Peter V. Danchev     (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)


A ring \(R\) is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring \(R\) and each abelian group \(G\), we find only in terms of \(R\), \(G\) and their sections a necessary and sufficient condition when the group ring \(R[G]\) is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.


Invo-clean rings, Weakly invo-clean rings, Group rings

Full Text:



Danchev P.V. Invo-clean unital rings. Commun. Korean Math. Soc., 2017. Vol. 32, No. 1. P. 19–27. DOI: 10.4134/CKMS.c160054

Danchev P.V. Weakly invo-clean unital rings. Afr. Mat., 2017. Vol. 28, No. 7–8. P. 1285–1295. DOI: 10.1007/s13370-017-0515-7

Danchev P.V. Feebly invo-clean unital rings. Ann. Univ. Sci. Budapest (Math.), 2017. Vol. 60. P. 85–91.

Danchev P.V. Weakly semi-boolean unital rings. JP J. Algebra Number Theory Appl., 2017. Vol. 39, No. 3. P. 261–276. DOI: 10.17654/NT039030261

Danchev P.V. Commutative invo-clean group rings. Univ. J. Math. Math. Sci., 2018. Vol. 11, No. 1.P. 1–6. DOI: 10.17654/UM011010001

Danchev P.V., McGovern W.Wm. Commutative weakly nil clean unital rings. J. Algebra, 2015. Vol. 425, No. 5. P. 410–422. DOI: 10.1016/j.jalgebra.2014.12.003

Karpilovsky G. The Jacobson radical of commutative group rings. Arch. Math., 1982. Vol. 39, No. 5. P. 428–430. DOI: 10.1007/BF01899543

McGovern W.Wm., Raja Sh., Sharp A. Commutative nil clean group rings. J. Algebra Appl., 2015. Vol. 14, No. 6, art. no. 1550094. DOI: 10.1142/S0219498815500942

Milies C.P., Sehgal S.K. An Introduction to Group Rings. Netherlands: Springer, 2002. 371 p.

Passman D.S. The Algebraic Structure of Group Rings. Dover Publications, 2011. 752 p.


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.