ON DISTANCE–REGULAR GRAPHS OF DIAMETER 3 WITH EIGENVALUE \(\theta=1\)

Alexander A. Makhnev     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation; Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russian Federation)
Ivan N. Belousov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation; Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russian Federation)
Konstantin S. Efimov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation; Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russian Federation)

Abstract


For a distance-regular graph \(\Gamma\) of diameter 3, the graph \(\Gamma_i\) can be strongly regular for \(i=2\) or 3. J.Kulen and co-authors found the parameters of a strongly regular graph \(\Gamma_2\) given the intersection array of the graph \(\Gamma\) (independently, the parameters were found by A.A. Makhnev and D.V.Paduchikh). In this case, \(\Gamma\) has an eigenvalue \(a_2-c_3\). In this paper, we study graphs \(\Gamma\) with strongly regular graph \(\Gamma_2\) and eigenvalue \(\theta=1\). In particular, we prove that, for a \(Q\)-polynomial graph from a series of graphs with intersection arrays \(\{2c_3+a_1+1,2c_3,c_3+a_1-c_2;1,c_2,c_3\}\), the equality \(c_3=4 (t^2+t)/(4t+4-c_2^2)\) holds. Moreover, for \(t\le 100000\), there is a unique feasible intersection array \(\{9,6,3;1,2,3\}\) corresponding to the Hamming (or Doob) graph \(H(3,4)\). In addition, we found parametrizations of intersection arrays of graphs with \(\theta_2=1\) and \(\theta_3=a_2-c_3\).


Keywords


Strongly regular graph, Distance-regular graph, Intersection array

Full Text:

PDF

References


  1. Makhnev A.A, Nirova M.S. Distance-regular Shilla graphs with \(b_2=c_2\). Math. Notes, 2018. Vol. 103, No. 5. P. 780–792. DOI: 10.1134/S0001434618050103
  2. Iqbal Q., Koolen J.H., Park J., Rehman M.U. Distance-regular graphs with diameter 3 and igenvalue \(a_2-c_3\). Linear Algebra Appl., 2020. Vol. 587. P. 271–290. DOI: 10.1016/j.laa.2019.10.021
  3. Makhnev A.A., Paduchikh D.V. Inverse problems in the theory of distance-regular graphs. Trudy Inst. Mat. i Mekh. UrO RAN, 2018. Vol. 24, No. 3. P. 133–144. DOI: 10.21538/0134-4889-2018-24-3-133-144
  4. Terwilliger P. A new unequality for distance-regular graphs. Discrete Math., 1995. Vol. 137, No. 1–3. P. 319–332. DOI: 10.1016/0012-365X(93)E0170-9




DOI: http://dx.doi.org/10.15826/umj.2022.2.010

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.