COMMUTATIVE WEAKLY INVO–CLEAN GROUP RINGS
Abstract
A ring \(R\) is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring \(R\) and each abelian group \(G\), we find only in terms of \(R\), \(G\) and their sections a necessary and sufficient condition when the group ring \(R[G]\) is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.
Keywords
Full Text:
PDFReferences
Danchev P.V. Invo-clean unital rings. Commun. Korean Math. Soc., 2017. Vol. 32, No. 1. P. 19–27. DOI: 10.4134/CKMS.c160054
Danchev P.V. Weakly invo-clean unital rings. Afr. Mat., 2017. Vol. 28, No. 7–8. P. 1285–1295. DOI: 10.1007/s13370-017-0515-7
Danchev P.V. Feebly invo-clean unital rings. Ann. Univ. Sci. Budapest (Math.), 2017. Vol. 60. P. 85–91.
Danchev P.V. Weakly semi-boolean unital rings. JP J. Algebra Number Theory Appl., 2017. Vol. 39, No. 3. P. 261–276. DOI: 10.17654/NT039030261
Danchev P.V. Commutative invo-clean group rings. Univ. J. Math. Math. Sci., 2018. Vol. 11, No. 1.P. 1–6. DOI: 10.17654/UM011010001
Danchev P.V., McGovern W.Wm. Commutative weakly nil clean unital rings. J. Algebra, 2015. Vol. 425, No. 5. P. 410–422. DOI: 10.1016/j.jalgebra.2014.12.003
Karpilovsky G. The Jacobson radical of commutative group rings. Arch. Math., 1982. Vol. 39, No. 5. P. 428–430. DOI: 10.1007/BF01899543
McGovern W.Wm., Raja Sh., Sharp A. Commutative nil clean group rings. J. Algebra Appl., 2015. Vol. 14, No. 6, art. no. 1550094. DOI: 10.1142/S0219498815500942
Milies C.P., Sehgal S.K. An Introduction to Group Rings. Netherlands: Springer, 2002. 371 p.
Passman D.S. The Algebraic Structure of Group Rings. Dover Publications, 2011. 752 p.
Article Metrics
Refbacks
- There are currently no refbacks.