NOTE ON SUPER \((a,1)\)–\(P_3\)–ANTIMAGIC TOTAL LABELING OF STAR \(S_n\)
Abstract
Let \(G=(V, E)\) be a simple graph and \(H\) be a subgraph of \(G\). Then \(G\) admits an \(H\)-covering, if every edge in \(E(G)\) belongs to at least one subgraph of \(G\) that is isomorphic to \(H\). An \((a,d)-H\)-antimagic total labeling of \(G\) is bijection \(f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}\) such that for all subgraphs \(H'\) of \(G\) isomorphic to \(H\), the \(H'\) weights \(w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)\) constitute an arithmetic progression \(\{a, a + d, a + 2d, \dots , a + (n- 1)d\}\), where \(a\) and \(d\) are positive integers and \(n\) is the number of subgraphs of \(G\) isomorphic to \(H\). The labeling \(f\) is called a super \((a, d)-H\)-antimagic total labeling if \(f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.\) In [5], David Laurence and Kathiresan posed a problem that characterizes the super \( (a, 1)-P_{3}\)-antimagic total labeling of Star \(S_{n},\) where \(n=6,7,8,9.\) In this paper, we completely solved this problem.
Keywords
Full Text:
PDFReferences
- 1. Gallian J.A. A dynamic survey of graph labelling. The Electronic J. Comb., 2017. No. DS6. P. 1–576 DOI: 10.37236/27
- Gutiénrez A., Lladó A. Magic coverings. J. Combin. Math. Combin. Comput., 2005. Vol. 55. P. 43–56.
- Inayah N., Salman A.N.M., Simanjuntak R. On \((a,d)\) − \(H\)-antimagic coverings of graphs. J. Combin. Math. Combin. Comput., 2009. Vol. 71. P. 273–281.
- Kotzig A., Rosa A. Magic valuations of finite graph. Canad. Math. Bull., 1970. Vol. 13, No. 4. P. 451–461. DOI: 10.4153/CMB-1970-084-1
- Laurence S.D., Kathiresan K.M. On super \((a,d)−P_h\) -antimagic total labeling of Stars. AKCE J. Graphs Combin., 2015. Vol. 12. P. 54–58. DOI: 10.1016/j.akcej.2015.06.008
- Simanjuntak R., Bertault F., Miller M. Two new \((a,d)\)-antimagic graph labelings. In: Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), Hunter Valley, Australia. 2000. P. 179–189.
- Sugeng K.A., Miller M., Slamin, Bača M., (a,d)-edge-antimagic total labelings of caterpillars. In: Combinatorial Geometry and Graph Theory. IJCCGGT 2003. Akiyama J., Baskoro E.T., Kano M. eds. Lecture Notes in Comput. Sci., vol. 3330. 2003. P. 169-180. DOI: 10.1007/978-3-540-30540-8_19
Article Metrics
Refbacks
- There are currently no refbacks.