NOTE ON SUPER \((a,1)\)–\(P_3\)–ANTIMAGIC TOTAL LABELING OF STAR \(S_n\)

S. Rajkumar     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India)
M. Nalliah     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India)
Madhu Venkataraman     (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India)

Abstract


Let \(G=(V, E)\) be a simple graph and \(H\) be a subgraph of \(G\). Then \(G\) admits an \(H\)-covering, if every edge in \(E(G)\) belongs to at least one subgraph of \(G\) that is isomorphic to \(H\). An \((a,d)-H\)-antimagic total labeling of \(G\) is bijection \(f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}\) such that for all subgraphs \(H'\) of \(G\) isomorphic to \(H\), the \(H'\) weights \(w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)\) constitute an arithmetic progression \(\{a, a + d, a + 2d, \dots , a + (n- 1)d\}\), where \(a\) and \(d\) are positive integers and \(n\) is the number of subgraphs of \(G\) isomorphic to \(H\). The labeling \(f\) is called a super \((a, d)-H\)-antimagic total labeling if \(f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.\) In [5], David Laurence and Kathiresan posed a problem that characterizes the super \( (a, 1)-P_{3}\)-antimagic total labeling of Star \(S_{n},\) where \(n=6,7,8,9.\)  In this paper, we completely solved this problem.


Keywords


\(H\)-covering, Super \((a,d)-H\)-antimagic, Star.

Full Text:

PDF

References


  1. 1. Gallian J.A. A dynamic survey of graph labelling. The Electronic J. Comb., 2017. No. DS6. P. 1–576 DOI: 10.37236/27 
  2. Gutiénrez A., Lladó A. Magic coverings. J. Combin. Math. Combin. Comput., 2005. Vol. 55. P. 43–56.
  3. Inayah N., Salman A.N.M., Simanjuntak R. On \((a,d)\) − \(H\)-antimagic coverings of graphs. J. Combin. Math. Combin. Comput., 2009. Vol. 71. P. 273–281.
  4. Kotzig A., Rosa A. Magic valuations of finite graph. Canad. Math. Bull., 1970. Vol. 13, No. 4. P. 451–461. DOI: 10.4153/CMB-1970-084-1 
  5. Laurence S.D., Kathiresan K.M. On super \((a,d)−P_h\) -antimagic total labeling of Stars. AKCE J. Graphs Combin., 2015. Vol. 12. P. 54–58. DOI: 10.1016/j.akcej.2015.06.008 
  6. Simanjuntak R., Bertault F., Miller M. Two new \((a,d)\)-antimagic graph labelings. In: Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), Hunter Valley, Australia. 2000. P. 179–189. 
  7. Sugeng K.A., Miller M., Slamin, Bača M., (a,d)-edge-antimagic total labelings of caterpillars. In: Combinatorial Geometry and Graph Theory. IJCCGGT 2003. Akiyama J., Baskoro E.T., Kano M. eds. Lecture Notes in Comput. Sci., vol. 3330. 2003. P. 169-180. DOI: 10.1007/978-3-540-30540-8_19




DOI: http://dx.doi.org/10.15826/umj.2021.2.006

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.