈ X, A ∈ ℘(Y )}

generates the discrete topology on Y X when X is finite. If we take A = Y , then the subbasis

{

∅} ∪ {S(x, Y )| x ∈ X
}

generates the indiscrete topology on Y X . If we restrict the subsets of Y used in the subbasis, we
obtain a weaker topology on Y X . Therefore, we conclude that “Y being a topological space” is
not essential for defining a topology on Y X . In particular, starting with the discrete topology on
Y yields the discrete topology on Y X , while starting with the indiscrete topology on Y yields the
indiscrete topology on Y X .

In this paper, we will discuss various topologies on Y X . For this purpose, the following gener-
alized open sets are important tools.

Definition 2. A subset A of a topological space Y is said to be
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– semi-open [15] if A ⊆ Co(Io(A));
– preopen [16] if A ⊆ Io(Co(A));
– β-open [10] or semi-preopen [3] if A ⊆ Co(Io(Co(A)));
– b-open [4] if A ⊆ Io(Co(A)) ∪ Co(Io(A));
– h-open [1] if, for every nonempty open set U 6= Y, A ⊆ Io(A ∪ U),

where Io and Co denote the interior and closure operators, respectively.

We denote the collection of all semi-open sets, preopen sets, β-open sets, and b-open sets in a
topological space Y by SO(Y ), PO(Y ), βO(Y ), and BO(Y ), respectively. These collections satisfy
the following inclusion relations: the collection of open sets ⊆ PO(Y ) ⊆ BO(Y ) ⊆ βO(Y ) and the
collection of open sets ⊆ SO(Y ) ⊆ BO(Y ) ⊆ βO(Y ).

The following is one way to obtain weaker and stronger topologies on Y X ; it serves as an
introductory result of the paper.

Lemma 1. Suppose σ and σ′ are two topologies on the set Y such that σ ⊆ σ′. Then, the

point-open topology induced by σ′ is finer than the point-open topology induced by σ.

P r o o f. Let βτ and βτ ′ be bases for the point-open topologies τ and τ ′ induced by σ and σ′,
respectively, on Y X . Let

B = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ , and suppose f ∈ B. Then f ∈ S(xi, Ui) for all i = 1, 2, . . . , n. This implies
that f ∈ S(xi, U

′
i), where Ui = U ′

i for all i = 1, 2, . . . , n. So,

f ∈ S(x1, U
′
1) ∩ S(x2, U

′
2) ∩ · · · ∩ S(xn, U

′
n) = B′ ∈ βτ ′

as U ′
1, U

′
2, . . . , U

′
n are open subsets of (Y, σ′). Thus, for every f ∈ B, there exists B′ ∈ βτ ′ such

that B′ ⊆ B. This completes the proof. �

Note that if σ′ is strictly finer than σ, then the point-open topology induced by σ′ is strictly
finer than the point-open topology induced by σ.

Our aim is to discuss different point-open topologies for various operators in topological spaces.
Thus, for various operators, we consider a topological ideal [2, 14].

An ideal I on a topological space (Y, σ) is a collection of subsets of Y satisfying:

(i) If A ⊆ B ∈ I, then A ∈ I;
(ii) If A,B ∈ I, then A ∪B ∈ I.

This concept of an ideal on a topological space was first introduced by Kuratowski [14] in 1933.
The study of the local function (or the generalization of limit points) is an important aspect of the
theory of topological ideals. It is defined as follows:

A∗ = {y ∈ Y | Uy ∩A /∈ I, Uy ∈ σ(y)},

where σ(y) is the collection of all open sets of (Y, σ) containing y. The set-valued set function [20]
associated with the operator ()∗ is the operator ψ [18, 22], which is defined by the relation ψ(A) =
Y \ (Y \ A)∗.

Throughout this paper, (Y, σ, I) denotes an ideal topological space. Furthermore, an ideal I on
the topological space (Y, σ) is called a codense ideal [9] (or, equivalently, the ideal topological space
(Y, σ, I) is called an H-S space [8]) if I ∩ σ = {∅}.
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2. Topologies on Y
X

In this section, we consider X as a set and Y as a topological space (or simply, a space).

Lemma 2. Given a point x ∈ X and a subset A of the topological space Y , define

S(x, Io(A)) =
{

f ∈ Y X | f(x) ∈ Io(A)
}

.

The sets S(x, Io(A)) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x, Io(Y )) ⊆
⋃

i

S(xi, Io(Ai)),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

S(xi, Io(Ai)).

Thus,

Y X ⊆
⋃

i

S(xi, Io(Ai)).

Hence, the sets S(xi, Io(Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-interior topology on Y X .
As is well known, the operator Co is the set-valued set function [20] associated with Io. Thus,

if we define the sets S(x, Io(A)) by
{

f ∈ Y X | f(x) ∈ X \ Co(X \A)
}

or
{

f ∈ Y X | f(x) /∈ Co(X \ A)
}

,

then we obtain the same topology.
Now we state that the operator Co independently generates a topology on Y X as follows.

Lemma 3. Given a point x ∈ X and a subset A of the topological space Y, define

S(x,Co(A)) =
{

f ∈ Y X | f(x) ∈ Co(A)
}

.

The sets S(x,Co(A)) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-closure topology on Y X .
As Io ∼Y Co [20], one can rewrite the above Lemma using the Io operator. The point-open

topology and the point-interior topology on Y X coincide. However, the point-interior topology and
the point-closure topology are not comparable.

Example 1. Let X = {a, b} and (Y, σ) be a topological space, where Y = {1, 2, 3} and
σ =

{

∅, Y, {2}, {3}, {2, 3}
}

. All possible functions from X to Y are defined by

f1(a) = 1, f1(b) = 2; f2(a) = 1, f2(b) = 3; f3(a) = 2, f3(b) = 3;

f4(a) = 2, f4(b) = 1; f5(a) = 3, f5(b) = 1; f6(a) = 3, f6(b) = 2;

f7(a) = 1, f7(b) = 1; f8(a) = 2, f8(b) = 2; f9(a) = 3, f9(b) = 3.
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Then, a basis of the point-interior topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f8}, {f6, f9}, {f6, f8}, {f3, f9},

{f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}, {f3, f6, f8, f9},

{f3, f4, f5, f6, f8, f9}, {f1, f2, f3, f6, f8, f9}
}

.

A basis of the point-closure topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f7}, {f1, f7}, {f2, f7}, {f4, f7}, {f5, f7},

{f1, f2, f7}, {f4, f5, f7}, {f1, f4, f7, f8}, {f2, f3, f4, f7}, {f1, f5, f6, f7}, {f2, f5, f7, f9},

{f1, f2, f3, f4, f7, f8}, {f1, f2, f5, f6, f7, f9}, {f1, f4, f5, f6, f7, f8}, {f2, f3, f4, f5, f7, f9}
}

.

Here, f6 ∈ {f6} ∈ βτ but there does not exist any B′ ∈ βτ ′ such that f6 ∈ B′ ⊆ {f6}. Thus, τ
′

is not finer than τ .

Similarly, f7 ∈ {f7} ∈ βτ ′ but there does not exist any B ∈ βτ such that f7 ∈ B ⊆ {f7}. Thus,
τ is not finer than τ ′.

Hence, the point-interior topology and the point-closure topology on Y X are not comparable.

Lemma 4. Given a point x ∈ X and a subset A of the topological space Y, define

S(x, Io(Co(A))) =
{

f ∈ Y X | f(x) ∈ Io(Co(A))
}

.

The sets S(x, Io(Co(A))) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x, Io(Co(Y ))) ⊆
⋃

i

S(xi, Io(Co(Ai))),

where xi ∈ X and Ai are subsets of Y . Therefore,

f ∈
⋃

i

S(xi, Io(Co(Ai))).

Thus,

Y X ⊆
⋃

i

S(xi, Io(Co(Ai))).

Hence, the sets S(xi, Io(Co(Ai))) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-interior-closure topology

on Y X . Since IoCo ∼Y Co Io [20], we may rewrite the subbasis of the point-interior-closure topology
on Y X using the Co Io operator.

Proposition 4. Suppose Y is a topological space. Then, the point-open topology on Y X is finer

than the point-interior-closure topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-interior-closure topology and the point-open
topology on Y X , respectively. Let

B = S(x1, Io(Co(A1))) ∩ S(x2, Io(Co(A2))) ∩ · · · ∩ S(xn, Io(Co(An)))
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be a member of βτ , and let f ∈ B. Then

f ∈ S(xi, Io(Co(Ai))) ∀i = 1, 2, . . . , n.

This implies that f ∈ S(xi, Ui), where

Ui = Io(Co(Ai)) ∀i = 1, 2, . . . , n.

Therefore,
f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′ ,

as U1, U2, . . . , Un are open subsets of Y . Thus, for every f ∈ B, there exists B′ ∈ βτ ′ such that
B′ ⊆ B. �

For the converse of this proposition, we have the following.
Let

B′
1 = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ ′ , and let g ∈ B′
1. Then

g ∈ S(xi, Ui) ⇒ g ∈ S(xi, Io(Co(Ui))) (as Ui ⊆ Co(Ui) ⇒ Ui ⊆ Io(Co(Ui))), ∀i = 1, 2, . . . , n.

So,
g ∈ S(x1, Io(Co(U1))) ∩ S(x2, Io(Co(U2))) ∩ · · · ∩ S(xn, Io(Co(Un))) = B1 ∈ βτ .

Thus, for each B′
1 ∈ βτ ′ , there exists B1 ∈ βτ . However, B1 ⊆ B′

1 does not hold in general. To
justify this statement, we give the following example.

Example 2. Let (Y, σ) be a topological space, where Y = {a, b, c} and σ = {∅, Y, {c}}. Then

{

Io(Co(A))| A ⊆ Y
}

= {∅, Y }.

Thus,
{

Io(Co(A))| A ⊆ Y
}

is not equal to σ.

Lemma 5. Given a point x ∈ X and a subset A of the topological space Y , define

S(x,Co(Io(A))) =
{

f ∈ Y X | f(x) ∈ Co(Io(A))
}

.

The sets S(x,Co(Io(A))) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x,Co(Io(Y ))) ⊆
⋃

i

S(xi,Co(Io(Ai))),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

S(xi,Co(Io(Ai))).

Thus,

Y X ⊆
⋃

i

S(xi,Co(Io(Ai))).
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Hence, the sets S(xi,Co(Io(Ai))) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-closure-interior topology

on Y X .
The following example shows that the point-interior-closure topology and the point-closure-

interior topology on Y X are not comparable.

Example 3. In Example 1, a basis of the point-interior-closure topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}
}

.

A basis of the point-closure-interior topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f7}, {f1, f7}, {f2, f7}, {f4, f7}, {f5, f7},

{f1, f2, f7}, {f4, f5, f7}, {f1, f4, f7, f8}, {f2, f3, f4, f7}, {f1, f5, f6, f7}, {f2, f5, f7, f9},

{f1, f2, f3, f4, f7, f8}, {f1, f2, f5, f6, f7, f9}, {f1, f4, f5, f6, f7, f8}, {f2, f3, f4, f5, f7, f9}
}

.

Here, f3 ∈ {f3} ∈ βτ , but there does not exist any B′ ∈ βτ ′ such that f3 ∈ B
′ ⊆ {f3}. Thus, τ

′

is not finer than τ .
Similarly, f7 ∈ {f7} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f7 ∈ B1 ⊆ {f7}.

Thus, τ is not finer than τ ′.
Hence, the point-interior-closure topology and the point-closure-interior topology of Y X are not

comparable.

Lemma 6. Let Y be a topological space. Given a point x ∈ X and a subset A ∈ SO(Y ) (resp.
PO(Y ), βO(Y ), BO(Y )), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-semi-open (resp. point-

preopen, point-β-open, point-b-open) topology on Y X .

Theorem 1. Suppose Y is a topological space. Then, the point-preopen topology on Y X is finer

than the point-open topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-open topology and the point-preopen topology
on Y X , respectively. Let

B = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ , and let f ∈ B. Then f ∈ S(xi, Ui) for all i = 1, 2, . . . , n. This implies that
f ∈ S(xi, Ui), where Ui ∈ PO(Y ) for all i = 1, 2, . . . , n (since Ui are open in Y ). So,

f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′

as U1, U2, . . . , Un ∈ PO(Y ) are open subsets of Y . Thus, for every f ∈ B, there exists B′ ∈ βτ ′

such that B′ ⊆ B. Hence, the proof is complete. �

For the converse of Theorem 1, we always obtain a set B1 ∈ βτ for any B′
1 ∈ βτ ′ , but it is not

necessarily the case that B1 ⊆ B′
1. To illustrate this, we present the following example.
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Example 4. Let (Y, σ) be a topological space, where Y = {a, b, c} and σ = {∅, Y, {c}}. Then

{A ⊆ Y | A ∈ PO(Y )} =
{

∅, Y, {c}, {a, c}, {b, c}
}

.

Thus,
{A ⊆ Y | A ∈ PO(Y )} 6= σ.

However, the two topologies will be equal when PO(Y ) = σ.

Theorem 2. Suppose Y is a topological space. Then, the point-semi-open (resp. point-β-open,
point-b-open) topology on Y X is finer than the point-open topology on Y X .

The proof of this theorem follows from the fact that open sets in Y are contained in SO(Y )
(resp. βO(Y ), BO(Y )). The reader should not conclude that, for any collection A containing the
collection of open sets of Y , the point-open topology with respect to A is necessarily finer than the
point-open topology on Y X . However, the result of Theorem 2 holds because every open set is a
preopen (resp. semi-open, b-open, β-open) set.

Therefore, a common generalization is discussed in the following lemma.

Lemma 7. Suppose a collection G ⊆ ℘(Y ) (the power set of Y ) satisfies the following condi-

tions:

1) ∅, Y ∈ G;
2) G is closed under arbitrary unions.

Let h : G → G and k : G → G be two set-valued set functions [20] such that h(A) = Y \ k(Y \A) for
all A ∈ ℘(Y ) and h(∅) = ∅, h(Y ) = Y .

Given a point x ∈ X and a subset A ⊆ h ◦ k(A), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f.

h ◦ k(Y ) = h(Y \ h(Y \ Y )) = h(Y \ h(∅)) = h(Y ) (as h(∅) = ∅) = Y.

Thus, Y ⊆ h ◦ k(Y ).
Let f ∈ Y X . Then

f ∈ S(x, Y ) ⊆
⋃

i

S(xi, (Ai)),

where xi ∈ X and Ai ⊆ h ◦ k(Ai). So,

f ∈
⋃

i

S(xi, (Ai)).

Thus,

Y X ⊆
⋃

i

S(xi, (Ai)).

Hence, the sets S(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-associated topology on Y X .
The following is an example of this topology.

Example 5. By taking h and k to be the Io and Co operators, respectively, we see that Lemma 7
coincides with Lemma 4.
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Lemma 8. Let Y be a topological space. Given a point x ∈ X and a subset A ∈ D(Y ) (the set

of all dense sets in Y ), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) ⊆
⋃

i

S(xi, (Ai)),

where xi ∈ X and Ai ∈ D(Y ) (as Y ∈ D(Y )). So, f ∈
⋃

i

S(xi, (Ai)). Thus,

Y X ⊆
⋃

i

S(xi, (Ai)).

Hence, the sets S(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-dense topology on Y X .

Example 6.

1. In Example 1, a basis of the point-open topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f8}, {f3, f9}, {f6, f8}, {f6, f9},

{f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}, {f3, f6, f8, f9},

{f1, f2, f3, f6, f8, f9}, {f3, f4, f5, f6, f8, f9}
}

.

A basis of the point-dense topology τ ′ on Y X is

βτ ′ =
{

Y X , {f3, f6, f8, f9}, {f1, f2, f3, f6, f8, f9}, {f3, f4, f5, f6, f8, f9}
}

.

In this case, the point-open topology is strictly finer than the point-dense topology.

2. In Example 1 with σ = {∅, Y, {3}}, a basis of the point-open topology τ on Y X is

βτ =
{

∅, Y X , {f9}, {f5, f6, f9}, {f2, f3, f9}
}

.

A basis of the point-dense topology τ ′ on Y X is

βτ ′ =
{

Y X , {f9}, {f2, f9}, {f3, f9}, {f5, f9}, {f6, f9},

{f2, f3, f9}, {f5, f6, f9}, {f1, f2, f6, f9}, {f2, f5, f7, f9}, {f3, f4, f5, f9}, {f3, f6, f8, f9},

{f1, f2, f5, f6, f7, f9}, {f1, f2, f3, f6, f8, f9}, {f2, f3, f4, f5, f7, f9}, {f3, f4, f5, f6, f8, f9}
}

.

In this case, the point-dense topology is strictly finer than the point-open topology.

Hence, we conclude that the point-open topology and the point-dense topology on Y X are not
comparable.
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3. Topologies on Y
X due to ideal

It is known from [7, 11, 17, 18] that ψ is not an interior operator. The following lemma shows
that a noninterior operator may also serve as an essential tool in obtaining a topology on Y X .

Lemma 9. Let I be an ideal on the topological space Y . Given a point x ∈ X and a subset A
of the topological space Y , define

SI(x, ψ(A)) =
{

f ∈ Y X | f(x) ∈ ψ(A)
}

.

The sets SI(x, ψ(A)) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ SI(x, Y ) = SI(x, ψ(Y )) ⊆
⋃

i

SI(xi, ψ(Ai)),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

SI(xi, ψ(Ai)).

Thus,

Y X ⊆
⋃

i

SI(xi, ψ(Ai)).

Hence, the sets SI(xi, ψ(Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-ψ topology on Y X .
Since ψ ∼Y ∗ [20], the subbasis for the point-ψ topology on Y X can be equivalently rewritten

in terms of the ∗-operator.
Comparison of the point-ψ topology with other topologies on Y X are as follows.

Proposition 5. Suppose I is an ideal on the topological space Y . Then, the point-open topology

on Y X is finer than the point-ψ topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-ψ topology and the point-open topology on
Y X , respectively. Let

B = SI(x1, ψ(A1)) ∩ SI(x2, ψ(A2)) ∩ · · · ∩ SI(xn, ψ(An))

be a member of βτ , and let f ∈ B. Then f ∈ SI(xi, ψ(Ai)) for all i = 1, 2, . . . , n. This implies that
f ∈ S(xi, Ui), where Ui = ψ(Ai) (since for each i, ψ(Ai) is open by [11, 18]), for all i = 1, 2, . . . , n.
Hence,

f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′

since U1, U2, . . . , Un are open subsets of Y . Thus, for each f ∈ B, there exists B′ ∈ βτ ′ such that
B′ ⊆ B. �

For the converse relation of this proposition, we give the following example.

Example 7. Consider Example 1 with σ =
{

∅, Y, {3}, {1, 3}, {2, 3}
}

and I = {∅, {1}}. Then, a
basis of the point-ψ topology τ on Y X is

βτ =
{

∅, Y X , {f2, f5, f7, f9}, {f1, f2, f5, f6, f7, f9}, {f2, f3, f4, f5, f7, f9}
}

.
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A basis of the point-open topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f9}, {f2, f9}, {f3, f9}, {f5, f9}, {f6, f9},

{f2, f3, f9}, {f5, f6, f9}, {f1, f2, f6, f9}, {f2, f5, f7, f9}, {f3, f4, f5, f9}, {f3, f6, f8, f9},

{f1, f2, f5, f6, f7, f9}, {f1, f2, f3, f6, f8, f9}, {f2, f3, f4, f5, f7, f9}, {f3, f4, f5, f6, f8, f9}
}

.

Here, f9 ∈ {f9} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f9 ∈ B1 ⊆ {f9}. Thus, τ is
not finer than τ ′.

However, the set {ψ(A) : A ⊆ Y } does not form a topology on Y .

Example 8. Let (Y, σ, I) be an ideal topological space, where Y = {a, b, c}, σ =
{

∅, Y, {c}, {a, c}, {b, c}
}

, and I = {∅, {a}}. Then {ψ(A)| A ⊆ Y } = {∅, Y, {a, c}}. In this example,
it is clear that

{ψ(A)| A ⊆ Y } 6= σ

on Y .

As a consequences of the above results and Theorem 46.7 of [21], we have the following.

Theorem 3. Suppose I is an ideal on the metric space (Y, d) and Y is a topological space. For

the function space Y X , the following inclusions of topologies hold :

(uniform) ⊃ (compact convergence) ⊃ (point-open) = (point-interior) ⊇ (point-ψ).

Proposition 6. Suppose I is a codense ideal on the topological space Y . Given a point x ∈ X
and a subset A of the topological space Y, define

SI(x,A
∗) = {f ∈ Y X | f(x) ∈ A∗}.

The sets SI(x,A
∗) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ SI(x, Y ) = SI(x, Y
∗) (since I is a codense ideal) ⊆

⋃

i

SI(xi, A
∗
i ),

where xi ∈ X and Ai are subsets of Y . Thus,

f ∈
⋃

i

SI(xi, A
∗
i ).

Thus,

Y X ⊆
⋃

i

SI(xi, A
∗
i ).

Hence, the sets SI(xi, A
∗
i ) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-∗ topology on Y X .

Example 9. Consider Example 1 with σ =
{

∅, Y, {3}, {1, 3}, {2, 3}
}

and I = {∅, {1}}. Then, a
basis of the point-ψ topology τ on Y X is

βτ =
{

∅, Y X , {f2, f5, f7, f9}, {f1, f2, f5, f6, f7, f9}, {f2, f3, f4, f5, f7, f9}
}

.
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A basis of the point-∗ topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f8}, {f3, f4, f8}, {f1, f6, f8}
}

.

Here, f2 ∈ {f2, f5, f7, f9} ∈ βτ , but there does not exist any B′ ∈ βτ ′ such that f2 ∈ B′ ⊆ B.
Thus, τ ′ is not finer than τ .

Similarly, f8 ∈ {f8} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f8 ∈ B1 ⊆ {f8}.
Thus, τ is not finer than τ ′.

Hence, the point-ψ topology and point-∗ topology of Y X are not comparable.

To discuss further topologies on Y X , we make use of the notion of ψ-sets in an ideal topological
space. This concept was introduced by Modak and Bandyopadhyay in [7], whose definition is as
follows.

Let I be an ideal on a topological space Y . A subset A of Y is called a ψ-set if A ⊂ Io(Co(ψ(A))).
The collection of all ψ-sets in the ideal topological space Y is denoted by ψY (Y ).

Theorem 4. Let I be an ideal on the topological space Y . Given a point x ∈ X and A ∈ ψY (Y ),
define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets SI(x,A) form a subbasis for a topology on Y X .

Before proceeding to the proof of this theorem, we make a few remarks on ψ-sets. The collection
ψY (Y ) forms a topology on Y whenever the ideal I is a codense ideal or a σ-boundary ideal [23]
on Y . Modak and Bandyopadhyay studied this topology in [7] and showed that this topology
coincides with the α-topology [24] of the ∗-topology [12] generated by σ. Thus, we say that the
topology obtained in Theorem 4 is the point-open topology for ψY (Y ) (forms a topology on Y ). If
we denote the σ∗-topology generated by σ by ∗-topology, the topology constructed in Theorem 4
is the point-open topology of (σ∗)α. We also note that codenseness is not essential for the proof
of Theorem 4. However, if we consider the point-open topology of Y X arising from (σ∗)α, then
codenseness is required. We omit the proof of this theorem, leaving it as an exercise for the reader.

For our next discussion, we will refer to the topology obtained in Theorem 4 as the point-Coψ
topology on Y X .

The following gives a comparison of the point-Coψ topology on Y X .

Corollary 1. Suppose I is an ideal on the topological space Y . Then, the point-Coψ topology

on Y X is finer than the point-open topology on Y X .

P r o o f The proof of this corollary is only meaningful when I is not a codense ideal on Y ;
otherwise, the result follows immediately from Lemma 1. �

Theorem 5. Suppose I is an ideal on the topological space Y . Then, the point-Coψ topology

on Y X is finer than the point-ψ topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-ψ topology and the point-Coψ topology on Y X ,
respectively. Let

B = SI(x1, ψ(A1)) ∩ SI(x2, ψ(A2)) ∩ · · · ∩ SI(xn, ψ(An))

be a member of βτ , and let f ∈ B. Then

f ∈ SI(xi, ψ(Ai)), ∀i = 1, 2, . . . , n.
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This implies that f ∈ SI(xi, Ui), where Ui = ψ(Ai) for all i = 1, 2, . . . , n. Therefore,

f ∈ SI(x1, U1) ∩ SI(x2, U2) ∩ · · · ∩ SI(xn, Un) = B′ ∈ βτ ′

(as U1, U2, . . . , Un are open subsets of Y and Ui ∈ ψY (Y )). Thus, for every f ∈ B, there exists
B′ ∈ βτ ′ such that B′ ⊆ B. This completes the proof. �

The converse of this theorem does not necessarily hold in general.

If we replace the Co operator with ()∗ operator, we obtain another topology on Y X . To this
end, we introduce Modak’s ψ̇∗-set [17]. Its formal definition is as follows.

Let I be an ideal on a space Y . A subset A of Y is called a ψ̇∗-set if A ⊆ Io((ψ(A))∗). The
collection of all ψ̇∗-sets in an ideal topological space Y is denoted by ψ̇∗(Y ).

Theorem 6. Let I be a codense ideal on the topological space Y . Given a point x ∈ X and a

subset A ∈ ψ̇∗(Y ), define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f. Since Y is open, Y ⊆ ψ(Y ). Then Y = Y ∗ (as I is codense)⊆ (ψ(Y ))∗. This implies
Y = Io(Y ) ⊆ Io((ψ(Y ))∗), and hence, Y ∈ ψ̇∗(Y ).

Let f ∈ Y X . Then

f ∈ SI(x, Y ) ⊆
⋃

i

SI(xi, (Ai)),

where xi ∈ X and Ai ∈ ψ̇∗(Y ). Therefore,

f ∈
⋃

i

S(xi, (Ai)).

Hence,

Y X ⊆
⋃

i

SI(xi, (Ai)).

Thus, the sets SI(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-ψ̇∗ topology on Y X .

Moreover, if I is a codense ideal on Y , then the collections ψY (Y ) and ψ̇∗(Y ) both represent
the α-sets of the ∗-topology of σ (see [7]). Thus, the point-open topologies induced by ψY (Y ) and
ψ̇∗(Y ) coincide.

Definition 3 [19]. Let (Y, σ, I) be an ideal topological space, and A ⊆ Y . Then A is called

hψ-open if, for every nonempty open set U 6= Y, it holds A ⊆ ψ(A ∪ U).

Theorem 7. Let (Y, σ, I) be an ideal topological space. Given a point x ∈ X and a hψ-open set

A of the topological space Y, define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets SI(x,A) form a subbasis for a topology on Y X .
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P r o o f . This follows from the fact that the collection of hψ-open sets forms a topology
on Y . �

The topology generated by the above subbasis is called the point-hψ-open topology on Y X .

Theorem 8. Suppose I is an ideal on the topological space Y . Then, the point-hψ-open topology

on Y X is finer than the point-open topology on Y X .

P r o o f . This follows directly from the fact that the topology generated by the hψ-open sets
is finer than the topology σ on Y . �

Theorem 9. Let Y be a topological space. Given a point x ∈ X and an h-open set A of the

space Y , define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-h-open topology on Y X .

Theorem 10. The point-h-open topology on Y X is finer than the point-open topology on Y X .

From the above theorems, we conclude the following common phenomenon.

Corollary 2. Let I be an ideal on a topological space Y . Then, the point-open topology on Y X

is contained in the point-h-open topology on Y X , which in turn is contained in the point-hψ-topology
on Y X .

4. Topologies on Y
X induced by continuous functions

In this section, we discuss the interrelation among the open-point topology, the point-open
topology, and the bi-point topology [13, 26].

Theorem 11. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the open-point topology on Cop(Z,H) is finer than the point-open topology on Cop(Z,H).

P r o o f. Let βτ and βτ ′ be bases for the open-point and point-open topologies on Cop(Z,H),
respectively. Let B′ = [z1, V1]

+∩ · · · ∩ [zn, Vn]
+, where n ∈ N, zi ∈ Z, and each Vi is an open subset

of H, be a member of βτ ′ , and let f ∈ B′. Then f ∈ [zi, Vi]
+ for all i = 1, 2, . . . , n, and f : Z → H

is continuous. Hence, zi ∈ Bi, where Bi = f−1(Vi) for all i = 1, 2, . . . , n (as f−1(Vi) are open in Z).
Let ri ∈ Vi be such that f(zi) = ri. Then zi ∈ f−1(ri). Therefore,

zi ∈ f−1(ri) ∩Bi ∀i = 1, 2, . . . , n.

Thus,
f ∈ [B1, r1]

− ∩ · · · ∩ [Bn, rn]
− = B ∈ βτ .

Therefore, for every f ∈ B′, there exists B ∈ βτ .
It remains to show that B ⊆ B′. Let f ∈ B. Then

f−1(ri) ∩Bi 6= ∅.

Let
zi ∈ f−1(ri) ∩Bi.
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Then
f(zi) ∈ f [f−1(ri) ∩Bi] ⊆ f(f−1(ri)) ∩ f(Bi) ⊆ f(Bi) = Vi.

Hence, f(zi) ∈ Vi, which implies f ∈ B′. This show that B ⊆ B′. This completes the proof. �

Openness of a function is a necessary condition for Theorem 11. To illustrate this, we give the
following example.

Example 10. Let (Z, τ) and (Y, σ) be two topological spaces, where Z = {a, b}, τ = {∅, Z, {a}},
Y = {1, 2, 3}, and σ =

{

∅, Y, {2}, {3}, {2, 3}
}

. All possible functions from Z to Y are given by

f1(a) = 1, f1(b) = 2; f2(a) = 1, f2(b) = 3; f3(a) = 2, f3(b) = 3;

f4(a) = 2, f4(b) = 1; f5(a) = 3, f5(b) = 1; f6(a) = 3, f6(b) = 2;

f7(a) = 1, f7(b) = 1; f8(a) = 2, f8(b) = 2; f9(a) = 3, f9(b) = 3.

Now,
C(Z, Y ) = {f4, f5, f7, f8, f9}.

Here, f7 is not an open map since f7({a}) = {1} /∈ σ. We have

[a, {2}]+ = {f4, f8}, [a, {3}]+ = {f5, f9}, [a, {2, 3}]+ = {f4, f5, f8, f9},

[b, {2}]+ = {f8}, [b, {3}]+ = {f9}, [b, {2, 3}]+ = {f8, f9},

[a, Y ]+ = [b, Y ]+ = {f4, f5, f7, f8, f9}.

Then, a basis for the point-open topology on C(Z, Y ) is

β′ =
{

∅, {f4, f8}, {f5, f9}, {f8}, {f9}, {f8, f9}, {f4, f5, f8, f9}, {f4, f5, f7, f8, f9}
}

.

Also,

[{a}, 1]− = {f7}, [{a}, 2]− = {f4, f8}, [{a}, 3]− = {f5, f9},

[Z, 1]− = [Z, 2]− = [Z, 3]− = {f4, f5, f7, f8, f9}.

Then, a basis for the open-point topology on C(Z, Y ) is

β =
{

∅, {f7}, {f4, f8}, {f5, f9}, {f4, f5, f7, f8, f9}
}

.

In this example, we see that the open-point topology on C(Z, Y ) is not finer than the point-open
topology on C(Z, Y ).

Theorem 12. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the bi-point-open topology on Cop(Z,H) is finer than the point-open topology on Cop(Z,H).

P r o o f. Let βτ , βτ ′ , and βτ ′′ be bases for the open-point topology on Cop(Z,H), the point-
open topology on Cop(Z,H), and the bi-point-open topology on Cop(Z,H), respectively. Let

B′ = [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+,

where n ∈ N, zi ∈ Z, and each Vi is an open subset of H, be a member of βτ ′ , and let f ∈ B′.
Then, from Theorem 11, there exists

B = [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− ∈ βτ ,

where n ∈ N, ri ∈ H, and Bi are open subsets of Z such that f ∈ B. Thus,

f ∈ [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∩ [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− = B′′ ∈ βτ ′′ .

Clearly, B′′ ⊆ B′. This completes the proof. �
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Theorem 13. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the bi-point-open topology on Cop(Z,H) is finer than the open-point topology on Cop(Z,H).

P r o o f. Let βτ , βτ ′ and βτ ′′ be bases for the open-point topology on Cop(Z,H), the point-open
topology on Cop(Z,H), and the bi-point-open topology on Cop(Z,H), respectively. Let

B = [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− ∈ βτ ,

where n ∈ N, each ri ∈ H, and each Bi is an open subset of Z, be a member of βτ and f ∈ B.
Then

f−1(ri) ∩Bi 6= ∅.

Let zi ∈ f
−1(ri) ∩Bi. Then

f(zi) ∈ f [f−1(ri) ∩Bi] ⊆ ff−1(ri) ∩ f(Bi) ⊆ f(Bi) = Vi,

where each Vi is open in H. Therefore, f(zi) ∈ Vi. This implies that

f ∈ B′ = [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∈ βτ ′ .

Thus,

f ∈ [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∩ [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− = B′′ ∈ βτ ′′ .

Clearly, B′′ ⊆ B′. This completes the proof. �

5. Conclusion

In this paper, the role of generated open sets in defining topologies on Y X has been discussed.
The interrelations among these topologies were also explored. We have shown that the concept of
a topological ideal provides a useful framework for studying such topologies on Y X . Furthermore,
for a topological group H and a space Z, the relationship between the point-open topology and the
bi-point-open topology on C(Z,H) was also examined.
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3. Andrijević D. Semi-preopen sets. Mat. Vesnik, 1986. Vol. 38, No. 93. P. 24–32.
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Abstract: In this article, we introduce and rigorously analyze the concept of difference λ-weak convergence
for sequences defined by an Orlicz function. This notion generalizes the classical weak convergence by incorpo-
rating a λ-density framework and an Orlicz function, providing a more flexible tool for analyzing convergence
behavior in sequence spaces. We systematically investigate the algebraic and topological properties of these
newly defined sequence spaces, establishing that they form linear and normed spaces under suitable conditions.
Our results include demonstrating the convexity of these spaces and identifying several important inclusion rela-
tionships among them, such as strict inclusions between spaces involving different orders of difference operators
and Orlicz functions satisfying the Δ2-condition.

Keywords: Weak convergence, Orlicz function, λ convergence.

1. Introduction and preliminaries

The concept of weak convergence, first introduced by Banach [1], is central to functional anal-
ysis, providing a foundation for evaluating how sequences converge in infinite-dimensional spaces.
While important, weak convergence has its limitations, especially when applied to complex sequence
structures or when more precise convergence criteria are required.

Recently, Mahanta and Tripathy [21] made important advances in the study of vector-valued
sequence spaces by investigating novel types of convergence and their repercussions. Their con-
tributions have improved our understanding of the algebraic and topological properties of these
spaces, enabling the development of new tools and approaches for investigating convergence in
broader contexts. This growing field of study emphasizes the continual growth and improvement of
sequence space theory, overcoming the limitations of traditional weak convergence while responding
to the demands of more complex mathematical analysis.

The concept of natural density for subsets of N was extended by Mursaleen [13] to what is known
as λ-density, which enabled a further generalization of the statistical convergence of real sequences,
leading to the concept of λ-statistical convergence. If λ = {λs}s∈N represents a nondecreasing
sequence of positive real numbers tending to infinity, satisfying λ1 = 1 and λs+1 ≤ λs + 1, s ∈ N,
then for any subset T ⊂ N, the λ-density dλ(T ) is defined as

dλ (T ) = lim
s→∞

|{k ∈ Is : k ∈ T}|
λs

,

https://doi.org/10.15826/umj.2025.1.006
mailto:okisi@bartin.edu.tr
mailto:gurdalmehmet@sdu.edu.tr
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where Is = [s− λs + 1, s].
A sequence t = {tα}α∈N of real numbers is called λ-statistically convergent or Sλ-convergent to

t0 ∈ R if, for every ε > 0, dλ(T (ε)) = 0, where

T (ε) = {α ∈ N : |tα − t0| ≥ ε} .

The generalized de la Vallée-Poussin mean is defined by

qs (t) =
1

λs

∑
α∈Is

tα

where Is = [s− λs + 1, s]. A sequence is called (V, λ)-summable to a number t0 if qs (t) → t0 as
s → ∞.

If λs = s for all s ∈ N, then the notions of λ-density and λ-statistical convergence coincide
with the notions of natural density and statistical convergence, respectively. Some discussions and
applications related to λ-statistical convergence can be found in [2, 4, 5, 12, 14, 15, 17–20].

Let X be a normed space. The concept of the difference sequence space Z(Δ) was first intro-
duced by Kizmaz [10] and is defined as follows:

Z(Δ) = {t = (tα) : (Δtα) ∈ X} ,

where Δt = (Δtα) = (tα − tα+1) for all α ∈ N. Later, Et and Çolak [3] extended this idea by
defining generalized difference sequence spaces, expressed as

Z (Δp) = {t = (tα) : (Δ
ptα) ∈ X}

for Z = �∞, c, and c0, where Δptα = Δp−1tα −Δp−1tα+1 and Δ0tα = tα for all α ∈ N.
The binomial expansion for this generalized difference operator is given by

Δptα =

p∑
d=0

(−1)d
(
p

d

)
tα+d, for all α ∈ N. (1.1)

These generalized difference sequence spaces have been further studied by researchers such as
Tripathy [22, 23], Tripathy and Esi [24], among others.

Definition 1. Let V be a real vector space and let u, v ∈ V . Then, the set of all convex
combinations of u and v is the set of points

{w� ∈ V : w� = (1− �) u+ �v, 0 ≤ � ≤ 1} . (1.2)

In, say, R2, this set is exactly the line segment joining the two points u and v. We now introduce
the concept of a convex set.

Definition 2. Let M ⊂ V . Then the set M is said to be convex if, for any two points u, v ∈ M,
the set defined in (1.2) is a subset of M .

An Orlicz function U : [0,∞) → [0,∞) is defined such that U(0) = 0, U(t) > 0 for t > 0, and
U(t) → ∞ as t → ∞. This function is continuous, nondecreasing, and convex.

Lindenstrauss and Tzafriri [11] introduced the concept of an Orlicz function to define the
sequence space

�U =

{
(ti) ∈ ω :

∞∑
i=1

U
( |ti|

v

)
< ∞ for some v > 0

}
,
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where ω denotes the class of all sequences. The norm on the sequence space �U is defined by

‖t‖ = inf

{
v > 0 :

∞∑
i=1

U
( |ti|

v

)
≤ 1

}
,

which turns �U into a Banach space, commonly referred to as an Orlicz sequence space. Various
researchers, including Khan [6], Khan et al. [7–9], Parashar and Choudhury [16], and Tripathy and
Mahanta [21], have explored different forms of Orlicz sequence spaces.

Definition 3. A sequence (ti) in a normed linear space X is called weakly convergent to an
element t0 ∈ X if

lim
i→∞

f (ti − t0) = 0 for all f ∈ X ′,

where X ′ denotes the continuous dual space of X.

Definition 4. A sequence (ti) in a normed linear space X is said to be λ-weakly convergent to
t0 ∈ X if

lim
s→∞

1

λs

∑
k∈Is

f (tk − t0) = 0

for every f ∈ X ′, where X ′ is the continuous dual space of X. In this context, the notation Dw
λ is

used to denote the set of all λ-weakly convergent sequences.

Definition 5. A sequence space E is called solid if, for any scalar sequence (βi) with |βi| ≤ 1
for all i ∈ N, the condition (ti) ∈ E implies that (βiti) ∈ E.

Definition 6. A sequence space E ⊂ ω is called monotone if it contains all preimages of its
step spaces.

Definition 7. A sequence space E ⊂ ω is called symmetric if, whenever (ti) ∈ E, the permuted
sequence

(
tπ(i)

)
also belongs to E, where π is a permutation of N.

Lemma 1. A sequence space E being solid does not necessarily mean that E is monotone.

Definition 8. An Orlicz function U satisfies the Δ2-condition if there exists a constant T > 0
such that for all u ≥ 0,

U(2u) ≤ TU(u).

2. Main result

This section presents the following classes of sequences and establishes results related to them:

[Dw
λ ,U ,Δp]0 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U
( |f(Δptα)|

v

)
= 0 for some v > 0

}
,

[Dw
λ ,U ,Δp]1 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U |f(Δptα − t0)|
v

for some t0 and v > 0

}
,

[Dw
λ ,U ,Δp]∞ =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

U
( |f(Δptα)|

v

)
< ∞ for some v > 0

}
.

The following result is presented here with a sketch of the proof.
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Theorem 1. The classes of sequences [Dw
λ ,U ,Δp]0 , [Dw

λ ,U ,Δp]1 , and [Dw
λ ,U ,Δp]∞ are linear

spaces.

P r o o f. The proof is provided only for the class [Dw
λ ,U ,Δp]0; the other cases can be established

using a similar approach. Let (tα) , (qα) ∈ [Dw
λ ,U ,Δp]0 , and let y, z ∈ C. To prove the result, we

need to find some v3 > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (yΔptα + zΔpqα)|

v3

)
= 0.

Since (tα) , (qα) ∈ [Dw
λ ,U ,Δp]0, there exist v1, v2 > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δptα)|

v1

)
= 0

and

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δpqα)|

v2

)
= 0.

We set v3 = max (2|y|v1, 2|z|v2). Suppose that U is both convex and nondecreasing; it follows that

1

λs

∑
α∈Is

U
( |f (yΔptα + zΔpqα)|

v3

)
≤ 1

λs

∑
α∈Is

U
( |f (yΔptα)|

v3
+

|f (zΔpqα)|
v3

)

≤ 1

λs

∑
α∈Is

1

2

[
U
(
f (yΔptα)

v1
+

f (zΔpqα)

v2

)]
→ 0 as s → ∞.

This proves that [Dw
λ ,U ,Δp]0 is a linear space over the field C of complex numbers.

Theorem 2. For any Orlicz function U , the space [Dw
λ ,U ,Δp]∞ forms a normed linear space

with respect to the norm

κΔp(t) =

p∑
i=1

|f (xi)|+ inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
.

P r o o f. To prove the theorem, we begin by examining the implications of κΔp(t) = κΔp(−t)
and t = θ, which leads to Δptα = 0. As a result, we find U(θ) = 0, which consequently yields
κΔp(θ) = 0. Conversely, suppose κΔp(t) = 0, which implies that

p∑
i=1

|f (ti)|+ inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
= 0.

Thus, we conclude that

p∑
i=1

|f (ti)| = 0 and inf

{
v > 0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v

)
≤ 1

}
= 0.

From the first part, it follows that

ti = θ̄ for i = 1, 2, 3, . . . ,m, (2.1)
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where θ̄ denotes the zero element. For the second part, for any σ > 0, there exists some vσ with
0 < vσ < σ such that

sup
s

1

λs

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1 ⇒

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1.

Therefore, ∑
α∈Is

U
( |f (Δptα)|

σ

)
≤

∑
α∈Is

U
( |f (Δptα)|

vσ

)
≤ 1.

Suppose that Δptqi 
= θ̄ for each i ∈ N. As σ → 0, it follows that

|f (Δptqi)|
σ

→ ∞.

Thus,
1

λs

∑
α∈Is

U
( |f (Δptα)|

σ

)
→ ∞

as σ → 0, where qi ∈ Is, which leads to a contradiction. Hence, Δptqi = θ̄ for each i ∈ N, and
consequently Δtα = θ̄ for all α ∈ N. Therefore, it follows from (1.1) and (2.1) that tα = θ̄ for all
α ∈ N, implying that t = θ.

Next, let v1, v2 > 0 be such that

sup
s

1

λs

∑
α∈Is

U
( |f (Δptα)|

v1

)
≤ 1

and

sup
s

1

λs

∑
α∈Is

U
( |f (Δp�α)|

v2

)
≤ 1.

Let v = v1 + v2, then we have

sup
s

1

λs

∑
α∈Is

U
( |f (Δp (tα +�α))|

v

)
≤ 1.

Since v is nonnegative, we have

κΔpf(t+�)=

p∑
i=1

|f (ti+�i)|+ inf

{
v>0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δp (tα+�α))|

v

)
≤1

}

⇒ κΔpf(t+�) ≤ κΔpf(t) + κΔpf(�).

Let ϑ 
= 0 and ϑ ∈ C. Then

κΔp (ϑt)=

p∑
i=1

|ϑti|+ inf

{
v>0 : sup

s

1

λs

∑
α∈Is

U
( |f (Δp (ϑtα))|

v

)
≤1

}
≤ |ϑ|κΔpf (t) .

This completes the proof. �

Every normed space is convex. In fact, we will show that the space [Dw
λ ,U ,Δp]∞, defined in

this work, is convex, as stated in the following result.
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Corollary 1. The sequence space [Dw
λ ,U ,Δp]∞ is convex.

P r o o f. Let (tα), (�α) ∈ [Dw
λ ,U ,Δp]∞. Then, from the definition of the space, we can write

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (tα))|

vt

)
< ∞ for some vt > 0,

and

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (�α))|

v�

)
< ∞ for some v� > 0.

For � = μt+ (1− μ)�, we have to show that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp (μtα + (1− μ)�α))|

v�

)
< ∞ for some v� > 0.

Since U is a convex function, we have

U
( |f (Δp (μtα + (1− μ)�α))|

v�

)
≤ μU

( |f (Δp (tα))|
vt

)
+ (1− μ)U

( |f (Δp (�α))|
v�

)
,

where v� = μvt + (1− μ)v�.
Now, taking the limit as s → ∞, we have

lim
s→∞

1

λs

∑
α∈Is

U
( |f (Δp�α)|

v�

)
≤μ lim

s→∞
1

λs

∑
α∈Is

U
( |f (Δp (tα))|

vt

)
+(1−μ) lim

s→∞
1

λs

∑
α∈Is

U
( |f (Δp�α)|

v�

)
.

Therefore,
� = μt+ (1− μ)� ∈ [Dw

λ ,U ,Δp]∞ .

Hence, the space [Dw
λ ,U ,Δp]∞ is convex. �

Theorem 3. Let U1 and U2 be Orlicz functions satisfying the Δ2-condition. Then the following
strict inclusions hold :

(i) [Dw
λ ,U1,Δ

p]K ⊆ [Dw
λ ,U2 · U1,Δ

p]K ;
(ii) [Dw

λ ,U1,Δ
p]K ∩ [Dw

λ ,U2,Δ
p]K ⊆ [Dw

λ ,U1 + U2,Δ
p]K , where K = 0, 1, and ∞.

P r o o f. We first prove the statement in the case K = 0. The same methods can then be
applied to the remaining cases.

(i) Let (tα) ∈ [Dw
λ ,U1,Δ

p]0. Then there exists v > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U1

( |f (Δptα)|
v

)
= 0.

Let 0 < σ < 1 and 0 < β < 1 be such that U2(m) < σ for 0 ≤ m < β.
Define

�α = U1

( |f (Δptα)|
v

)
.

Consider the expression
∑
α∈Is

U2 (�α) =
∑
1

U2 (�α) +
∑
2

U2 (�α) ,
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where the first summation runs over terms with �α > β and the second summation includes terms
with �α ≤ β. Since

1

λs

∑
1

U2 (�α) < U2(2)
1

λs

∑
1

(�α) (2.2)

for �α > β, we have

�α < 1 +
�α

β
.

Since U2 is nondecreasing and convex, it follows that

U2 (�α) <
1

2
U2(2) +

1

2
U2

(
2�α

β

)
.

Since U2 satisfies the Δ2-conditions, we have

U2 (�α) = T
�α

β
U2(2).

Hence,
1

λs

∑
2

U2 (�α) ≤ max
(
1, Tβ−1U2(2)

) 1

λs

∑
2

�α. (2.3)

Taking the limit as s → ∞, from (2.2) and (2.3), we obtain

(tα) ∈ [Dw
λ ,U2 · U1,Δ

p]0 .

A similar approach can be applied to demonstrate the result for the remaining cases.

(ii) The proof is standard and is omitted. �

By taking U1(t) = t and U2 = U(t) in Theorem 3 (i), we obtain the following particular case.

Corollary 2. The inclusion [Dw
λ ,Δ

p]0 ⊆ [Dw
λ ,U ,Δp]0 is strict.

Here, the space [Dw
λ ,Δ

p]0 is defined by

[Dw
λ ,Δ

p]0 =

{
t = (tα) : lim

s→∞
1

λs

∑
α∈Is

( |f(Δptα)|
v

)
= 0 for some v > 0

}
.

Theorem 4. Let p ≥ 1 and K = 1, 2,∞. Then, the inclusion
[Dw

λ ,U ,Δp−1
]
K ⊂ [Dw

λ ,U ,Δp]K
is strict. In general,

[Dw
λ ,U ,Δi

]
K ⊂ [Dw

λ ,U ,Δp]K for i = 0, 1, 2, . . . , p − 1.

P r o o f. Let (tα) ∈
[Dw

λ ,U ,Δp−1
]
0
. Then we have

lim
s→∞

1

λs

∑
α∈Is

U
( |f(Δp−1tα)|

v

)
= 0 for some v > 0. (2.4)

Since U is both convex and nondecreasing, we can deduce that

1

λs

∑
α∈Is

U
( |f(Δptα)|

2v

)
=

1

λs

∑
α∈Is

U
( |f(Δp−1tα −Δp−1tα+1)|

2v

)

≤
(

1

λs

∑
α∈Is

U
( |f(Δp−1tα)|

v

)
− 1

λs

∑
α∈Is

U
( |f(Δp−1tα+1)|

v

))
.



On λ-Weak Convergence 101

As s → ∞, we have
1

λs

∑
α∈Is

U
( |f(Δptα)|

2v

)
= 0

by (2.4), which implies (tα) ∈
[Dw

λ ,U ,Δp−1
]
0
.

The other cases will follow by a similar approach. Using induction, we can establish that

[Dw
λ ,U ,Δi

]
K ⊂ [Dw

λ ,U ,Δp]K

and i = 0, 1, . . . , p − 1. �

The following example directly illustrates this inclusion.

Example 1. Let λs = (s) be a sequence and U(t) = t. Consider the sequence (tα) =
(
αp−1

)
.

Then
Δptα = 0, Δp−1tα = (−1)p−1(p − 1)!

for all α ∈ N. Therefore, (tα) ∈ [Dw
λ ,U ,Δp]0 but (tα) /∈ [Dw

λ ,U ,Δp−1
]
0
.

Theorem 5. The space [Dw
λ ,U ,Δp]K, where K = 0, 1,∞, is generally not solid. The spaces

[Dw
λ ,U ]0 and [Dw

λ ,U ]∞ are solid.

P r o o f. Let (tα) ∈ [Dw
λ ,U ]0. Then there exists v > 0 such that

lim
s→∞

1

λs

∑
α∈Is

U
( |f (tα)|

v

)
= 0.

Let (δα) be a sequence of scalars such that |δα| ≤ 1. Then, for each s, we can write

1

λs

∑
α∈Is

U
( |f(δαtα)|

v

)
≤ 1

λs

∑
α∈Is

U
( |f(tα)|

v

)

⇒ lim
s→∞

1

λs

∑
α∈Is

U
( |f (δαtα)|

v

)
= 0

⇒ (δαtα) ∈ [Dw
λ ,U ]0 .

(2.5)

From the inequality presented in (2.5), it follows that [Dw
λ ,U ]∞ is solid. �

To demonstrate that the spaces [Dw
λ ,U ,Δp]1 and [Dw

λ ,U ,Δp]∞ are generally not solid, we pro-
vide the following example.

Example 2. Consider the function f(t) = t for all t ∈ R. Let X = R with p = 1. Let the
sequence (tα) be defined by tα = α for all α ∈ N. Let U(t) = tr with r ≥ 1, and λs = (s). Then
(tα) ∈ [Dw

λ ,U ,Δp]1 and (tα) ∈ [Dw
λ ,U ,Δp]∞. Let (γα) = ((−1)α). Then (γαtα) /∈ [Dw

λ ,U ,Δp]1 and
(γαtα) /∈ [Dw

λ ,U ,Δp]∞.

The following example illustrates that [Dw
λ ,U ,Δp]0 is generally not solid.

Example 3. Let X = R and consider the function f(t) = t for all t ∈ R. Let p = 1. Consider
the sequence (tα) defined by tα = 1 for all α ∈ N. Assume U(t) = tr with r = 2 and λs = (s). Let
(γα) = ((−1)α) for all α ∈ N. Then (γαtα) /∈ [Dw

λ ,U ,Δp]0. Thus, the set [Dw
λ ,U ,Δp]0 is not solid.

The following result is a consequence of Lemma 1 and Theorem 5.
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Corollary 3. The spaces [Dw
λ ,U ]0 and [Dw

λ ,U ]∞ are monotone.

Remark 1. The space [Dw
λ ,U ,Δp]0 is not convergence free.

P r o o f. The following example clearly illustrates this point. �

Example 4. Let p = 1, U = t and consider the sequence λs = (s). Consider the sequence (tα)
defined by

tα =
1

2
(1− (−1)α) .

Then (tα) ∈ [Dw
λ ,U ,Δp]0.

Now consider the sequence (�α) defined by

�α =

{
α if α is odd,
θ̄ if α is even.

Then (�α) /∈ [Dw
λ ,U ,Δp]0.

Remark 2. The spaces [Dw
λ ,U ,Δp]K, where K = 0, 1,∞, are generally not symmetric. The

following example illustrates this fact.

Example 5. Let p = 1, X = R, and consider the function f(t) = t for all t ∈ R. Let U(t) = t
and λs = (s). Consider the sequence (tα) defined by tα = α for all α ∈ N. Then (tα) ∈ [Dw

λ ,U ,Δp]0.
Now, rearrange the sequence (tα) to obtain the sequence (�α) defined by

�α = (t1, t2, t4, t3, t9, . . .) .

Then (�α) /∈ [Dw
λ ,U ,Δp]K, where K = 0, 1,∞. Hence, the spaces [Dw

λ ,U ,Δp]K, where K = 0, 1,∞,
are generally not symmetric.

3. Conclusion

In this paper, we introduced and analyzed the concept of difference λ-weak convergence for
sequences defined by an Orlicz function. Our study provided an in-depth examination of the
algebraic and topological properties of these sequences, offering a foundational perspective on their
structure and behavior. We also established key inclusion relationships between these newly defined
spaces and existing sequence spaces, thereby enhancing the overall framework of sequence space
theory. Our results contribute to the broader field of functional analysis, particularly in the context
of sequence spaces and Orlicz functions, and open new avenues for future research.
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Abstract: Perfect Italian Domination is a type of vertex domination which can also be viewed as a graph
labelling problem. The vertices of a graph G are labelled by 0, 1 or 2 in such a way that a vertex labelled 0
should have a neighbourhood with exactly two vertices in it labelled 1 each or with exactly one vertex labelled 2.
The remaining vertices in the neighbourhood of the vertex labelled 0 should be all 0’s. The minimum sum of
all labels of the graph G satisfying these conditions is called its Perfect Italian domination number. We study
the behaviour of graph complements and how the Perfect Italian Domination number varies between a graph
and its complement. The Nordhaus–Gaddum type inequalities in the Perfect Italian Domination number are
also discussed.

Keywords: Perfect Italian domination, Graph complement, Nordhaus–Gaddum type inequalities.

1. Introduction

Analysing how graph properties vary across each graph family is always fascinating. That is
the manner in which a graph’s structural characteristics, such as its number of vertices, edges,
connectivity, symmetry, etc., affect graph parameters such as its chromatic number, clique number,
domination number, etc. The variation of a graph parameter between a graph and its complement
has also been researched since the seminal work of Nordhaus and Gaddum [7]. On n-vertex graphs,
they determined an upper and lower bound for the sum (and product) of chromatic numbers of a
graph and its complement. The problems that include determining the upper and lower bounds of
the sum or product of certain graph properties are referred to as Nordhaus–Gaddum type studies.

Perfect Italian Domination is a domination concept defined by T.W. Haynes and M.A. Henning.
It can be viewed as a vertex labelling problem, where vertices are labelled by 0, 1 or by 2. A vertex
in a Perfect Italian Dominated (PID) graph is labelled 0 if and only if it is adjacent to two vertices
labelled 1 each or one vertex labelled 2, and the remaining vertices in its neighbourhood are
labelled 0. The sum of the vertex labels on a graph G that satisfies the PID condition is determined
and the term PID number of G denoted as γpI (G) refers to the smallest sum that may be computed
for a graph G [5].

The graph G is called the complement of a graph G, when two vertices are neighbours in G if
and only if they are not neighbours in G. In this paper, we examine the variation in the Perfect
Italian Domination (PID) number of a graph and its complement. We find some Nordhaus–Gaddum
type inequalities of Perfect Italian Domination number and, also characterise some graph classes

https://doi.org/10.15826/umj.2025.1.007
mailto:agnes.poovathingal@res.christuniversity.in
mailto:frjoseph@christuniversity.in
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which attain the upper bound and lower bound. We have also considered a few graph classes whose
PID numbers are found and are compared with the PID numbers of their complements.

2. PID on graph complements and Nordhaus–Gaddum inequalities

The Perfect Italian domination number of any graph G is at least two and is at most its order.
Hence, for a graph G of order n,

4 ≤ γpI (G) + γpI (G) ≤ 2n.

In this paper, we prove that these bounds are tight by constructing classes of graphs. The
gap between the bounds is shortened when a few restrictions are made to the graphs considered.
We consider a few cases where the upper bound is small. We arrive at a conclusion that if G is
any graph such that γpI (G) = n, then γpI (G) ≥ 5 or equal to 2. If G is a connected graph, then
γpI (G) ≥ 5. We have also determined the PID number of certain graph cases and their complements.
This helps in the study of determining the criteria that the graph must satisfy in order to maximise
or reduce a graph PID value. This study can help us find extremal graphs which is an important
area of study in graph theory. Some of these will also would lead to optimal solutions.

We examine graphs that correspond to a specific PID number and analyze the PID number of
its complement. We will start by considering graphs G with γpI (G) = 2, 3, 4 and later γpI (G) ≥ 5.

The only possible graphs of order n = 2 are 2K1 and K2. We know that PID number of each
of them is 2 and they are complement to each other. When n ≥ 3, γpI (G) = 2 if and only if there is
a universal vertex or if there exist two non adjacent vertices adjacent to all the remaining vertices
of G. A universal vertex of G forms an isolated vertex in G. Similarly, the non adjacent vertices
adjacent to all the remaining vertices in G form a K2 component. Hence when n ≥ 3 if γpI (G) = 2,
then γpI (G) is always greater than or equal to 3.

Let G be any graph of order n and γpI (G) = 2. Then G is a disconnected graph with

2 ≤ γpI (G) ≤ n.

The following realization problem shows that for any integer 2 ≤ a ≤ n, we can find a graph such
that its PID number is 2 whereas the PID number of its complement is a.

Theorem 1. For any a ∈ N−{1}, there exists a graph G such that γpI (G) = 2 and γpI (G) = a.

P r o o f. Let G be a graph obtained from the join of a path complement graph- P 2a−3 and
K1, (P 2a−3 +K1), where (see [8])

γpI (P 2a−3 +K1) = 2.

Then G will be P2a−3 ∪K1. For any path Pn, (see [6])

γpI (Pn) =
⌈n+ 1

2

⌉

.

Hence,

γpI (G) = γpI (P2a−1 ∪K1) =
⌈2a− 3 + 1

2
+ 1

⌉

= a.

�

Proposition 1. Let G be a graph such that γpI (G) = 3. Then γpI (G) ≤ 6.
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P r o o f. A graph G with γpI (G) > 2 has γpI (G) = 3 if and only if G has a perfect dominating
set of size 3 [6]. This implies that γpI (G) ≤ 6. �

From the above results it is clear that γpI (G) = 3 and γpI (G) = 2 if and only if G is a disconnected
graph.

Corollary 1. Let G be a connected graph such that γpI (G) = 3. Then 3 ≤ γpI (G) ≤ 6.

Proposition 2. Let G be a graph such that γpI (G) = 4. Then γpI (G) ≤ 4.

P r o o f. If G is a graph such that γpI (G) = 4, then either of the following is true.

1) There exists a vertex set S in G consisting of four vertices {ui} for i = 1, 2, 3, 4 such that the
remaining vertices in G are adjacent to exactly any two vertices of the set S.

2) There exists a set S in G consisting of two vertices, u1, u2 such that the remaining vertices
in G are adjacent to exactly any one vertex of the set S.

3) There exists a set S in G consisting of three vertices, u1, u2, u3 such that any other vertex, v
belonging to G satisfies one of the following:

(a) N(v) ∩ S = {u1}
(b) N(v) ∩ S = {u2, u3}.

If G satisfies 1), then the vertices belonging to N(ui)∩N(uj) in G will not be adjacent to ui, uj
in G, but will be adjacent to uk where k 6= i, j. Hence labelling all the u′is by 1 and the remaining
vertices by 0 satisfies the PID condition. Thus, γpI (G) ≤ 4.

If the graph G satisfies 2), then the vertices adjacent to u1 ∈ G are not adjacent to u1 ∈ G but
will be adjacent to u2. Similar is the case of neighbours of u2. Hence labelling u1, u2 by 2 and the
remaining vertices by 0 satisfies the PID condition, i.e., γpI (G) ≤ 4.

If G satisfies 3), then the vertices belonging to N(u1) in G are not adjacent to u1 but are
adjacent to u2, u3 in G. Similarly the vertices belonging to N(u2) ∪ N(u3) are not adjacent to
u2, u3 but are adjacent to u1. Hence labelling u1 by 2 and u2, u3 by 1 gives a PID labelling, i.e.,
γpI (G) ≤ 4. �

Corollary 2. Let G be a connected graph such that γpI (G) = 4. Then γpI (G) = 3 or 4.

If G is a connected graph with a PID number greater than or equal to 7, then from the above
results, PID number of G cannot be 2, 3 or 4. This implies that PID number of G is greater than
or equal to 5 but less than or equal to the order of G.

The following realisation problem shows that the upper bound is tight.

Theorem 2. For any k ≥ 5, there exists a graph G of order n such that γpI (G) = k and
γpI (G) = n.

P r o o f. Let G be a graph constructed by the following steps:
Take k copies of P4 where k is any integer greater than or equal to 5. Label each path as

Q1, Q2, ..., Qk. Let us consider a Kk whose vertices are u1, u2, ..., uk. Then make each vertex of
the path Qi adjacent to ui, ui+1 where i = 1, 2, ..., (k − 1). The vertices of Qk are adjacent to u1
and uk. An illustration of the construction when k = 5 is given in Figure 1. This is a connected
graph of order 5k.

Since each vertex of the path Pi is adjacent to exactly two vertices among the u′is, labelling all
the u′is 1 and the vertices belonging to the paths 0 gives a PID labelling where

γpI (G) ≤ k −→ (a).
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Figure 1. An illustration of construction of Graph G, where k = 5.

Obviously, degree of ui is 8 which coincides with ∆(G). But from [3], we have

γpI (G) ≥ γI(G) ≥
2(5k)

∆(G) + 2
, i. e., γpI (G) ≥ k −→ (b).

From (a) and (b), γpI (G) = k.
Since {u1, u2...uk} is a set of independent vertices in G, they induce a clique Kk in G. As P4

is a self-complementary graph, each Qi remains the same in G. Each vertex ui is adjacent to the
vertices of all the paths except Pi−1, Pi j 6= i− 1, i and i, j = 2, 3, . . . k. The vertex u1 is adjacent
to the vertices of all the paths except Pk and P1. Each vertex of the path Pi will be adjacent to all
the vertices of the paths Pj where j 6= i and i, j = 1, 2, 3 . . . k.

Since G and G are connected graphs, γpI (G) > 2. Let us consider the following cases of possible
labellings for G:

1. Let a vertex vi belonging to a path Qs be labelled 0. Then, at most two vertices in its neigh-
bourhood, say x, y, are non-zero labelled and the remaining vertices in its neighbourhood
are zero labelled. Since each vertex in a path is of degree at least 5k − 5, there exist two
vertices among the ui’s and at most two vertices in the path Qs that are non-adjacent to
the vertex vi. If any one among this, say z is non zero labelled, then there exists at least
one vertex on a path Qi labelled 0 adjacent to x, y and z. This violates the perfect Italian
domination condition. This implies that no vertex among the non adjacent vertices of vi can
be non-zero labelled. Hence, all remaining vertices in the graph are labelled 0. This contra-
dicts γpI (G) > 2. Hence, no vertex on the path Qi can be labelled 0 and its non adjacent
vertices can be non-zero labelled. The remaining vertices in the graph are labelled 0. Since
each vertex in a path is of degree of at least 5k − 5, there exist two vertices among the u′is
and at most 2 vertices in the path Qs that are non adjacent to the vertex vi. If any one
among this is non zero labelled, then there exists at least one vertex labelled 0 among the
paths Pj where j 6= k adjacent to all the vertices not labelled zero. This is a contradiction
to the PID condition. Hence no vertex on an induced path Pi of the G can be labelled 0.

2. Each vertex ui is adjacent to all the vertices of k − 2 induced paths. From the above case
we know that no vertex on an induced path of the graph G is labelled 0. Since k ≥ 5, this
implies that no vertex ui can be labelled 0.

This shows that no vertex in G can be labelled 0. i.e., γpI (G) = 5k, the order of graph G. �

The following is a summary of the results mentioned above.

Remark 1. Let G be a connected graph of order n,
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1. If γpI (G) = 3, then γpI (G) ∈ {3, 4, 5, 6}.

2. If γpI (G) = 4, then γpI (G) ∈ {3, 4}.

3. If γpI (G) ∈ {5, 6}, then γpI (G) ∈ N− {1, 2, 4}.

4. If γpI (G) ≥ 7, then 5 ≤ γpI (G) ≤ n.

Based on the results above, we can deduce the following Nordhaus–Gaddum type inequalities.

Remark 2. Let G be a connected graph of order n ≥ 3 and γpI (G) = 3. Then,

6 ≤ γpI (G) + γpI (G) ≤ 9, 9 ≤ γpI (G) · γpI (G) ≤ 18.

Remark 3. Let G be a connected graph of order n ≥ 3 and γpI (G) = 4. Then,

7 ≤ γpI (G) + γpI (G) ≤ 8, 12 ≤ γpI (G) · γpI (G) ≤ 16.

Remark 4. Let G be a connected graph of order n ≥ 3 and 7 ≤ γpI (G) ≤ n. Then,

12 ≤ γpI (G) + γpI (G) ≤ 2n, 35 ≤ γpI (G) · γpI (G) ≤ n2.

Remark 5. Let G and G be connected graphs of order n. Then

6 ≤ γpI (G) + γpI (G) ≤ 2n, 6 ≤ γpI (G) · γpI (G) ≤ n2.

3. PID of some graph classes and their complements

A vertex in a graph G is said to be dominated if it is either belonging to or is adjacent to a
vertex belonging to the Dominating set S of G. A Perfect Dominating set, Sp of a graph G is a set
of vertices such that any vertex of G not belonging to this set is dominated by exactly one vertex
from Sp. The least number of vertices that can exist in such a set Sp is called Perfect Domination
number γp(G). [4].

Theorem 3 [2]. For a path Pn, the perfect domination number,

γp(Pn) =























n

3
, n ≡ 0 (mod 3),

n+ 1

3
, n ≡ 2 (mod 3),

n+ 2

3
, n ≡ 1 (mod 3).

Theorem 4 [1]. For a cycle Cn, the perfect domination number,

γp(Cn) =























n

3
, n ≡ 0 (mod 3),

⌈n

3

⌉

, n ≡ 1 (mod 3),
⌊n

3

⌋

+ 2, n ≡ 2 (mod 3).
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Theorem 5 [6]. Let G be a connected graph with γpI (G) > 2. Then γpI (G) = 3 if and only if G
has a perfect dominating set of size 3.

Theorem 6. For a path Pn, γ
p
I (Pn) = ⌈(n + 1)/2⌉ and

γpI (P n) =























1, n = 1,

2, n = 2,

3, 3 ≤ n ≤ 9,

n, otherwise.

P r o o f. For a path Pn, γpI (Pn) = ⌈(n+ 1)/2⌉ [6].

1. For n ≥ 10 : The two end vertices of Pn are adjacent vertices of degree (n− 2) in Pn and the
remaining vertices which are of degree 2 in Pn are of degree n− 3 in Pn. This implies that
γpI (Pn) > 2.

(a) If a vertex of degree (n − 2), say ui, is labelled 0, then ui+1 can be non-zero labelled
and a vertex x in the neighbourhood of ui is labelled 2 (or two vertices x, y in its
neighbourhood are labelled 1 each). This implies that all the remaining vertices are
labelled 0. Since n ≥ 10, and vertices are of degree at least n − 3 there exists a zero
labelled vertex adjacent to the vertices x, y, ui+1. This is a contradiction to the PID
condition. Hence ui+1 is not labelled zero but then this is a contradiction to γpI (Pn) > 2.

(b) If a vertex of degree (n − 3), say ui, is labelled 0, then at most two of its adjacent
vertices say a, b are non zero labelled and at least n − 5 vertices are labelled 0. In the
previous case we proved that the vertices of degree (n − 2) cannot be labelled 0, since
n ≥ 10 there exists at least one vertex of degree (n − 2) in the neighbourhood of ui.
This implies that at least one among a, b say a is of degree (n − 2). Let ui−1, ui+1 be
the vertices not adjacent to ui and if one among them say ui−1 is non zero labelled,
then ui−1 is not adjacent to ui and at most one more vertex. a is not adjacent to one
vertex and b is not adjacent to at most two vertices. This implies that there exists at
least n − 5 − (1 + 1 + 2) = n − 9 vertices labelled 0 adjacent to a, b and ui−1. This is
a contradiction to the perfect Italian domination condition. This implies that neither
ui−1 nor ui+1 can be non-zero labelled.

This is a contradiction to γpI (Pn) > 2. Hence no vertex of degree (n − 3) can be
labelled 0.

Thus no vertex in Pn where n ≥ 10 can be labelled by 0. This implies that γpI (Pn) = n.

2. For n = 1, the complement is a K1. Hence γpI (P 1) = 1.

3. For n = 2, P 2 is two isolated vertices and γpI (P 2) = 2.

4. Assume 3 ≤ n ≤ 9. The graph P 3 is K1 ∪ K2 and the PID number is 3. The graph
P 4 is P4 and the PID number is 3. Let u1u2...u5 be a P5. Then {u1, u4, u5} is a perfect
dominating set of size 3 and from the Theorem 5 we can conclude that γpI (P 5) = 3. Similarly
the vertices {u2, u4, u5} is a perfect dominating set of a P6, u1, u2...u6. This implies that
γpI (P 6) = 3 (from Theorem 5). For n = 7, 8, 9, γp(Pn) = 3 (from Theorem: 3), this implies
that γpI (Pn) = 3 (from Theorem 5). Hence for 3 ≤ n ≤ 9, γpI (Pn) = 3.

�

Theorem 7. For a cycle Cn, γpI (Cn) = ⌈n/2⌉ and

γpI (Cn) =











3, n = 3, 5, 7, 9,

4, n = 4, 6, 8,

n, otherwise.
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P r o o f. For a cycle Cn, γ
p
I (Cn) = ⌈n/2⌉ [6]. Since each vertex in Cn is of degree 2, the

vertices of Cn are of degree n− 3. This implies Cn is a (n− 3) regular graph and γpI (Cn) > 2.

1. Assume n ≥ 10. If a vertex, v is labelled 0, then v is adjacent to n − 3 vertices, say
u1, u2, u3...un−3, and is not adjacent to w1, w2. Among the u′is two vertices are labelled 1,
say u1, u2 (or one vertex u1 is labelled 2) and the remaining (n − 5) (or (n − 4)) u′is are
labelled 0. The vertex v is not adjacent to w1, w2, as γpI (Cn) > 2, at least one of them, say
w1, should be non-zero labelled.

(a) If both w1, w2 are non-zero labelled, then at least (n − 6) zero labelled vertices are
adjacent to each of them. Vertices u1, u2 are adjacent to at least n − 7 vertices. Since
n ≥ 10, there exists at least one vertex adjacent to three non-zero labelled vertices.
This is a contradiction to the PID condition.

(b) If w1 is non zero labelled and w2 is zero labelled, then w2 is adjacent to at least n − 5
zero labelled vertices (as w1 should be adjacent to w2, it cannot be adjacent to one
of the u1, u2, say u2.) This implies that w1 is adjacent to at least n − 6 zero labelled
vertices, u1 is adjacent to n − 7 vertices labelled 0 and u2 is adjacent to n − 6 zero
labelled vertices. This means that there exists at least one zero labelled vertex adjacent
to all the three non-zero labelled vertices. This is a contradiction to the PID condition.

Thus no vertex in Cn can be labelled 0.

2. Assume n = 3, 5, 7, 9. The graph C3 is 3K1 and the PID number is 3. Perfect domina-
tion number of cycles Cn, where n = 5, 7, 9 is 3 (from the Theorem 4). This implies that
γpI (Cn) = 3 (from the Theorem 5).

3. Assume n = 4, 6, 8. The graph C4 is 2K2 and the PID number is 4. When γp(C6) = 2,
it cannot have a perfect dominating set of size 3. This implies that γpI (C6) 6= 3. Hence,
γp(C8) = 4 =⇒ γpI (C8) 6= 3 (from the Theorems 4, 5). The Fig. 2 shows a PID labelling
with γpI value equals to 4. Hence, for n = 4, 6, 8, γpI (Cn) = 4.

�

0 0

0 0

2

2

0

0

0

1

1

0

1

1

Figure 2. PID labelling of C8, C6.

Theorem 8. Let G be a connected graph of order n/2. Then,

γpI (G ◦K1) =

{

3, G ∼= C3 or P3,

n, otherwise.

P r o o f. Let the vertices of G be u1, u2...un/2 and the corresponding K ′
1s be v1, v2...vn/2. The

v′is form a clique Kn/2 and each of these v′is will be adjacent to all the u′js such that j 6= i for
i, j = 1, 2, 3, ..., n/2.
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Since G is a connected graph, G◦K1 has neither an isolated vertex nor a K2. This implies that
there exists neither a universal vertex nor two non-adjacent vertices adjacent to all the remaining
vertices in G ◦K1. Thus, γ

p
I (G ◦K1) > 2 and degree of each vertex vi belonging to the clique Kn/2

is (n − 1).

1. Assume any connected graph G ≇ C3 or P3, i.e., n/2 ≥ 4.

(a) If any vertex belonging to the clique Kn/2, say v1, is labelled 0, then u1 which is not
adjacent to v1 can be non-zero labelled and two vertices belonging to the neighbourhood
of v1 are labelled 1 each (or a vertex is labelled 2). This implies that all the remaining
vertices of the graph is labelled 0. Since n/2 ≥ 4, there exists a vertex belonging
to the clique adjacent to all the three non-zero labelled vertices. This violates the
PID condition, i.e., u1 cannot be non-zero labelled. But this is a contradiction to
γpI (G ◦K1) > 2.

(b) If a vertex ui belonging to G is labelled 0, then it is adjacent to at least n/2−1 vertices
belonging to the clique. From the above case it is clear that no vertex of Kk can be
labelled 0, i.e., they are all non-zero labelled. A vertex ui belonging to G is adjacent to
at least n/2 − 1 vertices belonging to Kk. Hence, no vertex ui belonging to G can be
labelled 0.

This implies that no vertex in G ◦K1 can be labelled 0. Hence, γpI (G ◦K1) = 2× n/2 = n.

2. Assume G ∼= C3 or P3. Labelling all the three vertices v′is 1 and all the u′is 0 gives a PID
labelling, i.e., γpI (G ◦K1) ≤ 3. Since γpI (G ◦K1) > 2, we can conclude that γpI (G ◦K1) = 3.

�

Remark 6. Let G be a graph with an isolated vertex v. Then γpI (G ◦K1) = 2 since v ∈ G and
its corresponding pendant vertices in G ◦K1 are non-adjacent vertices of degree n− 2 in G ◦K1.

Remark 7. Let G be a complete bipartite graph. Then γpI (G) = γpI (G) = 4.

4. A unique family G of graphs G

Theorem 9. For any positive integer n ≥ 20 there exists a graph G of order n such that G, G
are both connected and γpI (G) = γpI (G) = n.

P r o o f. Let G be a collection of graphs G each of order n. Then each graph G in G is
constructed as follows.

Construction of the graph G in G. Let {v1, v2, ...vn/2}, {u1, u2, ...un/2} be the vertices of two
paths Pn/2 each of order n/2 and Pn/2 + Pn/2 be the graph obtained by taking join of these two
paths. Then G is a graph of order n obtained by removing the edge v1u1 from Pn/2 + Pn/2.

Any vertex in G is of degree n/2+2, n/2+1 or n/2. This implies that there exists no universal
vertex or two non-adjacent vertices of degree n−2. Hence γpI (G) > 2. Let A = {u1, u2, ...un/2} and
B = {v1, v2, ...vn/2}. Then the following are the possible labellings for the vertices of the graph G.

1. If two vertices belonging to the set A are labelled 1 each or one vertex in the set A is
labelled 2, then labelling a vertex belonging to the set A makes all the vertices belonging to
the set B labelled 0. (If the vertex labelled 0 is u1, then all the vertices in B except v1.)
Since there exist vertices in B which are PI dominated by the non-zero labelled vertices in
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A, all the remaining vertices in A should be labelled 0. (Since v1 is adjacent to v2 which is
zero labelled and is PI dominated by the vertices of A, v1 is also labelled 0). Similarly, if
a vertex in B is labelled 0, then all the remaining vertices in A are labelled 0. (If v1 is the
vertex labelled zero, then all the remaining vertices except u1 is labelled 0.) There exists at
least one vertex x belonging to B adjacent to the zero labelled vertex which implies that x
also should be labelled 0 and is PI dominated by the vertices of the set A. Since B is a
connected graph, this continues and all the vertices of B are labelled 0. This forces u1 also
is to be labelled 0.

2. Let a vertex x from set A and a vertex y from a set B be labelled 1 each. Then a vertex
in the neighbourhood of x and y belonging to the set A or B, is labelled zero forces all the
remaining vertices in the other set are to be labelled 0. There exists at least one zero labelled
vertex adjacent to the y in B. This implies that all the remaining vertices in A should be
labelled 0.

Both the cases are contradictions to γpI (G) > 2. This implies that no vertex in G is labelled 0.
Hence

γpI (G) =
n

2
+

n

2
= n.

The complement G is Pn/2 ∪ Pn/2 with an edge between v1 and u1. The vertex v1 belonging
to a path complement is adjacent to vertex u1 belonging to another path complement. Hence, the
adjacency between any two vertices of G other than {v1, u1} is same as its adjacency in Pn/2. This
implies that as given in the proof of Theorem 6, if any vertex in the graph is labelled 0, then at
most two vertices can only be non-zero labelled and they are labelled 1 each. Since n ≥ 20 and
v1, u1 are of degree n/2−1+1 = n/2 each, γpI (G) > 2. This implies that no vertex can be labelled 0
and

γpI (G) =
n

2
+

n

2
= n.

�

This theorem proves that there exists a family of graphs in which each of them and its cor-
responding complement are connected as well as have their PID number same as its order. This
shows that the upper bound of Nordhaus–Gaddum inequalities for the Perfect Italian Domination
is tight.

Thus, γpI (G) + γpI (G) = 2n if and only if γpI (G) = γpI (G) = n. Since there is no complete
characterization of graphs satisfying γpI (G) = n, characterizing the graphs such that

γpI (G) + γpI (G) = 2n

remains an open problem.

5. Conclusion

The lower and upper bounds in the Nordhaus–Gaddum type inequalities for the Perfect Italian
domination number of an arbitrary graph G are way apart. Hence, particular cases of the graphs are
considered to find the Nordhaus–Gaddum type inequalities. We have constructed different graph
classes to show that the bounds are tight since there is no complete characterization of graphs
satisfying γpI (G) = n. Thus characterizing the graphs such that γpI (G) + γpI (G) = 2n remains an
open problem.
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Abstract: In this paper, we establish a result on the Hyers–Ulam–Rassias stability of the Euler–Lagrange
functional equation. The work presented here is in the framework of modular spaces. We obtain our results
by applying a fixed point theorem. Moreover, we do not use the ∆α-condition of modular spaces in the proofs
of our theorems, which introduces additional complications in establishing stability. We also provide some
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1. Introduction

In this paper, our main result concerns the stability property of a type of Euler–Lagrange
functional equation. This type of equations was introduced by Rassias [18] in 1992. The name
is derived from the Euler–Lagrange identity [19] and has several variants [12, 20, 26, 30], but our
study is conducted within the framework of modular spaces.

The kind of stability investigated for the functional equation considered here is well-known as
Hyers–Ulam–Rassias stability, which is very general and applicable to diverse branches of math-
ematics [4, 7, 25]. The concept originates from a mathematical question posed by Ulam [27] in
1940, along with its extensions and partial answers provided by Hyers [6] and Rassias [21]. In the
most general terms, following Gruber [5], Hyers–Ulam–Rassias stability holds for a mathematical
equation if, whenever it approximately satisfies an equation from a certain class, it admits an exact
solution close to that approximate one. It involves questions such as whether a given approximately
linear equation has an exact linear approximation.
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Our framework of study is modular spaces [13, 16, 17, 28]. A modular space is a linear space
equipped with a modular function possessing specific properties. Such a function introduces an ad-
ditional structure on the linear space, thereby broadening its scope. Several studies from different
domains of functional analysis have been successfully extended to this structure. References [9, 14]
provide the technical details of the modular spaces mentioned above. Functional equations of
various kinds have been considered in the investigation of Hyers–Ulam–Rassias stability proper-
ties [8, 23, 29]. We study the stability of such equations in modular spaces without assuming the
∆α-condition, using a fixed point technique. It may be noted that fixed point methods have already
been applied to Hyers–Ulam–Rassias stability problems in [2, 24]. Here, we apply this approach to
our problems in modular spaces.

2. Preliminaries

If X and Y are assumed to be a real vector space and a Banach space, respectively, then a
mapping f : X → Y satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), ∀x, y ∈ X, (2.1)

which is known as the quadratic functional equation.
Any solution of (2.1) is called a quadratic mapping. In particular, if X = Y = R, the quadratic

form f(x) = ax2 is a solution of (2.1).
We consider here a type of Euler–Lagrange functional equation known as the general k-quadratic

Euler–Lagrange functional equation:

q(kx + y) + q(kx− y) = 2[q(x + y) + q(x− y)] + 2(k2 − 2)q(x) − 2q(y), ∀x, y ∈ X, (2.2)

where k ∈ N, and q : X → Y is a function from a real vector space X to a Banach space Y .
Here, we recall certain definitions, theorems, and results regarding modular spaces.

Definition 1 [16, 17]. A generalized functional m : X → [0,∞] is called a modular if, for any

two elements x, y ∈ X, where X is considered as a vector space over a field K (in our case R or C),
the following conditions hold :

(i) m(x) = 0 if and only if x = 0,
(ii) m(c x) = m(x) for every scalar c with |c| = 1,
(iii) m(x′) ≤ m(x) +m(y) whenever x′ is a convex combination of x and y,

(iii)’ if c1 , c2 ≥ 0 and c1 + c2 = 1, then m(c1 x + c2 y) ≤ c1m(x) + c2m(y), and in this case,
m is said to be a convex modular.

Definition 2. The modular space, denoted by Xm, is defined as

Xm :=
{

x ∈ X : m(αx) → 0 as α→ 0
}

.

Example 1. If (X, ‖·‖) is a normed space, then ‖·‖ is a convex modular on X, but the converse
is not necessarily true [15].

Definition 3. If m is a convex modular, then the norm known as the Luxemburg norm is

defined as

‖x‖m := inf
{

α > 0 : m
(x

α

)

≤ 1
}

.
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Definition 4. Consider Xm as a modular space and let {xn} be a sequence in Xm. Then,

(i) the sequence {xn} is called m-convergent to a point x ∈ Xm, denoted xn
m
−→ x, if

m(xn − x) → 0 as n→ ∞ [10];
(ii) {xn} is called an m-Cauchy sequence if for any ǫ > 0, m(xn − xp) < ǫ for sufficiently large

n, p ∈ N [10];
(iii) a subset K(⊂ Xm) is called m-complete if every m-Cauchy sequence in Xm is m-convergent

to an element in K [10].

Note that m-convergence does not imply m-Cauchy since m does not satisfy the triangle inequality.

In fact, one can show that this implication holds if and only if m satisfies the ∆2-condition.

(iv) The modular m is said to have the Fatou property if m(x) ≤ limn→∞ inf m(xn) whenever the

sequence {xn} is m-convergent to x [10];
(v) a modular m is said to satisfy the ∆α-condition if there exists κ ≥ 0 such that

m (αx) ≤ κm (x) for all x ∈ Xm and α ∈ N, α ≥ 2 [3].

Observations.

(i) m(x) ≤ δ m ((1/δ)x) for all x ∈ Xm, if m is a convex modular and 0 < δ ≤ 1;
(ii) in general, the modular m does not behave like a norm or a metric since it is not subaddi-

tive [16]; however, every norm on X is a modular on X.

Definition 5. Consider a modular space Xm, a nonempty subset C ⊂ Xm, and a mapping

D : C → C. The orbit of D at a point z ∈ Xm is the set

O(z) :=
{

z, Dz, D2z, . . .
}

.

The quantity

δm(z) := sup{m (x− y) : x, y ∈ O(z)}

is called the orbit diameter of D at z. In particular, if δm(z) < ∞, then D has a bounded orbit

at z.

Definition 6. Let the modular m be defined on the vector space X, and let C ⊂ Xm be

nonempty. A function D : C → C is called m-Lipschitzian if there exists a constant L ≥ 0
such that

m (D(x) −D(y)) ≤ Lm (x− y), ∀x, y ∈ C.

If L < 1, then D is called an m-contraction.

Definition 7 [11]. Let C be a subset of a modular function space Xm. A function D : C → C
is called an m-strict contraction if there exists a constant λ < 1 such that

m (D(x) −D(y)) ≤ λm (x− y), ∀x, y ∈ C.

Theorem 1 [1] (The Banach Contraction Mapping Principle in Modular Spaces).
Assume that Xm is m-complete. Let C be a nonempty m-closed subset of Xm, and let T : C → C
be an m-contraction mapping. Then T has a fixed point z if and only if T has an m-bounded orbit.

Moreover, if
m(x− z) <∞,

then {T n(x)} m-converges to z for any x ∈ C.

If x1 and x2 are two fixed points of T such that m (x1−x2) <∞, then from the above theorem
we conclude that x1 = x2. Furthermore, if C is m-bounded, then T has a unique fixed point in C.
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3. The generalized Hyers–Ulam stability of (2.2) in modular spaces

Lemma 1. Assume that X is a linear space, and let Xm be an m-complete convex modular

space. Consider the set

M = {h : X → Xm : h(0) = 0}

and define a mapping m̃ on M by

m̃(h) = inf{c > 0 : m(h(x)) ≤ cψ(x, x)}, h ∈ M,

where ψ : X2 → [0,∞). Then Mm̃ is a complete convex modular space.

P r o o f. It is easy to prove that m̃ is a convex modular on M [22].
For completeness, let {hn} be an m̃-Cauchy sequence in Mm̃, and let ǫ > 0 be given. Then

there exists k ∈ N such that m̃(hn − hp) ≤ ǫ for all p, n ≥ k. Therefore,

m (hn(x) − hp(x)) ≤ ǫψ(x, x) for all x ∈ X and p, n ≥ k. (3.1)

This shows that {hn(x)} is an m-Cauchy sequence in Xm for each fixed x ∈ Xm. Since Xm is
m-complete, it follows that {hn(x)} is m-convergent in Xm for each fixed x ∈ X. Thus, we can
define h : X → Xm by

h(x) = lim
n→∞

hn(x), for any x ∈ X.

Clearly, h ∈ Mm̃. Since m has the Fatou property, taking the limit as m→ ∞ in (3.1), we obtain

m (hn(x) − h(x)) ≤ ǫψ(x, x) for all x ∈ X and n ≥ k.

Thus, m̃(hn −h) ≤ ǫ for all n ≥ k, and therefore {hn} is an m̃-convergent sequence in Mm̃. Hence,
Mm̃ is complete. �

Theorem 2. Let X be a linear space, and Xm be anm-complete convex modular space. Suppose

that q : X → Xm is a function with q(0) = 0 satisfying the inequality

m (q(kx + y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y) ) ≤ ψ(x, y) (3.2)

for all x, y ∈ X and some k ∈ N, where ψ : X2 → [0,∞) is a function satisfying

ψ (kx, ky) ≤ k2Lψ(x, y)

for all x, y ∈ X and some L with 0 < L < 1. Then there exists a unique mapping P : X → Xm

satisfying (2.2) such that

m (2P (x) − q(x)) ≤
1

2k2(1 − L)
ψ(x, 0). (3.3)

P r o o f. Putting y = 0 in (3.2), we obtain

m (2q(kx) − 2k2q(x)) ≤ ψ(x, 0) (3.4)

or equivalently,

m (q(kx) − k2q(x)) ≤
1

2
ψ(x, 0). (3.5)
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Now,

m
(

q(x) −
q(kx)

k2

)

= m
( 1

2k2
(2q(k x) − 2k2q(x))

)

≤
1

2k2
ψ(x, 0).

Consider the set
M = {h : X → Xm : h(0) = 0}

and define a function m̃ on M by

m̃(h) = inf{c > 0 : m(h(x)) ≤ cψ(x, x)}, h ∈ M.

By Lemma 1, Mm̃ is a complete convex modular space.
Also, consider the operator S : Mm̃ → Mm̃ defined by

Sh(x) =
1

k2
h(kx) ∀h ∈ Mm̃, x ∈ X and k ∈ N.

Thus,

Sn h(x) =
1

k2n
h(kn x) ∀h ∈ Mm̃, x ∈ X and k ∈ N.

Let us show that S is an m̃-strictly contractive mapping. Let h, z ∈ Mm̃, and suppose there
exists a constant c ∈ [0,∞) such that

m̃(h− z) ≤ c.

Then,

m(h(x) − z(x)) ≤ cψ(x, x) ∀x ∈ X.

Now,

m(Sh(x) − Sz(x)) = m
( 1

k2
h(kx) −

1

k2
z(kx)

)

≤
1

k2
m(h(kx) − z(kx))

≤
1

k2
cψ(kx, kx) ≤ cLψ(x, x) ∀x ∈ X.

Therefore,
m̃(Sh− Sz) ≤ cL.

Hence,
m̃(Sh− Sz) ≤ Lm̃(h− z) for all g, h ∈ Mm̃.

That is, S is an m̃-strict contraction.
Now, we prove

δm̃ = sup {m̃(Sn (f) − Sm (f)) : m,n ∈ N} <∞.

From (3.5), we have

m
(

q(k2x) − k2q(kx)
)

≤
1

2
ψ(kx, 0). (3.6)

Thus,

m

(

q(k2x)

(k2)2
− q(x)

)

= m

(

1

(k2)2
(q(k2x) − k2q(kx)) +

1

k2
(q(kx) − k2q(x))

)

≤
1

(k2)2
m(q(k2x) − k2q(kx)) +

1

k2
m(q(kx) − k2q(x))

≤
1

2(k2)2
ψ(kx, 0) +

1

2k2
ψ(x, 0)

(3.5), (3.6)
=

1

2

1
∑

i=0

1

k2(i+1)
ψ(kix, 0) for all x ∈ X.
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Since

1

2

n−1
∑

i=0

1

k2(i+1)
≤ 1,

for all n ≥ 0, we have

m
(q(knx)

k2n
− q(x)

)

= m

[ n−1
∑

i=0

(q(ki+1 x)

k2(i+1)
−
q(kix)

k2i

)

]

=

n−1
∑

i=0

1

2 k2(i+1)
m

(

2 q(ki+1 x) − 2 k2 q(kix)
)

=

n−1
∑

i=0

1

2 k2(i+1)
ψ(ki x, 0)

(3.4)

≤
ψ(x, 0)

2k2

n−1
∑

i=0

Li ≤
ψ(x, 0)

2k2(1 − L)
since 0 < L < 1.

Hence,

m
(q(knx)

k2n
− q(x)

)

≤
ψ(x, 0)

2k2(1 − L)
since 0 < L < 1 (3.7)

∀x ∈ X and n ∈ N. Thus, from (3.7) it follows that for any n, p ∈ N,

m
(q(knx)

2k2n
−
q(kpx)

2k2p

)

≤
1

2
m
(q(knx)

k2n
− q(x)

)

+
1

2
m
(q(kpx)

k2p
− q(x)

)

≤
1

2
·

ψ(x, 0)

2k2(1 − L)
+

1

2
·

ψ(x, 0)

2k2(1 − L)
≤

ψ(x, 0)

2k2(1 − L)
for all x ∈ X [by (3.7)].

This implies that

m̃
(

Sn
(1

2
q
)

− Sp
(1

2
q
))

≤
1

2K2(1 − L)
<∞

for all p, n ∈ N.

This shows that S has a bounded orbit at 1/2q. Then,

m
(

Sn(
1

2
q(x)) −

1

2
q(x)

)

= m
(q(knx)

2k2n
−

1

2
q(x)

)

≤
1

2
m
(q(knx)

k2n
− q(x)

)

≤
1

2
·

ψ(x, 0)

2k2(1 − L)
< finite ∀x ∈ X and ∀k ∈ N [by (3.7)].

Thus, by applying Theorem 1,

(i) S has a fixed point P ∈ M at 1/2q, that is, SP = P , or equivalently,

P (x) =
1

k2
P (kx) for all x ∈ X;

(ii) the sequence {Sn (1/2q)} m̃-converges to P .

Therefore,

lim
n→∞

m
(( 1

2k2n
q(knx)

)

− P (x)
)

= 0.

Thus, we can define

P (x) :=
1

2
lim
n→∞

q(knx)

k2n
.
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Again, replacing x and y by knx and kny, respectively, in (3.2), we obtain

m
( 1

2k2n
q(kn(kx+ y)) + q(kn(kx− y)) − 2[q(kn(x+ y)) + q(kn(x− y))]

−2(k2 − 2)q(knx) + 2q(kny)
)

≤
1

2k2n
ψ(knx, kny) ≤

1

2
Lnψ(x, y) ∀x ∈ X, n ∈ N.

Now, taking the limit as n→ ∞ and applying the Fatou property, where 0 < L < 1, we get

P (kx+ y) + P (kx− y) = 2[P (x + y) + P (x− y)] + 2(k2 − 2)P (x) − 2P (y).

Thus, P is a k-quadratic Euler–Lagrange mapping.
Also, since m has the Fatou property, it follows from (3.7) that

m(2P (x) − q(x)) ≤
1

2k2(1 − L)
ψ(x, 0) ∀x ∈ X.

To prove uniqueness, let P ′ : X → Xm be another k-quadratic Euler–Lagrange functional mapping
satisfying inequality (3.3). Then we have

m
(

P (x) − P ′(x)
)

≤
1

2
m (2P (x) − q(x)) +

1

2
m

(

2P ′(x) − q(x)
)

≤
ψ(x, 0)

2k2(1 − L)
<∞

for all x ∈ X and k ∈ N.
Again, let P and P ′ be two fixed points of S such that

m
(

P (x)) − P ′(x)
)

<∞.

Then, by Theorem 1, we conclude that P (x) = P ′(x) for all x ∈ X.
This completes the proof of the theorem. �

Corollary 1. Let X be a normed linear space, and let Xm be an m-complete convex modular

space. Suppose θ ≥ 0. Let q : X → Xm be a function with q(0) = 0 satisfying

m
(

q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
)

≤ θ
(

‖x‖p + ‖y‖p
)

for all x, y ∈ X, k ∈ N, and 0 ≤ p < 1. Then there exists a unique k-quadratic mapping

P : X → Xm such that

m
(

2P (x) − q(x)
)

≤
θ

k2(2 − 2p)
‖x‖p

for all x ∈ X.

P r o o f. Define
ψ(x, y) = θ

(

‖x‖p + ‖y‖p
)

for all x, y ∈ X and take L = 2p−1. Then the proof of the result follows similarly to Theorem 2. �

Corollary 2. Let ǫ ≥ 0, X be a normed linear space, and Xm be an m-complete convex modular

spaces. Suppose a function q : X → Xm with q(0) = 0 satisfies

m(q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y) ) ≤ ǫ

for all x, y ∈ X and k ∈ N. Then there exists a unique k-quadratic mapping P : X → Xm such

that

m(2P (x) − q(x)) ≤
ǫ

k2

for all x ∈ X.
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P r o o f. Define ψ(x, y) = ǫ for all x, y ∈ X and take L = 1/2. Then the proof of the result
follows similarly to Theorem 2. �

Corollary 3. Let θ, ǫ ≥ 0, X be a normed linear space, and let Y be a Banach space. Suppose

that a mapping q : X → Y with q(0) = 0 satisfies the inequality

∥

∥q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
∥

∥ ≤ ǫ+ θ(‖x‖ + ‖y‖)

for all x, y ∈ X and k ∈ N. Then there exists a unique k-quadratic mapping P : X → Y such that

‖(2P (x) − q(x))‖ ≤
ǫ

k2(2 − 2p)
+

θ

k2(2 − 2p)
‖x‖p

for all x ∈ X and 0 ≤ p < 1.

P r o o f. Since every normed linear space is a modular space, we define m(x) = ‖x‖ and

ψ(x, y) = ǫ+ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X and take L = 2p−1. Then the proof follows from Theorem 2. �

Example 2. Let (X, ‖ · ‖) be a commutative Banach algebra, and let Xm be an m-complete
convex modular space, where m(x) = ‖x‖.

Define q : X → Xm by

q(x) = ax2 +A‖x‖x0

for all x ∈ X, where a, A ∈ R
+ and x0 is a unit vector in X. Then

m
(

q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
)

≤ 2A
[

(k2 − k − 2)‖x‖ + 4‖y‖
]

for all x, y ∈ X.

Define

ψ(x, y) = 2A[(k2 − k − 2)‖x‖ + 4‖y‖]

for all x, y ∈ X and take L = 1/2. Thus, all the conditions of Theorem 2 are satisfied. Then there
exists a unique k-quadratic Euler–Lagrange function P : X → Xm such that

m(2P (x) − q(x) ≤
2A(k2 − k − 2)

k2
‖x‖ ∀ x ∈ X.

Remark 1. Many of the Hyers–Ulam–Rassias stability results rely on the ∆α-condition stated in
part (v) of Definition 4 for various values of α ≥ 2. Our theorems are established without assuming
this condition on the modular space. Omitting this condition makes the proof more involved.
Furthermore, we have employed fixed point methods within the framework of modular spaces.
Such an approach to stability problems in modular spaces has previously appeared in [22]. This
methodology can also be adapted to other functional equations, potentially serving as a foundation
for future research.
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prove a refinement of the Turán-type inequality for rational functions obtained recently by Akhter et al. Next,
using examples, we discuss the result of Mir et al.
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1. Introduction

Let C denote the set of complex numbers z, and let ℜ(z) be the real part of z. Let Pn be the
set of all complex polynomials

g(z) :=
n
∑

k=0

dkz
k

of degree at most n, and let g′(z) be the derivative of g(z). Let Sl := {z : |z| = l}, and let R−
l and

R+
l be the interior and exterior of Sl, respectively. For γk ∈ C, let

w(z) :=

n
∏

k=1

(z − γk); V (z) :=

n
∏

k=1

(

1− γkz

z − γk

)

,

and let

Rn = Rn(γ1, γ2, . . . , γn) :=

{

g(z)

w(z)
: g ∈ Pn

}

be the set of rational functions having a finite limit as z → ∞ and poles γ1, γ2, . . . , γn, such that
γk ∈ R+

1 . The well-known result of Bernstein [4] states the following.

Theorem 1 [4]. For any z ∈ C, if g ∈ Pn, then

max
z∈S1

|g′(z)| ≤ nmax
z∈S1

|g(z)|.

Confining himself to the set of polynomials whose zeros all lie in S1 ∪ R+
1 , Erdös conjectured,

which was later confirmed by Lax [5], that

max
z∈S1

|g′(z)| ≤ n

2
max
z∈S1

|g(z)|.

1The first author is highly thankful to NIT Manipur for financial support.

https://doi.org/10.15826/umj.2025.1.009
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If all zeros of g(z) are in S1 ∪R−
1 , Turán [9] proved that

max
z∈S1

|g′(z)| ≥ n

2
max
z∈S1

|g(z)|.

Li et al. [6] derived inequalities similar to Bernstein inequalities for rational functions q ∈ Rn,
considering prescribed poles γ1, γ2, . . . , γn and replacing zn by the Blashke product V (z). They
established the following result featuring these poles.

Theorem 2 [6]. If q ∈ Rn has all its zeros in S1 ∪R+
1 , then, for z ∈ S1,

|q′(z)| ≤ 1

2
|V ′(z)||q(z)|.

Equality holds for q(z) = a0V (z) + b0 with |a0| = |b0| = 1.

Aziz and Shah [2] improved this inequality as follows.

Theorem 3 [2]. Let q ∈ Rn and all its zeros lye in S1 ∪ R+
1 . If e1, e2, . . . , en are the zeros of

V (z) + ξ and ǫ1, ǫ2, . . . , ǫn are the zeros of V (z)− ξ, ξ ∈ S1, then, for z ∈ S1,

|q′(z)| ≤ |V ′(z)|
2

{

(

max
1≤k≤n

|q(ek)|
)2

+
(

max
1≤k≤n

|q(ǫk)|
)2
}1/2

. (1.1)

Recently, Mir et al. [7] proved the following result, which gives a generalized and strengthened
upper estimate than that in Theorem 3.

Theorem 4 [7]. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in Sl ∪ R+
l , l ≥ 1, except for a zero of

multiplicity s at the origin. If e1, e2, . . . , en are the zeros of V (z)+ ξ and ǫ1, ǫ2, . . . , ǫn are the zeros

of V (z)− ξ, ξ ∈ S1, then, for z ∈ S1,

|q′(z)| ≤ |V ′(z)|
2

{

(

max
1≤k≤n

|q(ek)|
)2

+
(

max
1≤k≤n

|q(ǫk)|
)2

−4

(

l

1 + l

( |d0| − lm−s|dm−s|
|d0|+ lm−s|dm−s|

)

− sl

1 + l
− 2m− n(1 + l)

2(1 + l)

) |q(z)|2
|V ′(z)|

}1/2

.

(1.2)

Furthermore, Li et al. [6] obtained the following inequality for rational functions, which gener-
alizes the polynomial inequality of Turán [9].

Theorem 5 [6]. If q ∈ Rn has all its zeros in S1 ∪R−
1 , then, for z ∈ S1,

|q′(z)| ≥ 1

2
|V ′(z)||q(z)|.

Recently, Akhter et al. [1] obtained the following result by introducing a complex parameter α
which provides an improvement and a generalization of Theorem 5.
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Theorem 6 [1]. Assume that

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity s

at the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

1 + l
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)| + 1

1 + l

(

l(2s − n) + 2m− n+ 2(m− s)ℜ(δ)
)

}

|q(z)|.

In this paper, we first establish a refined inequality of Theorem 6 by including certain coefficients
of the polynomial, and then discuss Theorem 4 due to Mir et al. [7] using counterexamples that
they claim improve the bound given by Theorem 3. The paper is organized as follows. Section 2
presents the main result, some remarks, and corollaries. In addition, we discuss the result due to
Mir et al. [7]. Section 3 presents some auxiliary results necessary to establish the main result.
Section 4 provides a proof of the main result. Section 5 concerns the conclusion.

2. Main result and discussion

Here, we present the following result concerning rational functions, which generalizes and sharp-
ens the polynomial inequality of Turán [9].

Theorem 7. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity

s at the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

1 + l
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)|+ 1

1 + l

(

l(2s− n) + 2m− n

+2l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

|q(z)|.
(2.1)

Remark 1. Since the zeros of the polynomial

h(z) =
g(z)

zs
=

m−s
∑

k=0

dkz
k

are in Sl ∪R−
l , l ≤ 1, we have

∣

∣

∣

∣

d0

dm−s

∣

∣

∣

∣

≤ lm−s,
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which is equivalent to
√

lm−s|dm−s| ≥
√

|d0|. (2.2)

On the right-hand side of inequality (2.1) of Theorem 7, there is an extra term contributed by
the quantity

2l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)

,

which in view of (2.2) is nonnegative, and hence Theorem 7 refines Theorem 6.

Taking δ = 0 and m = n in Theorem 7, we obtain the following interesting result, which gives
a generalization and an improvement of Theorem 5 due to Li et al. [6], and an improvement of the
result established by Akhter et al. [1, Corollary 2.2].

Corollary 1. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
n−s
∑

k=0

dkz
k

is an n-degree polynomial having all its zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity s at the

origin. Then, for z ∈ S1,

|q′(z)| ≥ 1

2

{

|V ′(z)| + 1

1 + l

(

2ls+ n(1− l) + 2l
(

√

ln−s|dn−s| −
√

|d0|
√

ln−s|dn−s|

)

)}

|q(z)|.

Moreover, taking l = 1 in Theorem 7, we obtain a result that improves the known result
[1, Corollary 2.4] obtained by Akhter et al.

Corollary 2. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in S1 ∪ R−
1 and a zero of multiplicity s at

the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

2
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)|+ (s+m− n) +
(

√

|dm−s| −
√

|d0|
√

|dm−s|

)

+ (m− s)ℜ(δ)
}

|q(z)|.

Next, the claim that the bound in inequality (1.2) of Theorem 4 proved by Mir et al. [7]
sharpens the bound in inequality (1.1) of Theorem 3 due to Aziz and Shah [2] follows in the case
when the quantity

(

l

1 + l

( |d0| − lm−s|dm−s|
|d0|+ lm−s|dm−s|

)

− sl

1 + l
− 2m− n(1 + l)

2(1 + l)

)

= A

on the right-hand side of inequality (1.2) of Theorem 4 is nonnegative. But this is not always the
case, as the following counterexamples illustrate.
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Example 1. Let q ∈ R6, where g(z) = z3(z3 − z2 + z − 1) has the zeros {1, i,−i} on |z| = 1
and the remaining zeros at the origin. It can be easily seen that this polynomial gives A = −1.5 in
Theorem 4.

Example 2. Let q ∈ R5, where g(z) = z3(z2 − 4) has the zeros {−2, 2} on |z| = 2 and the
remaining zeros at the origin. For this polynomial, we have A = −1.1666̄.

3. Lemmas

We must incorporate the following lemmas into our proof to demonstrate the theorem. Aziz
and Zargar [3] established the first.

Lemma 1 [3]. If

V (z) =
n
∏

k=1

(

1− γkz

z − γk

)

,

then, for z ∈ S1,

ℜ
(

zw′(z)

w(z)

)

=
n− |V ′(z)|

2
.

Lemma 2. If 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and 0 ≤ l ≤ 1, then

2

1 + a
≥ 1 + l

√
b− l

√
ab.

P r o o f. For a = 1, the inequality follows trivially. So, take a < 1, then

1 +
√
a

1 + a
> 1 ≥ l

√
b;

that is,
1− a

1 + a
> l

√
b
1− a

1 +
√
a
= l

√
b− l

√
ab.

Hence,
2

1 + a
> 1 + l

√
b− l

√
ab.

�

The following lemma we prove is a generalization of a finding by Singh and Chanam [8].

Lemma 3. If g ∈ Pn (n ≥ 1) has all its zeros in Sl ∪ R−
l , l ≤ 1, then, for z ∈ S1 such that

g(z) 6= 0,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

n+ l
(

√

ln|dn| −
√

|d0|
√

ln|dn|

)

}

. (3.1)

Remark 2. As the abstract mentioned, for l = 1, this lemma reduces to Lemma 2 of Singh and
Chanam [8].

P r o o f. For simplicity, suppose that dn = 1. We apply mathematical induction on the degree
of g(z).



On Recent Results Concerning Rational Functions 129

If n = 1, then g(z) = z − z0, z0 ∈ Sl ∪R−
l , and, for z ∈ S1 and z 6= z0, we have

ℜ
(

z
g′(z)

g(z)

)

= ℜ
(

z

z − z0

)

≥ 1

1 + |z0|
.

By basic computation, we can show that, for z0 ∈ Sl ∪R−
l ,

1

1 + |z0|
≥ 1

1 + l

{

1 + l
(

√
l −
√

|z0|√
l

)

}

.

So,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

1 + l
(

√
l −
√

|z0|√
l

)

}

,

which is inequality (3.1) for n = 1.
Suppose that (3.1) holds for all polynomials of degree ≤ M .
Let g(z) = (z − w)G(z), w ∈ Sl ∪R−

l , where

G(z) =
M
∑

k=0

dkz
k

is a polynomial of degree M having all its zeros in Sl ∪R−
l , then

ℜ
(

z
g′(z)

g(z)

)

= ℜ
(

z

z −w

)

+ ℜ
(

z
G′(z)

G(z)

)

≥ 1

1 + |w| +
1

1 + l

{

M + l

(

√
lM −

√

|d0|√
lM

)}

for all z ∈ S1 such that g(z) 6= 0.
It is required to show that, for z ∈ S1,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

M + 1 + l

(

√
lM+1 −

√

|w||d0|√
lM+1

)}

. (3.2)

Clearly, inequality (3.2) holds if

1

1 + |w| +
1

1 + l

{

M + l

(

√
lM −

√

|d0|√
lM

)}

≥ 1

1 + l

{

M + 1 + l

(

√
lM+1 −

√

|w||d0|√
lM+1

)}

,

which is equivalent to

1 + l

1 + |w| ≥ 1 + l

√

|d0|
lM

− l

√

|w||d0|
lM+1

. (3.3)

As the zeros of g(z) are in Sl ∪R−
l and

0 ≤ l ≤ 1, 0 ≤ |d0|
lM

≤ 1, 0 ≤ |w|
l

≤ 1,

by Lemma 2,

2l

l + |w| ≥ 1 + l

√

|d0|
lM

− l

√

|w||d0|
lM+1

. (3.4)

Also,
1 + l

1 + |w| ≥
2l

l + |w| . (3.5)

From (3.4) and (3.5), inequality (3.3) follows, and this proves Lemma 3. �
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4. Proof of the main result

P r o o f o f T h e o r e m 7. Since

q(z) =
zsh(z)

w(z)
∈ Rn,

where

h(z) =

m−s
∑

k=0

dkz
k,

for every complex δ, |δ| ≤ 1, we have

zq′(z)

q(z)
+

(m− s)δ

1 + l
= s+

zh′(z)

h(z)
− zw′(z)

w(z)
+

(m− s)δ

1 + l
.

Equivalently,

ℜ
(

zq′(z)

q(z)
+

(m− s)δ

1 + l

)

= s+ ℜ
(

zh′(z)

h(z)

)

−ℜ
(

zw′(z)

w(z)

)

+
(m− s)ℜ(δ)

1 + l
.

Specially for z ∈ S1, using Lemmas 3 and 1, we have

ℜ
(

zq′(z)

q(z)
+

(m− s)δ

1 + l

)

≥ s+
1

1 + l

{

m− s+ l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)}

−
(

n− |V ′(z)|
2

)

+
(m− s)ℜ(δ)

1 + l

=
1

2

{

|V ′(z)| + 1

1 + l

(

l(2s− n) + 2m− n+ 2l

(

√

lm−s|dm−s|−
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

,

from which it is obvious that
∣

∣

∣

∣

zq′(z) +
(m− s)δ

1 + l
q(z)

∣

∣

∣

∣

≥ 1

2

{

|V ′(z)|+ 1

1 + l

(

l(2s− n) + 2m− n+ 2l

(

√

lm−s|dm−s|−
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

|q(z)|.

This proves Theorem 7. �

5. Conclusion

This paper investigates the bounds of the derivative of a class of rational functions on the unit
disk while considering the contribution of certain coefficients of the underlying polynomial. We
also discuss the result by Mir et al., recently published in the Ural Mathematical Journal, using
some counterexamples.
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A DEGENERATE EQUATION OF HIGH EVEN ORDER

Akhmadjon K. Urinova,b,†, Dastonbek D. Oripova,††

aFergana State University,
19, Murabbiylar st., Fergana, 150100, Uzbekistan;

bV.I. Romanovskiy Institute of Mathematics of Uzbekistan Academy of Sciences,
9 University Str., 100174 Tashkent, Uzbekistan

†urinovak@mail.ru ††dastonbekoripov94@gmail.com

Abstract: In this paper, we formulate and study an initial boundary-value problem of the type of the
third boundary condition for a degenerate partial differential equation of high even order in a rectangle. Using
the Fouriers method, based on separation of variables, a spectral problem for an ordinary differential equation
is obtained. Using the Green’s function method, the latter problem is equivalently reduced to the Fredholm
integral equation of the second kind with a symmetric kernel, which implies the existence of eigenvalues and
a system of eigenfunctions of the spectral problem. Using the found integral equation and Mercer’s theorem,
the uniform convergence of certain bilinear series depending on the eigenfunctions is proved. The order of the
Fourier coefficients has been established. The solution to the considered problem has been written as a sum
of the Fourier series over the system of eigenfunctions of the spectral problem. The uniqueness of the solution
to the problem was proved using the method of energy integrals. An estimate for solution of the problem was
obtained, which implies its continuous dependence on the given functions.

Keywords: Degenerate equation, Initial boundary-value problem, Method of separation of variables, Spec-
tral problem, Green’s function method, Integral equation, Fourier series.

1. Introduction

Recently, researchers have been paying more and more attention to degenerate partial differen-
tial equations. This trend is primarily driven by the intrinsic requirements of the theory of partial
differential equations. Additionally, a multitude of problems in gas dynamics, hydrodynamics [4, 5],
the theory of infinitesimal bending of surfaces, and the momentless theory of shells with alternating
curvature [17], as well as in the theory of oscillations [8, 9], mathematical biology [12], filtration
theory, boundary layer theory, and technical mechanics, necessitate the investigation of degenerate
partial differential equations.

Currently, intensive research is underway on initial boundary value problems in quadrangular
domains for degenerate partial differential equations of high even order in spatial variables. For
instance, in [3], initial boundary value problems in a rectangle were formulated and investigated
for the following degenerate equation:

∂lu

∂tl
= (−1)k

∂k

∂xk

(

xα
∂ku

∂xk

)

+ f(x, t), l = 1, 2, α ∈ (0, 2k). (1.1)

Moreover, in [2] and [13], similar equations with generalizations were explored.

When considering initial boundary value problems for degenerate equations of type (1.1), the
formulation of the problems is significantly influenced by the degree of degeneracy α [2, 3], and
sometimes by the evenness and oddness of the number k. Additionally, as the order of the equation

https://doi.org/10.15826/umj.2025.1.010
mailto:urinovak@mail.ru
mailto:dastonbekoripov94@gmail.com
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increases, the number of options for boundary conditions also increases. For instance, in [2, 3],
when considering initial boundary value problems for equation (1.1) in the quadrilateral

Ω = {0 < x < 1, 0 < t < T}
at 0 < α < 1, boundary conditions of the form

(

∂j/∂xj
)

u
∣

∣

x=0
= 0, j = 0, k − 1; (∂q/∂xq)u|x=1 = 0, q = 0, k − 1 (1.2)

were specified, at α ∈ (1, k), some boundary conditions at x = 0 are replaced by the boundedness
condition, and at α ∈ (k, 2k) at x = 0 no boundary conditions were specified.

In [13], considering equation (1.1) for α ∈ (0, 1), boundary conditions of the form (1.2) were
specified, but here q = k, 2k − 1.

In [6, 7], when considering a degenerate equation of a different type, boundary conditions (1.2)
were adopted. In [15], for a specific degenerate equation, a problem with boundary conditions
relating the values of the desired function and the derivatives with respect to x at x = 0 and
x = 1 was formulated and studied. In [1] and [16], for equation (1.1) with α = 0, l = 2, and
for a degenerate fourth-order equation of type (1.1) respectively, conditions of the third type were
specified for both x = 0 and x = 1. Moreover, in [14], a mixed problem was considered for a fourth-
order degenerate equation with fractional case of l, namely for 1 < l < 2, and the dependence of
the degeneration degree of α to the formulation of the boundary conditions has been studied.

In this paper, an initial boundary value problem with conditions similar to the third boundary
condition for a degenerate partial differential equation of high even order in a rectangle is formulated
and investigated.

2. Formulation of the problem

In a rectangle
Ω = {(x, t) : 0 < x < 1; 0 < t < T},

we consider the following degenerate equation of high even order

∂2u

∂t2
+

∂2n

∂x2n

(

xα
∂2nu

∂x2n

)

= f(x, t), (2.1)

where u = u(x, t) is an unknown function, f(x, t) is a given function, and α is a given real number,
such that 0 < α < 1 and n ∈ N .

We study the following initial boundary-value problem:

Problem A. Find a function u(x, t) such that:
1) ut,

(

∂j/∂xj
)

u,
(

∂j/∂xj
) [

xα
(

∂2n/∂x2n
)

u
]

∈ C(Ω̄), j = 0, 2n − 1;
(

∂2n/∂x2n
) [

xα
(

∂2n/∂x2n
)

u
]

, utt ∈ C(Ω);
2) it satisfies the equation (2.1) in the domain Ω;
3) it satisfies the following initial conditions

u(x, 0) = ϕ1(x), x ∈ [0, 1], ut(x, 0) = ϕ2(x), x ∈ [0, 1] (2.2)

and boundary conditions

∂2j

∂x2j
u(0, t)=

∂2j+1

∂x2j+1
u(0, t),

∂2j

∂x2j

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=0
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=0
;

∂2j

∂x2j
u(1, t)=

∂2j+1

∂x2j+1
u(1, t),

∂2j

∂x2j

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=1
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=1
;

j = 0, n − 1, t ∈ [0, T ],























(2.3)
where ϕ1(x) and ϕ2(x) are given continuous functions.
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3. Investigation of the spectral problem

By formally applying the Fourier method to the problem A, we get the following spectral
problem:

M [v(x)] ≡
(

xαv(2n)(x)
)(2n)

= λv(x), 0 < x < 1; (3.1)

v(j)(x),
(

xαv(2n)(x)
)(j) ∈ C[0, 1], j = 0, 2n − 1;

v(2j)(0) = v(2j+1)(0),
[

xαv(2n)(x)
](2j)

∣

∣

∣

x=0
=

[

xαv(2n)(x)
](2j+1)

∣

∣

∣

x=0
, j = 0, n − 1;

v(2j)(1) = v(2j+1)(1),
[

xαv(2n)(x)
](2j)

∣

∣

∣

x=1
=

[

xαv(2n)(x)
](2j+1)

∣

∣

∣

x=1
, j = 0, n − 1.























(3.2)

It is easy to verify that for any functions v(x) and w(x) satisfying the conditions (3.2), the
equality

∫ 1

0
w(x)M [v(x)]dx =

∫ 1

0
v(x)M [w(x)]dx

holds true. This implies that the problem with conditions M [v(x)] = 0 and (3.2) is self-adjoint.
Let v(x) be a function satisfying conditions {(3.1), (3.2)}. Then, multiplying the equation (3.1)

with the function v(x) and integrating the resulting equality over the interval [0, 1], and subse-
quently applying the integration by parts rule and considering equalities (3.2), we arrive at

λ

∫ 1

0
v2(x)dx =

∫ 1

0
xα

[

v(2n)(x)
]2
dx. (3.3)

If λ = 0, then from equality (3.3) it follows that

v(2n)(x) = 0, 0 < x < 1.

Hence, due to the conditions

v(2j)(0) = v(2j+1)(0), v(2j)(1) = v(2j+1)(1), j = 0, n− 1,

we have v(x) ≡ 0, 0 ≤ x ≤ 1. If λ < 0, then from (3.3) it immediately follows that v(x) ≡ 0,
0 ≤ x ≤ 1. Consequently, problem {(3.1), (3.2)} can have nontrivial solutions only for λ > 0.

Assuming λ > 0, we prove the existence of eigenvalues of problem {(3.1), (3.2)} using the Green’s
function method. The Green’s function G(x, s) of this problem has the following properties:

1)
(

∂j/∂xj
)

G(x, s), j = 0, 2n − 1 and
(

∂j/∂xj
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]

, j = 0, 2n − 2 are
continuous for all x, s ∈ [0, 1];

2) in each of the intervals [0, s) and (s, 1] there exists a continuous derivative
(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]

, and at x = s it has a jump:

(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]x=s+0

x=s−0
= 1; (3.4)

3) in the intervals (0, s) and (s, 1) with respect to the argument x there exists a continuous
derivative MG(x, s) and the equality MG(x, s) = 0 holds;

4) for s ∈ (0, 1) with respect to x it satisfies the conditions

∂2jG(0, s)

∂x2j
=

∂2j+1G(0, s)

∂x2j+1
,

∂2j

∂x2j

(

xα
∂2n

∂x2n
G(x, s)

)
∣

∣

∣

x=0
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
G(x, s)

)
∣

∣

∣

x=0
, j = 0, n − 1;














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∂2jG(1, s)

∂x2j
=

∂2j+1G(1, s)

∂x2j+1
,

∂2j

∂x2j

(

xα
∂2n

∂x2n
G(x, s)

)∣

∣

∣

x=1
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
G(x, s)

)∣

∣

∣

x=1
, j = 0, n − 1.















As proven above, problem {(3.1), (3.2)} for λ = 0 has only a trivial solution. Then, according
to [11, p. 39], there exists a unique Green’s function G(x, s) for this problem. Let us now prove
that the Green’s function G(x, s), satisfying the above conditions 1–4, is symmetric with respect
to its arguments.

Let
v(x), h(x) ∈ C2n−1[0, 1]; xαv(2n)(x), xαh(2n)(x) ∈ C2n−1[0, 1] ∩C2n(0, 1).

Let us introduce the following notation:

M [v(x)] ≡
(

xαv(2n)(x)
)(2n)

= f(x), M [h(x)] ≡
(

xαh(2n)(x)
)(2n)

= g(x).

Then the following equality holds true

h(x)M [v(x)] − v(x)M [h(x)] = h(x)
(

xαv(2n)(x)
)(2n) − v(x)

(

xαh(2n)(x)
)(2n)

=

2n−1
∑

j=0

d

dx

{

(−1)j
[

h(j)(x)
(

xαv(2n)(x)
)(2n−1−j) − v(j)(x)

(

xαh(2n)(x)
)(2n−1−j)

]}

= f(x)h(x)− g(x)v(x), 0 < x < 1.

(3.5)

If we assume v(x) = G(x, s) and h(x) = G(x, ξ), then at all the points of the interval (0, 1),
except points x 6= ξ, x 6= s, the equalities M [v(x)] = 0 and M [h(x)] = 0 hold. Then equality (3.5)
takes the form

2n−1
∑

j=0

d

dx

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}

= 0, x ∈ (0, 1)/{s, ξ}
(3.6)

Without loss of generality, we assume that s < ξ. Then the segment [0, 1] is divided into three
segments: [0, s], [s, ξ], [ξ, 1]. Integrating the equality (3.6) over these segments, we obtain

2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=s−0

x=0

+
2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=ξ−0

x=s+0

+
2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=1

x=ξ+0

= 0.
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If we consider the properties 1 and 4 of the Green’s function G(x, s), then the last equality
takes the form:

−
[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)]
∣

∣

∣

x=s+0

x=s−0
+

[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)]x=s+0

x=s−0

−
[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)]x=ξ+0

x=ξ−0
+

[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

]∣

∣

∣

x=ξ+0

x=ξ−0
= 0.

According to the property 2 of the function G(x, η), the derivative of
(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, η)
]

is continuous at x 6= η. Therefor we have the equality

[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)∣

∣

∣

x=s−0
−G(x, ξ)

d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)∣

∣

∣

x=s+0

]

+
[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)
∣

∣

∣

x=ξ+0
−G(x, s)

d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)
∣

∣

∣

x=ξ−0

]

= 0.

Hence, by virtue of equality (3.4), the equality

−G(s, ξ) +G(ξ, s) = 0,

follows, which we need to prove.
In the special case when n = 1, the Green’s function G (x, s) takes the following form:

G (x, s) =



















sx3−α

(2− α)2
+

sx2−α

(1− α)2
+

( s3−α

(2− α)2
+

s

3− α
+

1

3− α

)

(x+ 1) , 0 ≤ x ≤ s,

xs3−α

(2− α)2
+

xs2−α

(1− α)2
+

( x3−α

(2− α)2
+

x

3− α
+

1

3− α

)

(s+ 1) , s ≤ x ≤ 1.

Now, applying the method used in [11], it is easy to verify that problem {(3.1), (3.2)} is equiv-
alent to study of the following integral equation

v(x) = λ

∫ 1

0
G(x, s)v(s)ds. (3.7)

Since the kernel is continuous, symmetric and positive, the integral equation (3.7), and therefore,
the problem {(3.1), (3.2)} both have a countable set of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λk < . . . , λk → +∞,

and the corresponding system of eigenfunctions v1(x), v2(x), v3(x), . . . , vk(x) . . . forms an or-
thonormal system in the space L2(0, 1) [10].

In addition, it is not difficult to verify that the system of functions xα/2v
(2n)
k (x)/

√
λk,

k = 1, 2, . . . also forms an orthonormal system in L2(0, 1).

Lemma 1. Let the function g(x) satisfy the conditions (3.2) and Mg(x) ∈ C(0, 1) ∩ L2(0, 1).
Then, g(x) can be expanded on the segment [0, 1] into the absolutely and uniformly convergent series

in the system of eigenfunctions of the problem {(3.1), (3.2)}.

P r o o f. Using the integration by parts rule, the properties of the Green’s function G(x, s),
and the conditions imposed on the function g(x), it is straightforward to verify the equality:

∫ 1

0
G(x, s)Mg(s)ds =

∫ 1

0
G(x, s)

[

sαg(2n)(s)
](2n)

ds = g(x).
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Since Mg(x) ∈ L2(0, 1), it follows from the last equality that g(x) is a function representable
through the kernel G(x, s). Additionally, the function G(x, s), i.e. the kernel of equation (3.7), is
continuous in Ω̄. Then, based on Theorem 2 in [10, p. 153], the statement of Lemma 1 holds true. �

Lemma 2. The following series converge uniformly on segment [0, 1] :

+∞
∑

k=1

[

v
(j)
k (x)

]2
/λk,

+∞
∑

k=1

(

[

xαv
(2n)
k (x)

](j)
)2

/λ2
k, j = 0, 2n − 1 (3.8)

P r o o f. Considering the equality (3.1) and the properties of the function G(x, s), from (3.7)
at v(x) ≡ vk(x), we obtain

v
(j)
k (x) = λk

∫ 1

0

∂j

∂xj
G(x, s)vk(s)ds =

∫ 1

0

[

sαv
(2n)
k (s)

](2n) ∂j

∂xj
G(x, s)ds, j = 0, 2n − 1.

Hence, applying the rule of integration by parts 2n times, and then considering the condi-
tions (3.2), we have

v
(j)
k (x) =

∫ 1

0
sαv

(2n)
k (s)

∂2n+j

∂xj∂s2n
G(x, s)ds, j = 0, 2n − 1,

which, due to λk > 0, implies the equality

v
(j)
k (x)√
λk

=

∫ 1

0

(

sα/2
∂2n+j

∂xj∂s2n
G(x, s)

)

(

sα/2v
(2n)
k (s)√
λk

)

ds, j = 0, 2n − 1. (3.9)

From (3.9) it follows that v
(j)
k (x)/

√
λk is the Fourier coefficient of the function by the orthonor-

mal system
{

sα/2v
(2n)
k (s)/

√
λk

}+∞

k=1
.

Therefore, according to Bessel’s inequality [10], we obtain

+∞
∑

k=1

[

v
(j)
k (x)

]2
/λk ≤

∫ 1

0
sα

[ ∂2n+j

∂xj∂s2n
G(x, s)

]2
ds, j = 0, 2n − 1. (3.10)

The integral on the right-hand side (3.10) can be rewritten as

∫ 1

0
sα

[ ∂2n+j

∂xj∂s2n
G(x, s)

]2
ds =

∫ 1

0
s−α

[

∂j

∂xj

(

sα
∂2n

∂s2n
G(x, s)

)

]2

ds, j = 0, 2n − 1.

Since

sα
∂2nG(x, s)

∂s2n
,
∂jG(x, s)

∂xj
∈ C(Ω̄), j = 0, 2n − 1,

the function in the square bracket is continuous on Ω̄. Then, due to 0 < α < 1, the integral on the
right-hand side, and therefore the integral in (3.10), is uniformly bounded at j = 0, 2n − 1, which
implies that the first series in (3.8) converges uniformly.

The convergence of the remaining series can be proved similarly.
Lemma 2 has been proved. �
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Lemma 3. Let the conditions

g(j)(x) ∈ C[0, 1], j = 0, 2n − 1, xα/2g(2n)(x) ∈ C(0, 1) ∩ L2(0, 1);

g(2j)(0) = g(2j+1)(0), g(2j)(1) = g(2j+1), j = 0, n− 1

be fulfilled, then the inequality

+∞
∑

k=1

λkg
2
k ≤

∫ 1

0
xα

[

g(2n)(x)
]2
dx (3.11)

holds true. Specifically, the series on the left-hand side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

P r o o f. By utilizing equation (3.1), we can write

λ
1/2
k gk = λ

1/2
k

∫ 1

0
g(x)vk(x)dx = λ

−1/2
k

∫ 1

0
g(x)

[

xαv
(2n)
k (x)

](2n)
dx.

Hence, by applying the integration by parts rule 2n times and considering the properties of the
functions g(x) and vk(x), we derive

λ
1/2
k gk =

∫ 1

0

{

xα/2g(2n)(x)
}{

λ
−1/2
k xα/2v

(2n)
k (x)

}

dx.

This implies that λ
1/2
k gk is the Fourier coefficient of the function xα/2g(2n)(x) by the or-

thonormal system
{

xα/2v(2n)(x)/
√
λk

}+∞

k=1
. Therefore, according to Bessel’s inequality [10],

inequality (3.11) holds true. Lemma 3 has been proved. �

Lemma 4. Let the function g(x) satisfy the conditions (3.2) and let

Mg(x) ∈ C(0, 1) ∩ L2(0, 1),

then the following inequality holds true

+∞
∑

k=1

λ2
kg

2
k ≤

∫ 1

0
[Mg(x)]2dx. (3.12)

Specifically, the series on the left side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

P r o o f. By virtue of the formula for gk and equation (3.1), the equality

λkgk = λk

∫ 1

0
g(x)vk(x)dx =

∫ 1

0
g(x)

[

xαv
(2n)
k (x)

](2n)
dx

is valid.
Applying the rule of integration by parts 4n times to the integral on the right side and consid-

ering the properties of the functions g(x) and vk(x), we get
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λkgk =

∫ 1

0

[

xαg(2n)(x)
](2n)

vk(x)dx =

∫ 1

0

[

Mg(x)
]

vk(x)dx.

This implies that the value λkgk is the Fourier coefficient of the function Mg(x) in the
orthonormal system of functions {vk(x)}+∞

k=1. Then, according to Bessel’s inequality [10], inequal-
ity (3.12) holds true. Lemma 4 has been proved. �

Similarly to Lemma 3, one can prove the following

Lemma 5. If the function g(x) satisfies the conditions (3.2) and

[Mg(x)](j) ∈ C[0, 1], j = 0, 2n − 1; xα/2[Mg(x)](2n) ∈ C(0, 1) ∩ L2(0, 1);

[Mg(x)](2j)
∣

∣

x=0
= [Mg(x)](2j+1)

∣

∣

x=0
, [Mg(x)](2j)

∣

∣

x=1
= [Mg(x)](2j+1)

∣

∣

x=1
, j = 0, n − 1,

then the inequality
+∞
∑

k=1

λ3
kg

2
k ≤

∫ 1

0
xα

{

[Mg(x)](2n)
}2

dx

holds true, particularly, the series on the left side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

4. Existence, uniqueness and stability of a solution to Problem A

We will seek a solution to problem A in the form

u(x, t) =
+∞
∑

k=1

uk(t)vk(x), (4.1)

where vk(x), k ∈ N are the eigenfunctions of the problem {(3.1), (3.2)}, and uk(t), k ∈ N are the
unknown functions to be determined.

Substituting (4.1) into equation (2.1) and the initial conditions (2.2), with respect to uk(t),
k ∈ N , we obtain the following problem

u′′k(t) + λkuk(t) = fk(t), t ∈ (0, T ), k ∈ N,

uk(0) = ϕ1k, u′k(0) = ϕ2k,

where

ϕjk =

∫ 1

0
ϕj(x)vk(x)dx, j = 1, 2; fk(t) =

∫ 1

0
f(x, t)vk(x)dx, k ∈ N.

It is known that the solution to the last problem exists, is unique and is determined by the
following formula:

uk(t) = ϕ1k cos
(

t
√

λk

)

+ ϕ2kλ
−1/2
k sin

(

t
√

λk

)

+ λ
−1/2
k

∫ t

0
fk(τ) sin

[

(t− τ)
√

λk

]

dτ,

0 ≤ t ≤ T.

(4.2)

From here, the following estimate

|uk(t)| ≤ |ϕ1k|+
1√
λk

|ϕ2k|+
1√
λk

√

∫ T

0
f2
k (τ)dτ , 0 ≤ t ≤ T (4.3)

easily follows.
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Theorem 1. Let the function ϕ1(x) satisfy the conditions of Lemma 5, the function ϕ2(x)
satisfy the conditions of Lemma 4, and the function f(x, t) satisfy the conditions of Lemma 4 with

respect to the argument x uniformly in t. Then series (4.1), the coefficients of which are defined

by the equalities (4.2), determines the solution to problem A.

P r o o f. To do this, it is necessary to prove the uniform convergence in Ω̄ of series (4.1) and
the following series, formally obtained from (4.1):

ut(x, t) =
+∞
∑

k=1

u′k(t)vk(x),

∂ju(x, t)

∂xj
=

+∞
∑

k=1

uk(t)v
(j)
k (x), j = 1, 2n − 1,

∂j

∂xj

(

xα
∂2nu(x, t)

∂x2n

)

=

+∞
∑

k=1

uk(t)
(

xαv
(2n)
k (x)

)(j)
, j = 0, 2n − 1

and uniform convergence in any compact set of Ω0 ⊂ Ω the series

∂2n

∂x2n

(

xα
∂2nu(x, t)

∂x2n

)

=
+∞
∑

k=1

uk(t)
(

xαv
(2n)
k (x)

)(2n)
, (4.4)

utt(x, t) =

+∞
∑

k=1

u′′k(t)vk(x). (4.5)

Let us consider series (4.1). By virtue of (4.3) from (4.1), for any (x, t) ∈ Ω̄ we have

|u(x, t)| ≤
+∞
∑

k=1

|uk(t)| |vk(x)| ≤
+∞
∑

k=1

|vk(x)|√
λk

(

√

λk |ϕ1k|+ |ϕ2k|+

√

∫ T

0
f2
k (τ)dτ

)

.

From here, applying the Cauchy–Schwarz inequality, we obtain

|u(x, t)| ≤

√

√

√

√

+∞
∑

k=1

v2k(x)

λk

(

√

√

√

√

+∞
∑

k=1

λkϕ
2
1k +

√

√

√

√

+∞
∑

k=1

ϕ2
2k +

√

√

√

√

∫ T

0

+∞
∑

k=1

[fk(τ)]
2 dτ

)

. (4.6)

The series on the right-hand sides of this inequality, due to the conditions of Theorem 1,
according to Lemmas 2 and 3, converges uniformly. Therefore, the series on the left side, i.e.
series (4.1), converges uniformly in Ω̄.

Now, we consider the series (4.4). By virtue of equation (3.1), in any compact set Ω0 the series
in (4.4) may be written in the form

+∞
∑

k=1

λkuk(t)vk(x). (4.7)

To prove the uniform convergence of series (4.7), according to (4.3), it is enough to prove the
absolute and uniform convergence of the series

+∞
∑

k=1

λkϕ1kvk(x),

+∞
∑

k=1

√

λkϕ2kvk(x),

+∞
∑

k=1

√

λk

√

∫ T

0
[fk(τ)]

2 dτvk(x). (4.8)
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In Ω0, we apply the Cauchy-Schwarz inequality to each of these series:

∣

∣

∣

+∞
∑

k=1

λkϕ1kvk(x)
∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣

√

λ3
kϕ1k

vk(x)√
λk

∣

∣

∣
≤

[

+∞
∑

k=1

λ3
kϕ

2
1k

∞
∑

k=1

v2k(x)

λk

]1/2
,

∣

∣

∣

+∞
∑

k=1

√

λkϕ2kvk(x)
∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣
λkϕ2k

vk(x)√
λk

∣

∣

∣
≤

[

+∞
∑

k=1

λ2
kϕ

2
2k ·

∞
∑

k=1

v2k(x)

λk

]1/2
,

∣

∣

∣

+∞
∑

k=1

√

λk

√

∫ T

0
[fk(τ)]2dτ · vk(x)

∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣

√

λ2
k

∫ T

0
[fk(τ)]2dτ · vk(x)√

λk

∣

∣

∣

≤
[

∫ T

0

+∞
∑

k=1

λ2
k[fk(τ)]

2dτ ·
+∞
∑

k=1

v2k(x)

λk

]1/2
.

The series on the right-hand sides of these inequalities, due to the conditions of Theorem 1,
according to Lemmas 2, 4 and 5, converges uniformly. Then the series located on the left sides,
i.e. series (4.8) converges absolutely and uniformly in Ω0. Therefore, the series (4.7), and therefore
the series in (4.4), converges uniformly in the compact set Ω0. The uniform convergence in Ω0 of
series (4.5) follows from the convergence of series (4.4) and the validity of equation (2.1).

The uniform convergence of the remaining series is similarly proved. Theorem 1 has been
proved. �

Theorem 2. A problem a cannot have more than one solution.

P r o o f. Let us assume that there exist two solutions u1(x, t) and u2(x, t) of problem A.
We denote their difference by u(x, t). Then the function u(x, t) satisfies the equation (2.1) for
f(x, t) ≡ 0, and conditions (2.2) and (2.3) for ϕ1(x) ≡ ϕ2(x) ≡ 0.

Let ∀T0 ∈ (0, T ],

Ω0 = {(x, t) : 0 < x < 1, 0 < t < T0} .

It is obvious that Ω̄0 ⊂ Ω̄. Let us introduce the following function:

ω(x, t) = −
∫ T0

t
u(x, ξ)dξ, (x, t) ∈ Ω̄0.

This function has the following properties:

1) ωt, ωtt,
∂jω

∂xj
,

∂j

∂xj

(

xα
∂2nω

∂x2n

)

∈ C
(

Ω̄0

)

, j = 0, 2n − 1;

2) it satisfies the conditions (2.3) at t ∈ [0, T0].

Let us consider the equation (2.1) for f(x, t) ≡ 0 and multiply it by the function ω(x, t), and then
integrate the resulting equality over the domain Ω0 :

∫

Ω0

ω(x, t)
{

utt(x, t) +
∂2n

∂x2n

[

xα
∂2nu(x, t)

∂x2n

]}

dtdx = 0.

We rewrite this equality as

∫ T0

0
dt

∫ 1

0
ω(x, t)

∂2n

∂x2n

[

xα
∂2nu(x, t)

∂x2n

]

dt+

∫ 1

0
dx

∫ T0

0
ω(x, t)utt(x, t)dt = 0.
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Now, applying the rule of integration by parts, we obtain

∫ T0

0

[

ω(x, t)
∂2n−1

∂x2n−1

(

xα
∂2nu(x, t)

∂x2n

)

− ∂ω(x, t)

∂x

∂2n−2

∂x2n−2

(

xα
∂2nu(x, t)

∂x2n

)

+ . . .

+ . . .− ∂2n−1ω(x, t)

∂x2n−1

(

xα
∂2nu(x, t)

∂x2n

)

]x=1

x=0

dt+

∫ T0

0
dt

∫ 1

0
xα

∂2nω(x, t)

∂x2n
∂2nu(x, t)

∂x2n
dx+

+

∫ 1

0

[

ω(x, t)
∂u(x, t)

∂t

∣

∣

∣

t=T0

t=0
−

∫ T0

0

∂ω(x, t)

∂t

∂u(x, t)

∂t

]

dx = 0,

from which, due to the properties of functions ω(x, t) and u(x, t), the equality

∫ T0

0
dt

∫ 1

0
xα

∂2nω(x, t)

∂x2n
∂2nu(x, t)

∂x2n
dx−

∫ 1

0
dx

∫ T0

0

∂ω(x, t)

∂t

∂u(x, t)

∂t
dt = 0

follows.

Hence, taking into account equalities

u =
∂ω

∂t
,

∂2nu

∂x2n
=

∂2n+1ω

∂x2n∂t
,

we have

∫ 1

0
xαdx

∫ T0

0

∂2nω(x, t)

∂x2n
∂2n+1ω(x, t)

∂x2n∂t
dt−

∫ 1

0
dx

∫ T0

0
u(x, t)

∂u(x, t)

∂t
dt = 0.

Further, taking into account the equalities

u(x, t)
∂u(x, t)

∂t
=

1

2

∂

∂t
[u(x, t)]2,

∂2nω(x, t)

∂x2n
∂2n+1ω(x, t)

∂x2n∂t
=

1

2

∂

∂t

[

∂2nω(x, t)

∂x2n

]2

,

and applying the rule of integration by parts to integrals over t, taking into account ω (x, T0) = 0,
u(x, 0) = 0, we obtain

∫ 1

0
u2 (x, T0) dx+

∫ 1

0
xα

[

∂2nω(x, t)

∂x2n

]2

t=0

dx = 0.

It follows that u (x, T0) ≡ 0, x ∈ [0, 1]. Since we considered ∀T0 ∈ [0, T ], then u(x, t) ≡ 0,
(x, t) ∈ Ω̄. Then u1(x, t) ≡ u2(x, t), (x, t) ∈ Ω̄. Theorem 2 is proven. �

Theorem 3. Let functions ϕ1(x), ϕ2(x) and f(x, t) satisfy the conditions of Theorem 1. Then

for the solution of Problem A the following estimates

‖u(x, t)‖2L2(0,1)
≤ K0

[

‖ϕ1(x)‖2L2(0,1)
+ ‖ϕ2(x)‖2L2(0,1)

+ ‖f(x, t)‖2L2(Ω)

]

, (4.9)

B‖u(x, t)‖C(Ω) ≤ K1

[

‖ϕ(2n)
1 (x)‖L2,r(0,1) + ‖ϕ2(x)‖L2(0,1) + ‖f(x, t)‖L2(Ω)

]

, (4.10)

are valid, where

‖ϕ1(x)‖L2,r(0,1)
=

[
∫ 1

0
xα [ϕ1(x)]

2 dx

]1/2

and r = r(x) = xα, and K0 and K1 are some real positive numbers.
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P r o o f. Here, taking into account the orthonormality of the system {vk(x)}+∞
k=1 and inequal-

ity (4.3) followed from (4.1), we obtain

‖u(x, t)‖2L2(0,1)
=

+∞
∑

k=1

u2k(t) ≤
+∞
∑

k=1

[

|ϕ1k|+
1√
λk

|ϕ2k|+
1√
λk

‖fk(t)‖L2(0,T )

]2

≤ 3

+∞
∑

k=1

[

ϕ2
1k +

1

λk
ϕ2
2k +

1

λk
‖fk(t)‖2L2(0,T )

]

≤ 3

+∞
∑

k=1

[

ϕ2
1k +

1

λ1
ϕ2
2k +

1

λ1
‖fk(t)‖2L2(0,T )

]

.

Hence, considering Bessel’s inequality, we get

‖u(x, t)‖2L2(0,1)
≤ K0

(

‖ϕ1(x)‖2L2(0,1)
+ ‖ϕ2(x)‖2L2(0,1)

+
+∞
∑

k=1

‖fk(t)‖2L2(0,T )

)

, (4.11)

where K0 = 3C, C = max (1, 1/λ1) .
Taking into account the following easily verifiable equality

‖f(x, t)‖2L2(Ω) =
+∞
∑

n=1

‖fk(t)‖2L2(0,T ) ,

from (4.11), we obtain inequality (4.9).
Further, according to the statements of Lemmas 2 and 3, from (4.6) it follows

‖u(x, t)‖C()) = sup
Ω

|u(x, t)| ≤ K1

{

√

∫ 1

0
xα[ϕ

(2n)
1 (x)]2dx+

√

√

√

√

+∞
∑

k=1

ϕ2
2k +

√

√

√

√

∫ T+∞

0

+∞
∑

k=1

[fk(τ)]
2 dτ

}

,

where

K1 = sup
[0,1]

√

√

√

√

+∞
∑

k=1

v2k (x)/λk .

From here, due to the introduced notation, inequality (4.10) follows. Theorem 3 has been
proved. �

5. Conclusion

In a quadrilateral, an initial boundary-value problem has been considered for a high-order
partial differential equation that degenerates at the boundary of the domain. The uniqueness of
the solution to the problem was proved by the method of energy integrals. The solution to the
problem was found in the form of a Fourier series. The sufficient conditions for the given functions
have been identified that ensure the existence of a solution to the problem. The estimates for the
solution of the problem in spaces L2 [0, 1] and C [0, 1] have been obtained.

REFERENCES

1. Azizov M. S. An initial-boundary problem for a higher even-order partial differential equation with the
Bessel operator in a rectangle. Sci. Bull. Namangan State Univ., 2022. No. 10. P. 3–11. (in Russian)

2. Baikuziev K.B. A mixed problem for a higher-order equation that degenerates on the boundary of the
domain. Differ. Uravn., 1984. Vol. 20, No. 1. P. 7–14. (in Russian)

3. Baykuziev K.B., Kalanov B. S. On the solvability of a mixed problem for a higher order equation that
degenerates on the boundary of a domain. In: Kraevye zadachi dlya differencial’nyh uravnenij: collection

of papers. Tashkent: Fan, 1972. No. 2. P. 40–54; 1973. No. 3. P. 65–73. (in Russian)



144 Akhmadjon K. Urinov and Dastonbek D. Oripov

4. Frankl F. I. About tank water intake from fast small rivers. Trudy Kirgizskogo universiteta. Fiziko-

matematicheskij fakul’tet, 1953. No. 2. P. 33–45. (in Russian)

5. Frankl F. I. Izbranniye trudi po gazovoy dinamike [Selected Works on Gas Dynamics]. Moscow: Nauka,
1973. 711 p. (in Russian)

6. Irgashev B.Yu. Boundary value problem for a degenerate equation with a Riemann–Liouville operator.
Nanosystems: Phys., Chem., Math., 2023. Vol. 14, No. 5. P. 511–517.

7. Irgashev B.Y. Mixed problem for higher-order equations with fractional derivative and degeneration in
both variables. Ukr. Math. J., 2023. Vol. 74, No. 2. P. 1513–1525. DOI: 10.1007/s11253-023-02152-3

8. Makhover E.V. Bending of a plate of variable thickness with a sharp edge. Uch. zap. LGP im. Gercena,
1957. Vol. 17, No. 2. P. 28–39. (in Russian)

9. Makhover E.V. On the spectrum of natural frequencies of a plate with a sharp edge. Uch. zap. LGP

im. Gercena, 1958. Vol. 197. P. 113–118. (in Russian)

10. Mikhlin S.G. Leksii po lineynim integralnim uravneniyam [Lectures on Linear Integral Equations].
Moscow: Fizmatgiz, 1959. 232 p. (in Russian)

11. Naimark M.A. Lineinye differentsial’nye operatory [Linear Differential Operators]. Moscow: Nauka,
1969. 528 p. (in Russian)

12. Nakhushev A.M. Uravneniya matematicheskiy biologii [Mathematical Biology Equations]. Moscow:
Higher school, 1995. 301 p. (in Russian)

13. Urinov A.K., Azizov M. S. On the solvability of an initial boundary value problem for a high even order
partial differential equation degenerating on the domain boundary. J. Appl. Ind. Math., 2023. Vol. 17,
No. 2. P. 414–426. DOI: 10.1134/S1990478923020199

14. Urinov A.K., Mamanazarov A.O. A mixed problem for a time-fractional space-degenerate beam equa-
tion. Lobachevskii J. Math., 2025. Vol. 46, No. 2. P. 939–952. DOI: 10.1134/S1995080225600189

15. Urinov A.K., Oripov D.D. On the solvability of an initial boundary problem for a high even order
degenerate equation. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech.
Univ., Ser. Phys. Math. Sci.], 2023. Vol. 27, No. 4. P. 621–644. DOI: 10.14498/vsgtu2023 (in Russian)

16. Urinov A.K., Usmonov D.A. On one problem for a fourth-order mixed-type equation that degenerates
inside and on the boundary of a domain. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2023.
Vol. 33, No. 2. P. 312–328. DOI: 10.35634/vm230209 (in Russian)

17. Vekua I. N.Obobshenniye analiticheskiye funksii [Generalized Analytical Functions]. Moscow: Fizmatgiz,
1959. 628 p. (in Russian)

https://doi.org/10.1007/s11253-023-02152-3
https://doi.org/10.1134/S1990478923020199
https://doi.org/10.1134/S1995080225600189
https://doi.org/10.14498/vsgtu2023
https://doi.org/10.35634/vm230209


URAL MATHEMATICAL JOURNAL, Vol. 11, No. 1, 2025, pp. 145–162

DOI: 10.15826/umj.2025.1.011

THE IMPACT OF TOXICANTS IN THE MARINE THREE
ECOLOGICAL FOOD-CHAIN ENVIRONMENT:

A MATHEMATICAL APPROACH

Kavita Yadava,†, Raveendra Babu A.b,††, B. P. S. Jadona

aS. M. S. Govt. Model Science College,
Gwalior-474011, India

bDepartment of Mathematics,
Prestige Institute of Management and Research,

Gwalior-474020, India

†kavita240396@gmail.com ††raveendra96@rediffmail.com

Abstract: To explore the impact of toxicants on a marine ecological food chain system consisting of three
species, this work develops and analyzes a non-linear mathematical model. The model consists of five state
variables: phytoplankton, zooplankton, fish, environmental toxicant, and organismal toxicant. We have incor-
porated the Monod-Haldane functional response as a predation function for each species. Using the Jacobian
matrix, the stability analysis was conducted, and necessary constraints were obtained for the system’s local and
global stability. Hopf bifurcation analysis was performed for carrying capacity (K) and the rate of decrease in
the growth rate of phytoplankton due to the presence of toxicants (r1). Also, phase portraits are presented for
different parameters of the model. In addition, numerical simulations are executed using MATLAB to prove
theoretical findings and explore the impact of parameter variation on ecological species behavior.

Keywords: Environmental toxicant, Marine food chain, Stability, Hopf-bifurcation, Lyapunov function.

1. Introduction

It is well known that environmental contamination poses a significant threat to marine ecosys-
tems. The main causes of it are industrial discharge and chemical spills. The rapid expansion of
modern industry and agriculture significantly contributes to environmental pollution and habitat
degradation. These pollutants contain harmful elements such as cadmium, zinc, copper, iron and
mercury. As a result of the destruction of their natural ecosystems and increased exposure to
dangerous pollutants, many species face serious risks to their survival, and many are on the verge
of becoming extinct. Therefore, it is essential to study toxic substances in marine ecosystems from
an environmental and conservational point of view.

In recent decades, mathematical models have become tremendously helpful in understanding
and assessing the feeding relationships between species within ecosystems. In [2], Babu et al. ex-
plored the dynamic difficulties of a three-species food chain model. From the stability analysis,
sufficient constraints for the survival and extinction of the population under toxicant stress have
been revealed. Zhang et al. [22] considered an experimental marine food chain with three levels
(microalgae → zooplankton → fish) to evaluate how feeding selectivity affects the transmission
of methylmercury (MeHg+) across the food chain system. In [11], Misra and Babu proposed
and examined a three-species mathematical model in the presence of environmental and organis-
mal toxicants. They found that Hopf bifurcation occurs at the predation rate of the intermediate
predator. They also note that the system containing toxicants appears to be more stable than the
toxicant-free system. Kalyan Das et al. [5] determine how the nanoparticle influences the inter-
action between phytoplankton and zooplankton. They observed that when zooplankton consumes

https://doi.org/10.15826/umj.2025.1.011
mailto:kavita240396@gmail.com
mailto:raveendra96@rediffmail.com
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phytoplankton, the growth of the zooplankton is slowed down by nanoparticles. Majeed and Kad-
him [13] discussed the occurrence of local bifurcation and persistence under suitable food chain
conditions, including a model of prey-first predator-second predator under the influence of toxins
on all species. Talb et al. [20] considered a three-species aquatic food chain model in a polluted
environment. It is noted that there are rich dynamics in the proposed food chain model, including
periodic and chaotic. Kavita Yadav et al. [21] examined a marine tri-trophic food chain system
that has distributed delay and environmental toxicants. They observed that distributed delay and
environmental toxicants are crucial variables in the occurrence of Hopf bifurcation. Mandal et
al. [14] created a mathematical model to study the control of the harmful effects of toxicants on the
phytoplankton-zooplankton system by raising public awareness among people. They reveal that
a moderate level of anthropogenic pollution might cause the phytoplankton-zooplankton system
to become unstable. However, the contaminated system becomes stable due to public awareness.
Smith and Weis [18] have observed that fish from polluted environments have much higher mortality
rates than fish from unpolluted areas when they were exposed to a predator (blue crab Callinectes
sapidus Rathbun).

Although several mathematical models may be used to explain the dynamics of interacting
species, predator-prey theory is still based on the predator’s functional response. Pal et al. [17]
developed a simplified Monad Haldane (MH) functional response for toxin-producing phytoplankton
and zooplankton populations and investigated how the toxication process of phytoplankton affects
bloom creation and termination. Lui and Tan [9] where MH functional response is used for group
defense theory. Several studies, based on theoretical and experimental data, have examined tri-
trophic food chain systems, focusing on the impact of toxicants on the system’s survival or extinction
[1, 3, 4, 6–8, 10, 15, 16, 19]. So, these investigations encourage us to investigate the dynamics of
the fish, phytoplankton, and zooplankton systems when toxicants are present.

In this paper, we formulated a mathematical model to study the impact of toxicants in a three-
species marine food chain system considering Monad–Haldane functional responses. The existence
of several equilibrium points has been examined. Then we established the local stability of the
system using the Jacobian matrix. We also use the Lyapunov function and the Routh–Hurwitz
criteria to assess the global stability and durability of the system.

2. Model formulation

Here, we consider an ecological model with three marine species. There are two ways through
which toxicants can enter an organism. It can be absorbed by the population through resources
(food chain) or directly from the environment. The model assumes that organismal toxicants have
a negative impact on the growth rate of prey populations. In the absence of organismal toxicants,
the prey’s population growth follows logistic growth. In the model there are five state variables:
x(t) density of phytoplankton, y(t) density of zooplankton, z(t) density of fish, ce(t) concentration
of environmental toxicants and c0(t) concentration of organism toxicant in the prey population. By
considering these as state variables, we formulate a mathematical model to investigate the effects
of toxicants on a three-species marine food chain system using the following system of non-linear
ordinary differential equations

dx

dt
= xr(c0)

(

1− x

K

)

− axy

αx2 +m
, (2.1)

dy

dt
=

bxy

αx2 +m
− d1y −

cyz

βy2 + h
− g1y

2, (2.2)
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dz

dt
=

dyz

βy2 + h
− d2z − g2z

2, (2.3)

dce
dt

= q0 − a1ce − a2xce + vxc0, (2.4)

dc0
dt

= a2xce − b1c0 − vxc0, (2.5)

with x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, c0 ≥ 0, ce(0) > 0. Here, we assumed that the growth of
phytoplankton is negatively affected by organismal toxicants, we consider

r(c0) = r0 − r1c0,

where r0 denotes the intrinsic growth rate of phytoplankton, r1 is the constant that determines the
rate of decrease in the growth rate of phytoplankton due to the presence of toxicants, and K is the
environmental capacity.

The expression axy/(αx2 +m) describes the predation of phytoplankton by zooplankton fol-
lowing Monad Haldane functional response, a is the predation rate, m is the saturation constant
which is scaling the impact of the predator interference, food chain and food weighting factor, α
denotes the inhibitory effect.

As the zooplankton population consumes the phytoplankton population, the growth is directly
related to the rate at which phytoplankton is consumed, i.e., response function for zooplankton is
bxy/(αx2 +m), where b is conversion coefficient, d1 is the natural death rate of zooplankton and g1
is the intraspecies competition coefficient among zooplankton population.

The term cyz/(βy2 + h) describes the predation of zooplankton by fish, c denotes the predation
rate, h is the saturation constant which is scaling the impact of the predator interference, food
chain and food weighting factor, and β denotes the inhibitory effect.

As zooplankton is consumed by the fish population, so the growth of fish is dyz/(βy2 + h),
where d is the conversion coefficient of zooplankton to fish, d2 is the natural death rate of fish
population and g2 is the intraspecies competition coefficient among fish population.

Let q0 represents the external input of toxicant into the environment. The parameter v denotes
the removal rate of a toxicant from the prey population (phytoplankton) due to its death. The
parameter a2 denotes the removal rate of a toxicant from the environment due to uptake by the
phytoplankton (prey) populations. Furthermore, b1 and a1 denote the washout rates of organismal
and environmental toxicant, respectively.

3. Boundedness of the Model

Determining the boundedness of solutions is essential to ensuring the system’s biological feasi-
bility. It guarantees that all population densities remain finite and non-negative for all time. Now
we will determine the region of attraction, where our system is bounded.

Theorem 1. Let the set

Ω =
{

(x, y, z, ce, co) ∈ R
5 : x(t) ≤ K, x(t) +

a

b
y(t) +

ac

bd
z(t) ≤ K1,

ce(t) + c0(t) ≤ K2, ce(t) ≥ K3, x(t) + ce(t) ≥ K4

}

,

then all solutions of the system are bounded in the region Ω, where

K1 =
(r0 + 1)K

φ1
, K2 =

q0
φ2

, K3 =
q0

a1 + a2K
, K4 =

(q0 − aK1)

φ3
,

φ1 = min{d, d2, 1}, φ2 = min{a1, b1}, φ3 = max{r1K2 − r0, a1 + a2K}.
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P r o o f. From (2.1), we get
dx

dt
≤ xr0

(

1− x

K

)

.

By the usual comparison theorem, we get as t → ∞,

x(t) ≤ K.

Now, let us consider the following function:

F (t) = x(t) +
a

b
y(t) +

ac

bd
z(t)

by using (2.1), (2.2) and (2.3), we get

dF

dt
+ φ1F ≤ K(r0 + 1),

where φ1 = min{1, d, d2} then, by the usual comparison theorem, we get as t → ∞

F (t) ≤ K(r0 + 1)

φ1
, F (t) = x(t) +

a

b
y(t) +

ac

bd
z(t) ≤ K1, K1 =

K(r0 + 1)

φ1
.

Again, consider the following function:

G(t) = ce(t) + c0(t),

then by using (2.4), (2.5), we get

dG

dt
+ (a1ce + b1c0) ≤ q0,

then again using usual comparison theorem, we get as t → ∞,

G(t) ≤ q0
φ2

,

where φ2 = min{a1, b1}, and hence

ce(t) + c0(t) ≤ K2, K2 =
q0
φ2

.

From (2.4) we get,
dce
dt

+ (a1 + a2K)ce ≥ q0,

then, we get as t → ∞,

ce(t) ≥ K3, K3 =
q0

a1 + a2K
.

Now let us consider the following function:

H(t) = x(t) + ce(t),

by using (2.1) and (2.4) we get,
dH

dt
+ φ3H ≥ (q0 − aK1),

where
φ3 = max{r1K2 − r0, a1 + a2K},

then we get as t → ∞,
H(t) ≥ (q0 − aK1),

and hence,

x(t) + ce(t) ≥ K4, K4 =
(q0 − aK1)

φ3
.

Hence, all the solutions of the system are bounded in the region Ω. �
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4. Analysis of Model

4.1. Existence of equilibrium points

In steady-state solutions, where population densities do not change over time, the system’s equi-
librium points are found. These can be determined by solving the system of algebraic equations
obtained by setting the right-hand sides of differential equations to zero. The set of four equi-
librium points considered in this study includes all biologically feasible configurations of species
survival and extinction under the influence of toxicants. Specifically, we examine: (i) the trivial
equilibrium where no species survive, (ii) boundary equilibria representing partial survival of one
or two species, and (iii) the interior equilibrium where all species coexist. Thus, the mathematical
model has the following four positive equilibrium points, namely, E0(0, 0, 0, ce, 0), Ē1(x̄, 0, 0, c̄e, c̄0),
Ê2(x̂, ŷ, 0, ĉe, ĉ0), E⋆

3(x
⋆, y⋆, z⋆, c⋆e, c

⋆
0).

• For the equilibrium point E0(0, 0, 0, ce, 0):

– from (2.4) we get ce = q0/a1. When only an environmental toxicant is present, then the
equilibrium point is E0(0, 0, 0, q0/a1, 0).

• In the absence of Zooplankton and Fish Ē1(x̄, 0, 0, c̄e, c̄0):

– from (2.1) x̄ = K;
– from (2.5) c̄0 = a2Kc̄e/(b1 + vK);
– from (2.4)

c̄e =
q0

a1 + a2K − a2vK2/(b+ vK)
,

c̄e > 0 if (a1 + a2K)(b+ vK) > a2vK
2.

• In the absence of Fish Ê2(x̂, ŷ, 0, ĉe, ĉ0):

– from (2.2) we get

ŷ =
1

g1

[ bx̂

αx̂2 +m
− d1

]

(4.1)

ŷ > 0 if bx̂ > (αx̂2 +m)d1;

– from (2.4)

ĉe =
q0(b1 + vx̂)

(a1 + a2x̂)(b1 + vx̂)− va2x̂2

ĉe > 0 provided (a1 + a2x̂)(b1 + vx̂) > va2x̂
2;

– from (2.5)

ĉ0 =
a2x̂ĉe
b1 + vx̂

; (4.2)

– from (2.1) we get an algebraic equation in x̂ variable,

(r0 − r1ĉ0)(αx̂
2 +m)

(

1− x̂

K

)

− aŷ = 0.

A positive solution is obtained by solving the above equation for x̂ and then the values of ĉ0,
ĉe, ŷ can be computed from equations (4.1) to (4.2).

• When all the species are present (non-trivial equilibrium point) E⋆
3(x

⋆, y⋆, z⋆, c⋆e , c
⋆
0): the

existence of the equilibrium point E⋆
3 has been established through the isocline method [12],
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– from (2.1)

c⋆0 =
K

r1(K − x)

[

r0

(

1− x

K

)

− ay

αx2 +m

]

= m1(x, y); (4.3)

– from (2.4) and (2.5),

c⋆e =
1

a1
[q0 − b1m1(x, y)] = m2(x, y);

– from (2.2),

z⋆ =
βy2 + h

c

[ bx

αx2 +m
− d1 − g1y

]

= m3(x, y). (4.4)

Now, considering two functions (from (2.2) to (2.4)),

S11(x, y) = q0 − (a1 + a2x)m2(x, y) + vxm1(x, y),

S12(x, y)
bdxy

αx2 +m
+ vxm1(x, y) + q0 − d1y(d+ g1y)− cz(d2 + g2z)− (a1 + a2x)m2(x, y).

For the existence of x⋆ and y⋆, the two isoclines,

S11(x, y) = 0, (4.5)

S12(x, y) = 0, (4.6)

must intersect. We note that

S11(0, 0) =
br0
r1

> 0, S12(0, 0) =
br0
r1

+ hd1d2 −
g2h

2d21
c

,

S12(0, 0) > 0 if
br0
r1

+ hd1d2 >
g2h

2d21
c

.

Also considering, S11(x, 0) = 0 then x will be a positive root (say) φ1, from the following
value of x,

x =
ba1r0

a2(br0 − r1q0)− va1r0
> 0,

if a2(br0 − r1q0)− va1r0 > 0.
Now, consider S11(0, y) = 0 then,

y =
mr0
a

= φ2.

Now, let us consider S12(x, 0) = 0, then x will have one positive root (say) φ3, from the
following cubic equation of x,

αBx3 + αAx2 + (αmB − bh)x+mA = 0,

if αmB < bh and mA > 0, where,

A =
r0b1
r1

+ d1h > 0, B =
[r0v

r1
− a2

a1

(

q0 −
b1r0
r1

)]

.

Now S12(0, y) = 0, then y will have one positive root (say) φ4, from the following equation
of y,

A1y
6 +A2y

5 +A3y
4 −A4y

3 +A5y
2 +A6y −A7 = 0,

A1 =
g2β

2

c
, A2 =

2d1g1β
2g2

c
, A3 =

2g2βg
2
1h

c
+

g2β
2d21
c

,

A4 = g1d2β − 4g2g1d1hβ

c
, A5 =

2βhd21g2
c

− g21g2h
2

c
− d1d2β + g1d1,

A6 =
2g1g2d1h

2

c
− d2hg1 + dd1 +

ab1
r1m

, A7 =
b1r0
r1

+ d1d2h− g2d
2
1h

2

c
,
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if A4 > 0, A5 < 0, A6 and A7 > 0. Thus, both the isoclines intersect each other in the
region ω

ω =
{

(x, y) : 0 < x < φ3, 0 < y < φ2

}

,

in the following two cases (see Fig. 1):

(i) : φ3 > φ2, φ1 > φ4,

(ii) : φ3 < φ2, φ1 < φ4.

This point of intersection will give x⋆, y⋆. For the uniqueness of the (x⋆, y⋆), we must have
dy/dx < 0 for the curves in the region ω. For the curve (4.5),

dy

dx
=

(αx2 +m)

aKF2

(

F1r1(K−x)(αx2+m)−F2K
(

− r0(K − x)

K
+

2aαxy

αx2 +m
+A8

))

< 0, (4.7)

where

F1 =
a2
a1

(q0 − b1m1)− vm1, F2 =
a1 + a2x

a1
b1 + vx, A8 = r0

(

1− x

K

)

− ay

αx2 +m

and for curve (4.6)

dy

dx
=

G1 −G2 − cm′
3(x, y)(d2 + 2g2m3)− bdy/(αx2 +m)

d1(d+ 2gy) − bd/(αx2 +m)
< 0, (4.8)

where

G1 = m′
1(x, y)

[

vx+
b1(a1 + a2x)

a1

]

, G2 = m1(x, y)
[

v +
a2b1
a1

− a2q0
a1

]

.

In case (i), the absolute value of dy/dx given by (4.7) is less than the absolute value of dy/dx
given by (4.8). For the case (ii), the condition is the opposite. Knowing the value of x⋆, y⋆;
z⋆, c⋆e and c⋆0 can be computed from the (4.3) to (4.4).

Case (i): φ3 > φ2, φ1 > φ4. Case (ii): φ3 < φ2, φ1 < φ4.

Figure 1. Existence of equilibrium point E⋆

3
of the Model.
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4.2. Local stability of the Model

Local stability analysis investigates the behavior of solutions in proximity to equilibrium points
through the examination of the Jacobian matrix. To validate the local stability of the equilibrium,
the eigenvalues of the Jacobian matrix are computed at each equilibrium point. If all eigenvalues
have a negative real part, the equilibrium point is locally asymptotically stable.

The Jacobian matrix associated with the Model is

J =













d11 −d12 0 −d13 0
d21 −d22 −d23 0 0
0 d32 d33 0 0
d41 0 0 d44 d45
d51 0 0 d54 d55













,

d11 = r(c0)
(

1− 2x

K

)

− ay(m− αx2)

(αx2 +m)2
, d12 =

ax

αx2 +m
, d13 = r1x

(

1− x

K

)

,

d21 =
by(m− αx2)

(αx2 +m)2
, d22 = d1 + 2g1y +

cz(h − βy2)

(βy + h)2
, d23 =

cy

βy2 + h
,

d32 =
dz(h− βy2)

(βy + h)2
, d33 =

dy

βy2 + h
− d2 − 2g2z,

d44 = xv, d41 = −a2ce + vc0, d45 = −a1 − a2x,

d51 = a2ce − vc0, d54 = −b1 − vx, d55 = a2.

• At E0, the eigenvalues of the characteristic equation are r0,−d1, −d2 and ±
√
a1b1, showing

the instability of E0 since one eigenvalue is positive.
• At Ē1, two eigenvalues of the characteristic equation are,−d1,−d2, and the remaining three

eigenvalues are given by the roots of the following cubic equation

λ3 + S1λ
2 + S2λ+ S3 = 0,

where

S1 =
x̄r(c̄0)

K
− (a1 + a2x̄)− r(c̄0)

(

1− x̄

K

)

,

S2 = c1x̄(a2 + v) + a13(vc̄0 − a2c̄e)− a2b1x̄− a1b1 − a1vx̄,

S3 = a13a1(vc̄0 − a2c̄e) + c1(a2b1x̄+ a1b1 + a1vx̄),

c1 =
x̄r(c̄0)

K
− (a1 + a2x̄)− r(c̄0)

(

1− x̄

K

)

.

According to Routh Hurwitz criteria Ē1 is locally asymptotically stable if S1 > 0 and
S1S2 − S3 > 0.

• At Ê2, one of the eigenvalues of the characteristic equation is dŷ/(βŷ2 + h) − d2 and the
remaining four eigenvalues are given by the roots of the following equation

λ4 +Q1λ
3 +Q2λ

2 +Q3λ+Q4 = 0,

where

Q1 = d1 + 2g1ŷ − (a2 + v)x̂− abx̂ŷ(m− αx̂2)

(αx2 +m)3
− w1,

Q2 = −w1

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

− a1b1 − (a1v + a2b1)x̂

−(a2 + v)x̂
[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3
− w1

]

,
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Q3 = x̂(a2 + v)w1

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

− (a1v + a2b1)x̂

[

d1 + 2g1ŷ −
abx̂ŷ(m− αx̂2)

(αx̂2 +m)3
− w1

]

,

Q4 = a1b1 + (a1v + a2b1)x̂− w1

[

d1 + 2g1ŷ − (a2 + v)x̂− abx̂ŷ(m− αx̂2)

(αx̂2 +m)3

]

,

w1 = r(ĉ0)
(

1− x̂

K

)

+
x̂r(c0)

K
+

aŷ(m− αx̂2)

(αx̂2 +m)2
.

Applying Routh–Hurwitz criteria, it is found that Ê2 is locally asymptotically stable if the
following conditions hold:

dŷ

βŷ2 + h
< d2,

Q1 > 0, Q1Q2 > Q3, Q1Q2Q3 > Q2
3 +Q2

1Q4.

• The characteristic equation of E⋆
3 is given as:

λ5 +R1λ
4 +R2λ

3 +R3λ
2 +R4λ+R5 = 0,

where

R1 = −(a44 + a55 + a11 + a22 + a33),

R2 = a44a55 − a51a45 + (a44 + a55)(a22 + a33 + a11) + a22a33

−a23a32 + a11(a22 + a33) + a12a21,

R3 = −[(a44a55 − a51a45)(a22 + a33 + a11) + (a44 + a55)(a22a33 − a23a32

+a11(a22 + a33) + a12a21)] + a13(a44a55 − a51a45) + a41a13(a22 + a33),

R4 = (a44a55 − a51a45)(a22a33 − a23a32 + a11(a22 + a33) + a12a21)+

(a44 + a55)(a12a21a33 + a11(a22a33 − a32a23)),

R5 = −(a44a55 − a51a45)(a12a21a33 + a11(a22a33 − a32a23))− (a41a55 − a51a45)

(a213a23a32 − a13a22a33).

and

a11 = r(c⋆0)

(

1− x⋆

K

)

− x⋆r(c⋆0)

K
− ay⋆(m− αx⋆2)

(αx⋆2 +m)2
, a12 =

ax⋆

αx⋆2 +m
,

a13 = r1x
⋆

(

1− x⋆

K

)

, a21 =
by⋆(m− αx⋆2)

(αx⋆2 +m)2
, a22 = d1 + 2g1y

⋆ +
cz⋆(h− βy⋆2)

(βy⋆ + h)2
,

a23 =
cy⋆

βy⋆2 + h
, a32 =

dz⋆(h− βy⋆2)

(βy⋆ + h)2
, a33 =

dy⋆

βy⋆2 + h
− d2 − 2g2z

⋆,

a41 = −a2c
⋆
e + vc⋆0, a44 = vx⋆, a45 = −a1 − a2x

⋆,

a51 = a2c
⋆
e − vc⋆0, a54 = −b1 − vx⋆, a55 = a2x

⋆.

According to Routh–Hurwitz criterion, the equilibrium point E⋆
3 is locally asymptotically

stable if

R1 > 0, R1R2 −R3 > 0, R1R2R3 > R2
3 +R2

1R4, R1R2R3 +R1R5 > R2
3 +R2

1R4.
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5. Global stability

Global stability is analyzed using Lyapunov functions, ensuring that the system will settle into
a steady-state solution over time.

Theorem 2. If the following constraints are satisfied in the region Ω :

r(c⋆0)η1 > Kaαy⋆(xl + x⋆), (5.1)

(d1 + g1(yu + y⋆)) > M4, (5.2)

η2(d2 + g2(zu + z⋆)) > dy⋆(h− βyuy
⋆), (5.3)

(r(c⋆0)

K
− aαy⋆(xu + x⋆)

η1

)

M1 > M3, (5.4)

M1M2η2 + d(hzu + βyuy
⋆z⋆) > cy⋆(h+ βyly

⋆2), (5.5)

(b+ x⋆)(a1 + a2x
⋆) > (a2 + v)x⋆, (5.6)

(b+ x⋆)
(r(c⋆0)

K
− aαy⋆(xu + x⋆)

η1

)

> (a2(cel − vc0u), (5.7)

where

M1 = (d1 + g1(yu + y⋆))−
(x⋆(1 + xuαb)

η1
− c(zuh− βyuy

⋆z⋆)

η2

)

,

M2 = d2 + g2(zu + z⋆)− dy⋆(h− βyuy
⋆)

η2
,

M3 =
[a(m+ αx⋆2)

η1
− b(myu + αxux

⋆y⋆)

η2

]2
,

M4 =
(x⋆(1 + xlαb)

η1
− c(zlh− βyly

⋆z⋆)

η2

)

,

η1 = (αx2u +m)(αx⋆2 +m), η2 = (βy2u + h)(βy⋆2 + h),

where xl and xu, yl and yu, cel and c0u, zu denote the lower (l) and upper (u) bounds of the

respective state variables,

xl = K4 −K2, xu = K, cel = K3, c0u = K2, yl =
b(K4 −K2)

a
, yu = K1, zu =

K1bd

ac
,

(where values of Ki, i = 1, 2, 3, 4 can be seen at Theorem 1) then the positive equilibrium point E⋆
3

is globally asymptotically stable in the region Ω.

P r o o f. We assumed the following positive definite function about E⋆
3 :

L1 =
(

x− x⋆ − x⋆ ln
( x

x⋆

))

+
n1

2
(y − y⋆)2 +

n2

2
(z − z⋆)2 +

n3

2
(ce − c⋆e)

2 +
n4

2
(c0 − c⋆0)

2.

Differentiating L1 with respect to time t, we get

dL1

dt
=

(x− x⋆

x

)dx

dt
+ n1(y − y⋆)

dy

dt
+ n2(z − z⋆)

dz

dt
+ n3(ce − c⋆e)

dce
dt

+ n4(c0 − c⋆0)
dc0
dt

.

After performing some algebraic manipulations using system of equations (2.1), (2.5), we obtain

dL1

dt
= −(x− x⋆)2

(r(c⋆0)

K
− aαy⋆(x+ x⋆)

η1

)

−(y − y⋆)2
[

n1d1 + n1g1(y + y⋆)−
(x⋆(1 + xαb)

η1
− c(zh− βyy⋆z⋆)

η2

)]

−(z − z⋆)2
[

n2(d2 + g2(z + z⋆))− n2dy
⋆(h− βyy⋆)

η2

]
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−(ce − c⋆e)
2n4(a1 + a2x

⋆)− (c0 − c⋆0)
2n3(b+ x⋆)

−(x− x⋆)(y − y⋆)
[a(m+ αx⋆2)

η1
− n1b(my + αxx⋆y⋆)

η2

]

−(y − y⋆)(z − z⋆)
1

η2

(

n1c(hy
⋆ + βyy⋆2)− n2d(hz + βyy⋆z⋆)

)

−(x− x⋆)(c0 − c⋆0)
(

r1 −
r1x

K
− n3a2ce + n3vc0

)

−(x− x⋆)(ce − c⋆e)n4(a2ce − vc0) + (c0 − c⋆0)(ce − c⋆e)x
⋆(a2 + n4v),

where

η1 = (αx2 +m)(αx⋆2 +m), η2 = (βy2 + h)(βy⋆2 + h).

Now dL1/dt can further be written as sum of the quadratic forms as

dL1

dt
≤ −

[

(b11/2)(x − x⋆)2 − b12(x− x⋆)(y − y⋆) + (b22/2)(y − y⋆)2

+(b11/2)(x− x⋆)2 + b14(x− x⋆)(ce − c⋆e) + (b44/2)(ce − c⋆e)
2

+(b11/2)(x − x⋆)2 − b15(x− x⋆)(c0 − c⋆0) + (b55/2)(c0 − c⋆0)
2

+(b22/2)(y − y⋆)2 + b23(y − y⋆)(z − z⋆) + (b33/2)(z − z⋆)

+(b44/2)(ce − c⋆e)
2 − b45(ce − c⋆e)(c0 − c⋆0) + (b55/2)(c0 − c⋆0)

2
]

,

where

b11 =
r(c⋆0)

K
− aαy⋆(x+ x⋆)

η1
, b22 = n1d1 + n1g1(y + y⋆)−

(

x⋆(1 + xαb)

η1
− c(zh − βyy⋆z⋆)

η2

)

,

b33 = n2(d2 + g2(z + z⋆))− n2dy
⋆(h− βyy⋆)

η2
, b44 = n4(a1 + a2x

⋆), b55 = n3(b+ x⋆),

b12 =
a(m+ αx⋆2)

η1
− n1b(my + αxx⋆y⋆)

η2
, b23 =

1

η2
(n1c(hy

⋆ + βyy⋆2)− n2d(hz + βyy⋆z⋆)),

b45 = x⋆(a2 + n4v), b15 = (r1 −
r1x

K
− n3a2ce + n3vc0).

Now, by using Sylvesters criteria and by choosing

n1 =
a(m+ αx⋆2)η2

η1b(my + αxx⋆y⋆)
> 0

and n2 = n3 = n4 = 1 we get dL1/dt is negative definite under the following conditions:

b11 > 0, (5.8)

b22 > 0, (5.9)

b33 > 0, (5.10)

b11b22 > b212, (5.11)

b11b44 > b214, (5.12)

b22b33 > b223, (5.13)

b11b55 > b215, (5.14)

b44b55 > b245. (5.15)
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(a) Stable graph around the equilibrium point Ē1.
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(b) Stable graph around the equilibrium point Ê2.

Figure 2. Stable graph around the equilibrium points Ē1 and Ê2

It is observed that the fourth inequality, i.e., b11b22 > b212 is satisfied due to the proper choice
of n1, and for other inequalities, (5.1) ⇒ (5.8), (5.2) ⇒ (5.9), (5.3) ⇒ (5.10), (5.4) ⇒ (5.12),
(5.5) ⇒ (5.13), (5.6) ⇒ (5.14), (5.7) ⇒ (5.15). Hence L1 is a Lyapunov function with respect to
E⋆

3 , whose domain contains the region of attraction Ω, which proves the theorem. �

6. Simulations and discussion

In this section, we numerically explore the effects of key parameters on population interaction
using MATLAB and MATHEMATICA software.

We have taken the following parameter values for Ē1:

r0 = 3.05, r1 = 0.75, K = 6.5, a = 1.12, α = 0.49, m = 1.48, c = 0.01,

b = 1.21, d1 = 0.571, g1 = 0.02, d = 3.1, β = 1.42, h = 7, d2 = 0.223,

g2 = 0.025, q0 = 0.515, v = 0.21, a1 = 0.81, a2 = 0.142, b1 = 0.52.

It has been found that under the above set of parameters, the equilibrium point Ē1 is locally
asymptotically stable (see Fig. 2a).

x̄ = 6.5, ȳ = 0, z = 0, c̄e = 0.4837, c̄0 = 0.2368.

We select the following parameter values for the equilibrium Ê2:

r0 = 3.65, r1 = 0.52, K = 15, a = 1.99, α = 0.25, m = 8.0458, c = 0.01,

b = 1.01, d1 = 0.0571, g1 = 0.025, d = 1.0571, β = 2.192, h = 0.1568, d2 = 0.35,

g2 = 0.0351, q0 = 0.515, v = 0.821, a1 = 0.92881, a2 = 0.63, b1 = 0.252.

It has been observed that under the above set of parameters, the equilibrium point Ê2 is locally
asymptotically stable (see Fig. 2b).

x̂ = 13.85, ŷ = 7.4350, z = 0, ĉe = 0.4611, ĉ0 = 0.3453.
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Figure 3. Stable graph around the equilibrium point E⋆

3
.

We choose the following parameter values for E⋆
3 :

r0 = 0.58, r1 = 0.26, K = 10, a = 2.891, α = 0.653, m = 4.2, c = 0.671,

b = 1.46, d1 = 0.171, g1 = 0.085, d = 0.59, β = 0.52, h = 10.53, d2 = 0.03,

g2 = 0.0351, q0 = 0.155, v = 0.8421, a1 = 0.81, a2 = 0.492, b1 = 0.1252.

It has been found that under the above set of parameters, the equilibrium point E⋆
3 is locally

asymptotically stable (see Fig. 3 and Fig. 4).

x⋆ = 0.7446, y⋆ = 0.9126, z = 0.5445, c⋆e = 0.1780, c⋆0 = 0.08689.

The bifurcation diagrams of phytoplankton, zooplankton, and fish with respect to K are presented
in Fig. 5 and Fig. 6, where

r0 = 0.58, r1 = 0.26, a = 2.891, α = 0.653, m = 4.2, c = 0.671,

b = 1.46, d1 = 0.171, g1 = 0.085, d = 0.59, β = 0.52, h = 10.53, d2 = 0.03,

g2 = 0.0351, q0 = 0.155, v = 0.8421, a1 = 0.81, a2 = 0.492, b1 = 0.1252.

For the above set of parameter values, we observed that if we change K from 6 ≤ K ≤ 7.5 the
system remains stable but shows oscillatory behavior in 7.55 ≤ K ≤ 10.

Again, let us choose the following parameters

r0 = 3.28, K = 10, a = 12.891, α = 0.0653, m = 4.2, c = 9.8671,

b = 11.46, d1 = 0.9971, g1 = 0.07685, d = 5.59, β = 2.952, h = 10.53, d2 = 0.39,

g2 = 0.015351, q0 = 0.151, v = 0.8421, a1 = 0.81, a2 = 0.493, b1 = 0.1252.
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Figure 5. Bifurcation diagram of the model with respect to K.
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Figure 6. Phase graph of the system for different values of K.

1 1.5 2 2.5 3 3.5 4 4.5 5
Bifurcation Parameter (r

1
)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
te

ad
y 

S
ta

te

Phytoplankton

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
Bifurcation Parameter (r

1
)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

S
te

ad
y 

S
ta

te

Zooplankton

(b)

Figure 7. Bifurcation diagram of the system with respect to different values of r1.

Bifurcation diagrams of phytoplankton and zooplankton with respect to r1 are presented in Fig. 7a
and 7b. Phase graphs for different values of r1 showing limit cycle behavior are given at Fig. 8.
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For the above set of parameter values, we observed that if we change r1 from 1 ≤ r1 ≤ 2.55 the
system shows oscillatory behavior, but is stable in 2.55 ≤ r1 ≤ 10.
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Figure 8. Phase graph of the system with respect to different values of r1.

7. Conclusion

In this study, we proposed a mathematical model to explore the impact of toxicants in a tri-
trophic marine food chain system. We established the boundedness of the system, which ensures
that the population of the species remains within the feasible region. The local stability of the equi-
librium point in the model has been analyzed using the Jacobian matrix. From the stability of Ē1,
it can be concluded that the only population of phytoplankton will survive, and the population of
zooplankton and fish would tend to go extinct (see Fig. 2a). The stability of Ê2 indicates that the
phytoplankton and zooplankton population will survive and the fish will extinct (see Fig. 2b). The
interior equilibrium point E⋆

3 is locally and globally stable, showing coexistence of all three popula-
tions (see Fig. 3). From this analysis, it is seen that some parameter associated with our proposed
model can make the system unstable. Our investigation shows that a few parameters related to our
suggested model have the potential to cause system instability. The numerical simulation indicates
that increasing the system’s carrying capacity K keeps it stable up to a critical value, after which
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it becomes unstable (Fig. 5). Also, it is concluded that r1 has a significant role in the stability of
the ecosystem (Fig. 7). Phase portraits are also presented, which show the limit cycle behavior of
the system for different values of the parameters.
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